
Deriving Tests with Fault Coverage for
Specifications in the Form of Labeled

Transition Systems

Q M. Tan,
A. Petrenko and
G. v. Bochmann

publication # 1073

Juin 1997

Deriving Tests with Fault Coverage for Specifications

in the Form of Labeled Transition Systems

Q. M. Tan* A. Petrenko* G. v. Bochmannt

* D'IRO, Universite of Montreal, Canada, (tanq, bochmann}@iro.umontreal.ca

* Centre de recherche informatique de Montreal, Canada, petrenko@crim.ca

Abstract
A challenging issue is the derivation of finite test suites with well-defined fault coverage

for conformance testing of communication systems modeled by labeled transition systems

(LTSs) with respect to a particular conformance relation. It is shown in this paper that

this problem can be solved by translating an LTS specification into an input/output finite

state machine (FSM) for trace or failure semantics, respectively, subsequently applying

existing FSM-based methods for test derivation, and finally converting the obtained tests

back to the LTS formalism. It is also demonstrated that the obtained tests can be opti-

mized or the existing FSM-based methods can be adapted for generating optimized tests

by taking into account the specifics of the FSMs which are obtained from the given LTSs.

Keywords: Protocol conformance testing, software testing, lebeled transition systems,

formal modeling, fault coverage.

1 Introduction

Conformance testing is one of the essential and challenging issues in the development of

communication systems, including network protocols and some kinds of software systems.

Conformance testing is the activity of trying to find out whether an implementation con-

forms to its specification to gain confidence in the successful interactions of the implemen-

tation with its environment. Because of the complexity of systems , it is often proposed to

use the formal techniques to support the automation of this activity. Amongst the formal

description techniques (FDTs) used for writing specifications are LOTOS [4], which is

based on Labeled Transition Systems (LTSs), and SDL [2] and Estelle [8], which are based

on the Finite State Machine (FSM) model. Much work on the derivation of tests from a

given system specification has been done separately for the two models [3, 23].

FSMs and LTSs are often used in the analysis and design of various software systems

to specify the "control structure". The control structure governs the actions of a program

which affect its environment. When the interactions of a program with its environment

are mainly concerned, the program can be considered to be a communication system.

In addition to network protocols, these models are useful for describeing the behavior of

compilers, real-time systems, embedded software and concurrent programs.

Systematic approaches have been developed for conformance testing of communication

systems and the generation of appropriate test suites based on the FSM model. Most work

in this area is limited to completely specified, deterministic specifications [10, 16, 27].

However, some recent research has addressed nondeterministic and partially specified

specifications [22, 20, 21]. A number of competing methods for deriving tests from FSMs

that guarantee fault coverage have been elaborated [23].

Compared to FSMs, LTSs are in some sense a more general descriptive model, since

interactions of a specified system with its environment are usually considered rendezvous

interactions making no distinction between input and output. LTSs are usually not com-

pletely specified; the unspecified interactions are not possible. There has been much work

on testing theory and test derivation from LTS specifications [6, 7, 35, 26, 36, 31, 32, 19,

9, 14, 28]. However, most of the test derivation methods are based on exhaustive testing,

where all the possible execution scenarios are carried out in order to prove the correctness

of the implementation in respect to a given conformance relation. However, such exhaus-

tive testing is often impractical since it may involve a test suite of infinite behavior. The

approximation approach [26, 33], such as n-testers, which is proposed to solve this prob-

lem, provides no fault coverage measure for conformity of the implementation with its

specification. Moreover, for the existing frameworks for testing LTSs [7, 32], it is difficult

to define the verdicts for certain conformance relations, such as trace equivalence, non-

deterministic reduction (conf [6] plus trace equivalence) [13] and failure equivalence [29].

A general framework for conformance testing of communication systems should be

developed in such a way that the conformance relation is determined by the real confor-

mance requirements, and a test suite should have finite behavior and ensure a "good"

fault coverage. Several attempts have been made to apply the ideas underlying the FSM-

based methods to the LTS model [9, 15, 1, 28], by redefining the state identification and

eventually the checking experiments in the LTS realm. [9] tries the UlO-based state iden-

tifiers which, as is well known, do not always exist; [15] considers the characterization

sets; and [1] introduces the state identification machines. However, these attempts did

not solve the problem of deriving a finite test suite with complete fault coverage from

an arbitrary LTS for a given conformance relation. In this paper we take another ap-

proach, initially outlined in [23]. It is suggested that tests for a given LTS specification

and conformance relation could be obtained from tests directly generated by the existing

FSM-based methods from a specific FSM which is constructed from the LTS according to

the chosen semantics. This approach has the advantage of allowing reuse of existing FSM-

based methods and testing tools for the LTS specifications. Evidently, the translation of

an LTS into an FSM is semantic-driven and should be elaborated on a case-by-case basis.

In this paper, we try to elaborate this general idea for the two particular types of seman-

tics, namely, the trace and failure semantics. We formally show that LTS specifications

can be modeled by proper input/output (I/O) FSMs in the trace or failure semantics,

and that test suites with fault coverage produced from the corresponding FSMs and then

converted back to the LTS formalism can guarantee the given conformance relation with

corresponding fault coverage. We also demonstrate that the test suites can be further

optimized taking into account the specific properties of the FSMs derived from LTSs.

We give in Section 2 basic definitions and notations of the FSM and LTS models,

and common conformance relations used in the two models, respectively. In Section 3

a framework is proposed for finite testing of LTSs, and in Section 4 the verdict labeling

functions for test cases with respect to the conformance relations are discussed. In Section

5, the FSM models for LTSs, in failure semantics and in trace semantics respectively, are

defined, and the validity of these transformations are shown. In Section 6, the proposed

approach to test derivation from a given LTS specification with respect to the conformance

relations is illustrated, and the optimization of the test cases is discussed.

Figure 1: An FSM graph

2 Basic Definitions and Notions of Conformance

The starting point for conformance testing is a specification in some (formal) notation,

an implementation given in the form of a black box, and a set of conformance require-

ments the implementation should satisfy. In this paper, two formal notations, which

are finite state machines and labeled transition systems, respectively, are considered for

specifications; implementations are also assumed to be described in the same model as

its specification; the conformance requirements of a given specification is supposed to be

defined by a specific conformance relation.

2.1 Finite State Machine

Definition 1 (Finite State Machine (FSM)): A completely specified finite state machine

is a 5-tuple < S, X, Y, h,so >, where:

• S is a finite set of states, and SQ e S, is the initial state.

• X is a finite set of inputs.

• Y is a finite set of outputs, and it may include G which represents the null output,

that is, no output.

• h is a behavior function, h : S x X -4 powerset(S x y)\{0}, where 0 is the empty

set. (q, b) € h(p, a) is also written p—a/b-+q, which is called a transition

from p to q with the label a/6.

The behavior function defines the possible transitions of the machine. If \h(p, a)\ 1

for all (p,a) £ SxX then the FSM is deterministic (DFSM); otherwise, it is nondetermin-

istic (NFSM). The FSM is also said to be an observable FSM (OFSM), if \{q \ e

h(p> «)}| < 1 for all p 6 S and (p, a) € S x X. A DFSM is observable, but an OFSM may

notation meaning

F X x Y, a set of input/output pairs; v denotes such a pair

F* set of sequences over F; 7 or v\... vn denotes such a sequence

p—e-tq p = q; e is the empty sequence

P—VI ... vn—></ there exist p*, 1 < k < n, such that p—v\—>pi...pn-i — vn

p—7—» there exists q such that p—7—iq

p-/7~4 no q exists such that p—a-*q

Tr(p) Tr(p) = <7 G T* j p-7->}; Tr(S) =

7in for 7 € T*, 7*n € X* is the input part of 7

p—a;,-... xn—>q there exists 7 € F* such that p—7-># and Zf . . . a;n = 7*"

out(p, F) ou*(p, K) = {v | vin € F A p-t>-+} for F C **

Table 1: Notations for finite state machines

still be nondeterministic. We note that any non-observable NFSM can be transformed

into an equivalent observable NFSM (ONFSM) [20].

An FSM can also be represented by a directed graph in which the nodes are the

states and each directed edge with a label is a transition linking two states, as shown in

Figure 1. For the convenience of the presentation, we use I, P, S,... to represent FSMs;

/, P, Q,..., for sets of states; a, 6, c,..., for inputs or outputs; and i,p, g, s..., for states.

Other notations are given in Table 1.

Conformance Relations

The following conformance relations are usually used to formalize the conformance require-

ments for conformance testing of the finite state machines. We say that an implementation

M conforms to a specification S if the chosen conformance relation holds between M and

S.

Definition 2 (Reduction of nondeterminism): The reduction relation between two states

p and q in NFSMs, written p < q, holds iff Tr(p) C Tr(q).

Given two FSMs S and M, we say that M is a reduction of S, written M < S, iffm0 < SQ-

According to this conformance relation [23], all output sequences that are produced

by an implementation in response to any input sequence should be described by its spec-

ification.

Figure 2: An LTS graph

Definition 3 (Equivalence): The equivalence relation between two states p and q in

FSMs, written p ~ q, holds iff Tr(p) = Tr(q).

Given two FSMs S and M, we say that M is equivalent to S, written S ~ M, iff s0 ~ Wo-

The above definition of the equivalence relation is given in [20] for NFSMs, similar to

that in [16, 10] for DFSMs. This conformance relation requires that an implementation

has the same traces as its specification.

It can be shown that in the case of nondeterminism the reduction relation is a pre-

order such that M ~ S iff M < S and S < M, and in the case of determinism, the reduction

relation is the equivalence relation [24].

2.2 Labeled Transition System

Definition 4 (Labeled transition system (LTS)): A labeled transition system is a 4-tuple

< 5, E, A, So >, where:

• S is a finite non-empty set of states, SQ € S, is the initial state.

• E is a finite set of labels, called observable actions; r £ E is called an internal action.

• A C S x (E U {T}) x S is a transition set. An element (p, n, q) is denoted by p—

A state p is unstable if there exists q € S such that p—r—tq € A; otherwise it is stable.

If there exists p—fjt—^q € A, p is said to be active; otherwise it is inactive. A stable LTS

has no unstable states, whereas a unstable LTS has such states.

An LTS is said to be nondeterministic if it is unstable or there exist p—

p-2 G A but pi ^ p2- In a deterministic LTS, the outgoing transitions of any state are

uniquely labeled.

Here we also use I, P, S, . . . to represent LTSs; /, P,Q,.. ., for sets of states; a, b, c, . . .,

for actions; and i,p,q,s..., for states. The notations are shown in Table 2 that are

relevant to a given LTS, as introduced in [6].

An LTS can also be represented by a directed graph where nodes are states and labeled

edges are transitions. An LTS graph is shown in Figure 2.

We can note that the Ref(p, a} includes all the sets of actions that may be refused

by some state in p after a. If a set A is refused, obviously, each set B C A is refused as

well. Thus, we may consider a minimal representation of Ref(p,a), denoted f/Ee/(p,ff)],

by deleting each element in Ref(p,cr) that is a subset of another. Generally, for any set

R, [fl] = R\{A \3BzR (AC B)}.

We also denote Acc(p,a) = p(S)\/2e/(p,cr) and Acc(p) = ^4cc(p,e), where p(E) is

the power set of the set E. Acc(p, a) includes every set of the actions among which there

exists at least one action that must be accepted by all the states in p after a. We note

that for any two sets of actions A and B, if A D B then that B must be accepted implies

that A must also be accepted. Therefore a minimal representation of Acc(p, cr), denoted

[Acc(p, a}\ can be obtained by deleting each element in Acc(p, a) that is a superset of

another. Formally, for any set R, [R\ R\{A | 3B e R (A D B)}.

In the case of nondeterminism, after an observable action sequence, an LTS may enter

a number of different states. In order to consider all these possibilities, a state subset

(multi-state [15]), which contains all the states reachable by the LTS after this action

sequence, is used.

Definition 5 (Multi-state set): The multi-state set of LTS S is the set Hg — {<% C

S | 3<7 e Tr(S) (S after a = $)}.

Note that the empty sequence e is in S*. Therefore So = SQ after e is in the multi-

state set, and it is called the initial multi-state. The multi-state set can be obtained

by a known algorithm which performs the deterministic transformation of a nondeter-

ministic LTS with the trace-equivalence [18, 15, 9]. For Figure 1, the multi-state set is

{{SQ, si}, {s2, s3}, {s2}, {SQ, 81,84,, s5}, {s5}}. Obviously, each LTS has one and only one

multi-state set.

notation

S*

p—H\ . . nn— > q

p=e=>q

p=a=>q

p—a\...an=^q there exists pk, 1 < k < n, such that p=a\=$p\ . .pn-i=an=$-q

meaning

set of sequences over S; a or 01 . . . an denotes such a sequence

there exists pfc, 1 < k < n, such that p— fj,i~ *Pi • • • Pn-i —

p—rn—tq (1 < n) or p = q (note: rn means n times T)

there exist pi,p2 such that pi=£=*-pi —

p=cr=>

init(p)

p after a

Tr(p)

Ref(p, a)

there exists q such that p=a=$-q

no q exists such that p= a =&q

init(p) = {a € II | p=a=$}

p after a = {q € 5 | p=a=$-q}\ after a — SQ after o

)};Ref(p, a) = {AC'S \3q€p after a Va € A

Ref(p] = Ref(p,e); Ref(S,a) =

Table 2: Basic notations for labeled transition systems

Tr(P)

init(P)

P after a

Ref(P,o]

Ref(P)

P=a^Q

= U(pep)Tr(p)

= U(p6p) init(p)

- U(pep) P after a

= (J(p€p)Ref(P,<r)

= U(p6p) Ref(p)
<*• Q = {9€5|3peP (p=cr=>-9)}

Table 3: Additional notations for labeled transition systems

After any observable sequence, a nondeterministic system reaches a unique multi-

state. Thus from the test perspective, it makes sense to identify multi-states, rather

than single states. This viewpoint is reflected in the FSM realm by the presentation of a

nondeterministic FSM specification as an observable FSM [20], in which each state is a

subset of states of the non-observable FSM. The viewpoint is also reflected by the refusal

graphs [14], in which a node corresponds to a multi-state.

Notations used for multi-states are shown in Table 3. In this table, P, Q C S, where

S is the state set of LTS S. From the notations, it is easy to show that Tr(so) = Tr(So)

and SQ after a = SQ after a.

8

Conformance Relations
There are different criteria determining whether an implementation conforms to a specifi-

cation [35]. Using different criteria, various conformance relations have been proposed for

comparing labeled transition systems. Under the assumption that systems communicate

by rendezvous, the following conformance relations are considered in this paper.

Definition 6 (Conformance relations): Given two LTSs M and S,

Trace equivalence («t): M «< S iff Tr(mo) = Tr(s0)-

Failure reduction (</): M </ S iff Va € E* Ref(mo, a) C Ref(s0, a).

Nondeterministic reduction (<„): M <n S iff M «< S and M </ S.

Failure equivalence («/): M «/ S iff M <f S and S </ M.

The trace equivalence relation requires that an implementation has the same traces

as its specification. The failure reduction relation stipulates that everything of the imple-

mentation is allowed by its specification, not only the traces but also the actions refused

after any observable action sequence (deadlock). The failure equivalence further states

not only that everything the implementation does must be allowed by its specification,

but also that everything prescribed by the specification should be implemented by the

implementation. The nondeterministic reduction relation is the failure reduction relation

with the trace equivalence. We note that for deterministic systems, the trace equiva-

lence relation is the failure equivalence relation. Nondeterminism differentiates the two

relations, so nondeterministic reduction corresponds to implementation choices for a non-

deterministic specification. The trace equivalence relation belongs to trace semantics [17],

while the other three relations belong to failure semantics [11].

The following relationships hold among these conformance relations: «/=r"<n; <n=^^/»

<n=^«t < and

Note that there is a slight difference in the term "failure" between [11] and this paper.

In [11], a failure means that the system stagnates in a state p with a set A of offered

actions, that is, for all p, € j4u{r} p-^p,— >. In this paper this is weakened to p ̂ a => for all

a € A [6], which says that communication of the system with the environment is blocked

if A is offered inp (communication failure). Conformance testing, unlike verification, is to

check the observable behavior of an implementation, taking no care of its internal actions

or fairness. From this, the failure semantics in this paper equates with the semantics

9

based on testing equivalence [12], which is defined by observing the executions of a class

of tests. We prefer characterizing a conformance relation in terms of properties of the

system itself to defining it by using a class of tests.

3 Conformance Testing as Experiments

Conformance testing is a finite set of experiments, in which a set of test cases, derived from

a specification according to a conformance relation, are applied by a tester or experimenter

to the implementation under test (IUT), such that from the results of the execution of

the test cases, it can be concluded whether or not the implementation conforms to the

specification.

In testing systems that are modeled by FSMs, the testing framework is intuitive and

simple. A test case is usually represented as an input sequence with the specified reactions,

and testing is an exchange of input/output interactions between a tester and IUT, in which

the test case is executed in such a way that the tester stimulates in turns an input to

the IUT, observes the output of the IUT and compares it with the specified reaction(s).

In the case of nondeterminism, for a given input, several possible output reactions may

be specified, and the next input may depend on previous output. In the LTS formalism,

however, since there are various conformance relations, and the rendezvous interactions

make no distinction between input and output, a testing framework is needed to answer

the following questions: How are test cases structured for a given conformance relation;

what constitute observations; how is the verdict assigned after a finite amount of testing;

and how can one obtain a well-defined confidence that the implementation under test

conforms to its specification?

3.1 Test cases, Testing and Verdicts

The behavior of the tester during a test experiment is defined by the test case used in this

experiment. Thus a test case is a specification of behavior, which, like other specifications,

can be represented as an LTS [34]. An experiment should last for a finite time, so a test

case should have no infinite behavior. Moreover, the tester should have certain control

over the testing process, so nondeterminism in a test case is undesirable.

10

Definition 7 (Test cases and test suite): Given an LTS specification S =< 5, E, A, SQ >,

its test case T is a 5-tuple < T, ET, Ar, tQ,£> where:

• ET C S;

• < T, ET, Ay, to > is a deterministic, tree-structured LTS such that for each p € T

there exists exactly one <r € Ey with to=<r=$-p;

• t: T —> {pass, fail, inconclusive} is a state labeling function.
A test suite for S is a finite set of test cases.

Prom this definition, the behavior of test case T is finite, since T and E are finite as

defined. Moreover, a trace of T uniquely determines a single state in T, so we also write

i(a) = i(t) for {t} = t0 after a.

The rendezvous interactions between a test case T and the IUT M can be formalized

by the synchronization operator "||" of LOTOS. Let t and ra be the current states of T

and M, repectively, the test execution proceeds by following inference rules:

m—T—*m' \- 11| m—r—»£ || m'

t—a-^^,m-a->m', a e ET h t \ || m'

When t0 || mo after an observable action sequence a reaches a deadlock, that is, there

exists a state p€TxM such that for all actions a € E, to || mo=<r=^p^a^ we say that

this experiment completes a test run. In the light of the tester, each state of the test case

T is characterized by the set of actions out of this state which are offered by the tester

to the IUT. If this set is empty, we say that the test case has reached an inactive state;

the other states are active. The completion of a test run means that an inactive state is

reached or the set of actions offered as next interactions are refused by the IUT.

Usually, a test case is designed to check some particular conformance requirement,

sometimes called a test purpose. We define here the test purpose of a test case T, written

Pwr(T), to be Pwr(T) = {a <E Tr(t0) \ = pass}. If Pwr(T) = 0, then T should have

at least one fail label and its purpose is to check that the IUT does not implement some

specific unexpected behavior.

LTSs are generally supposed to be nondeterministic. In order to test nondeterministic

implementations, one usually makes a so-called complete-testing assumption: it is possible,

11

by applying a given test case to the implementation a finite number of times, to exercise all

possible execution paths of the implementation which are traversed by the test case [15,

21, 20]. Without such an assumption, no test suite can guarantee full fault coverage

(in terms of conformance relations) for nondeterministic implementations. Therefore any

experiment, in which M is tested by T, should include several test runs and lead to a

complete set of observations O6s(T,M) = {cr € Trfa) | 3p 6 T x M, Vet € £ (£0 || mQ=

Based on O&S(T,M)> which are the results of testing with the test case T, the success

or failure of the testing needs to be concluded. The way a verdict is drawn from O6s(T,M)

is the "verdict assignment" for T: O6s(x,M) =>• {pass, fail}. The verdict pass means

success, which, intuitively, should mean that no unexpected behavior is found and the

test purpose has been achieved. Therefore, we define the verdict assignment as follows:

Definition 8 (Verdict assignment v): Given an IUT M, a test case T, let Obs/au = {a 6

Obs(TM) I 1(0) = fail} and Obs^ = {a e O6s(T,M) 1 1(0} = pass},

= $ A

fail otherwise.

All observations a € O&S(T,M) and the corresponding labels i(a) together form a verdict

for T. Single labels do not give such a verdict, so in this sense a state labeling function is

not a verdict function [33].

3.2 Fault Model and Fault Coverage

The goal of conformance testing is to gain confidence in an implementation under test con-

cerning its conformance with the specification. Increased confidence is normally obtained

through time and effort spent in testing the implementation, which, however, are limited

by practical and economical considerations. In order to have a more precise measure of

the effectiveness of testing, a fault model and fault coverage criteria [3] are introduced.

We here take the mutation approach [3], that is, we define the fault model to be a set

T of all faulty LTS implementations considered. Based on F, a test suite with complete

fault coverage for a given LTS specification with respect to a given conformance relation

can be defined as follows.

12

Definition 9 (Complete test suite): Given an LTS specification S, a conformance relation

r and a fault model .F, a test suite TS for S w.r.t. r is said to be complete over J-, if for

any M in F, r holds between M and S iff M passes T for each T in TS.

In the following, we consider a particular fault model of the form F(m) which consists

of all LTS implementations over the alphabet of the LTS specification S and with at most

m multi-states, where m is a known integer. We say that a test suite is m-complete for a

given specification if it is complete over the fault model

A complete test suite guarantees that for any implementation M in F, if M passes all

test cases, it is a conforming implementation of the given specification with respect to the

given conformance relation, and any faulty implementation in f is detected by failing at

least one test case in the test suite.

The similar notions of fault models and complete test suites are usually also used

in conformance testing of the FSM model [3]. In the FSM formalism, for an FSM

implementation M and a test case or test sequence p € X*, the set of observations

Obsfau) = {7 € F* 1 7 € Tr(mo)A7m = p}, and thus, given an FSM specification S, we say

that M passes p, if Obs^u) = Obs(p<s) for the equivalence relation or Obs(p>M) < Obs(pis)

for the reduction relation.

The fault models for an FSM are F/sm, which is a set of all faulty FSM implementations

considered, and ^7sm(m), which consists of all FSM implementations over the alphabet

of S and with at most m states in their observable forms [20]. Thus, similar to the above

definition of a complete test suite for an LTS, we can define a complete test suite and an

m-complete test suite for an FSM.

4 State Labelings of Test Cases

Given a specification S and a conformance relation, the state labeling function of test

cases T must be "sound" , that is, for any implementation M , if the relation holds between

M and S, then M passes T. In the following, we present the state labeling functions for

the conformance relations discussed in this paper.

13

Trace Equivalence
In the context of trace equivalence, a conforming implementation should have the same

traces as a given specification. Therefore each test case specifies certain sequences of

actions, which are either valid or invalid traces of the specification, to verify that an

IUT has implemented the valid ones and not any of the invalid ones. If such a sequence

specified in a test case is implemented in the IUT, then there must exist a test run such

that the sequence is observed. If the observed sequence is a valid trace, a pass verdict

should be assigned to this test run, which implies that the state after the sequence in the

test case should be labeled with pass; no conclusion could be made if a test run completes

before the end of the sequence, so the tail states of all the proper prefixes of the sequence

should be labeled with inconclusive. On the other hand, if the observed sequence is

an invalid trace, a fail verdict should be assigned to this test run, which implies that

the state after the sequence in the test case should be labeled with fail. Based on this

reasoning, we conclude that all test cases for trace equivalence must be of the following

form:

Definition 10 Test cases for trace equivalence. Given an LTS specification S, a test case

T is said to be a test case for S w.r.t. «$, if, for a € Tr(to), {ti} = to after a, the state

labeling of T satisfies

pass a € 7Y(so) A initfa) n init(so after a) = 0

fail a e Tr(t0)\Tr(so)

inconclusive otherwise.

A test suite for S w.r.t. Ktt is a set of test cases for S w.r.t. ««.

Note that in T, a leading to a state with pass is not a prefix of any other sequence in

Tr(S) n Tr(T).

Proposition 1 Given a test case T for S w.r.t. Kit, for any LTS M, if M Kt S, then M

passes T.

A test case for the LTS given in Figure 2 in respect to trace equivalence is shown in

Figure 3 (a).

Failure Equivalence

In the context of failure equivalence, a conforming implementation and its specification

14

should have the same refusal set after any observable action sequence. Therefore each test

case for this relation should be designed such that out of each of its states a certain set of

actions is specified as the set of actions offered by the tester in the corresponding testing

interaction. (Note that an empty set is assumed in an inactive state.) It is expected

that, in any interaction, the IUT may refuse the offered set iff the offered set may also be

refused by the specification after the same sequence.

If the IUT implements any sequence in a test case, there must exist a test run such that

this sequence is observed; furthermore if the set of actions offered in the last interaction

of this test run is a set in the refusal set of the specification after the sequence, then a

pass verdict should be assigned to this test run, which implies that the state after the

sequence in the test case should be labeled with pass. On the other hand, if the offered

set of actions is not in the refusal set of the specification after the sequence, then a fail

verdict should be given to this test run, that is, the state after the sequence in the test

case should be labeled with fail. Based on this reasoning, we conclude that all test cases

for failure equivalence must be of the following form:

Definition 11 (Test cases for failure equivalence): Given an LTS specification S, a test

case T is said to be a test case for S w.r.t. «/, if, for all a € Tr(t0) and {£»} = t0 after a,

the state labeling of T satisfies

pass if init(ti) € Ref(s0 after a)

fail otherwise.

A test suite for S w.r.t. «/ is a set of test cases for S w.r.t. «/.

Note that if a is not is a valid trace of S, then Ref(so after a] is an empty set, and

from this ti is labeled with fail because no matter whether init(ti) is an empty set or not,

init(ti) is not in the empty set Ref(s0 after a).

Proposition 2 Given a test case T for S w.r.t. «/, for any LTS M, if M «/ S, then M

passes T.

A test case for the LTS given in Figure 2 in respect to failure equivalence is shown in

Figure 3 (d).

15

Failure Reduction
For the failure reduction relation, a conforming implementation may be any implementa-

tion whose refusal set, after a given action sequence, is a subset of the refusal set of its

specification after the same sequence. Thus for this relation, we only need to check the

unspecified deadlocks in a given implementation. For a test case for this relation, a state

should be labeled with fail if the set of actions out of it is not in the refusal set of the

specification after the sequence to the state; otherwise with inconclusive.

Definition 12 (Test cases for failure reduction): Given an LTS specification S, a test

case T is said to be a test case for S w.r.t. </, if, for all a € Tr(to) and {ti} = to after cr,

the state labeling of T satisfies

fail if init(ti) £ Ref(so after a)

inconclusive otherwise.

A test suite for S w.r.t. </ is a set of test cases for S w.r.t. </.

Proposition 3 Given a test case T for S w.r.t. </, for any LTS M, if M </ S, then M

passes T.

A test case for the LTS given in Figure 2 in respect to failure reduction is shown in

Figure 3 (b).

Nondeterministic Reduction
Since nondeterministic reduction is the combination of failure reduction and trace equiv-

alence, the state labeling of test cases for nondeterministic reduction can be obtained by

combining the corresponding state labeling functions of test cases for these two relations.

Definition 13 (Test cases for nondeterministic reduction): Given an LTS specification

S, a test case T is said to be a test case for S w.r.t. <„, if, for all a e Tr(t0) and

{ti} = t0 after a, the state labeling of T satisfies

pass if init(ti) e Ref(s0 after o~) A init(ti) n init(s0 after cr) = 0

fail if init(ti) £ Ref(so after a)

inconclusive otherwise.

A test suite for S w.r.t. <„ is a set of test cases for S w.r.t. <„.

16

= <

mcon fail fail

O
pass fail fail incon fail fail

(a) (b)

fail

pass fail pass fail fail

(d)

Figure 3: Test cases for different relations: (a) «t, (b) </, (c) <n and (d) «/

From the above definition, we can note that label pass is designated to check trace

equivalence, while label fail to check the failure reduction, initfa) € Ref(sQ after a)

implies a € Tr(s0) and initfa} fl init(sQ after a) = 0 implies that sequence a is not a

prefix of another sequence in Tr(s0) H Tr(tQ).

Proposition 4 Given a test case T for S w.r.t. <„, for any LTS M, if M <n S, then M

passes T.

A test case for the LTS given in Figure 2 in respect to nondeterministic reduction is

shown in Figure 3 (c). We note that in this case we have chosen the four test cases in

Figure 3 to have the same underlying LTS, but clearly they have different state labelings.

5 Transforming LTSs to FSMs

We focus in this section on how to represent the behavior specified by a given LTS, based

on trace semantics or failure semantics, respectively, using an FSM model.

5.1 General Idea

In the context of conformance testing, an LTS IUT is viewed as a black box, which, in

each interaction, chooses autonomously one action from a set of offered actions to execute

a transition, or it blocks all the actions [35]. According to the LOTOS semantics, no

further action can be executed after the deadlock occurs. Under the assumption that at

least one action is offered in each interaction, we have 2Is! — 1 possible sets of offered

17

actions to test the conformance of the IUT to its specification in failure semantics for

each interaction. Now we wish to model the given behavior by an FSM, in which, for

each interaction with the LTS, the set of offered actions is viewed as an input, the chosen

action in the executed transition as an output, and the deadlock as a "null" output [23].

After producing the null output, the FSM enters a specific state that has the null output

for all inputs. Based on this interpretation, we can represent a given LTS specification

as an FSM, which models the behavior of the corresponding LTS in trace semantics or in

failure semantics, respectively.

In the case that we are only interested in trace semantics, all relevant properties can

be tested by offering single actions. We therefore assume a simplified FSM model, which

defines the behavior only for single action offers, thereby reducing the number of inputs

from 2iEl—1 to |E|. For the case that the environment offers several actions simultaneously,

we assume that a demon chooses arbitrarily one of the offered actions for execution by

the FSM. The deadlock properties of the system are not completely modeled. Therefore

the implementation may deadlock before the end of a possible test case. We consider this

as an inconclusive test result, and as usual for nondeterministic systems, the test should

be repeated.

Trace Semantics
Given an LTS, we wish to construct an FSM that produces as output all of the traces of

the LTS and signals by the null output 0 that the given input action cannot form a valid

trace of the LTS. As a simple example, Figure 4 (a) shows an LTS specification and (b) its

corresponding FSM representation in trace semantics. In (a), the LTS has the alphabet

set E = {a, b}. In (b), the FSM has the input set X = E, the output set Y = {a, 6, 0};

and each transition is labeled with an input/output pair, in which the output is either

the same as the input or 0. For example, a/a means that when a is offered, a can be

executed, and 6/0 means that when action b is offered, nothing but deadlock can be

observed. To keep the picture clear, label a, 6/0 corresponds to the pairs a/0 and 6/0.

The transformation from an LTS to the FSM involves the mapping of the LTS multi-

states onto the FSM states. In the above example, {s0} is mapped to p0, {si,s2} to pi,

{s3} to p3 and {s4} to p%.

18

)a,b/9

(b) The FSM for trace semantics (c) The FSM for failure semantics

Figure 4: Representation of an LTS using the FSM model

The sink state SQ in our FSM model represents the situation of the corresponding

LTS after any deadlock has occurred and before a reset is applied. Once the deadlock is

detected, the tester has to stop the current test run, regardless of whether it has been

completed successfully [6]. This is modeled in our FSM by the sink state SQ and all

transitions to/from se which output the null output 0.

Failure Semantics
We can also construct from a given LTS such an FSM that not only produces as output

all the traces of the LTS, but also signals by the null output 0 that certain sets of actions

on its input form a refusal set of the LTS after a given trace. An example of the FSM

representation for the LTS in Figure 4 (a) in the failure semantics is shown in Figure 4

(c). This FSM has the input set X = {{a}, {6}, {a, b}} and the output set Y = {a, b, 0};

and each transition is labeled with an input/output pair, in which the output is either an

action in the input or 0. For example, {a, 6}/a, in which {a, 6} is the set of offered actions

and a is the action that is chosen for execution. If the output is 0, then a deadlock

may be observed for the set of offered actions. (Note that also for a clear picture, in the

figure the labels a, aft/a represent {a}/a and {a, b}/a, respectively.) The mapping from

the multi-states of the LTS to the states of the FSM as well as the sink state SQ are the

same as for the trace semantics.

It can be shown that, given an LTS, the FSM constructed for trace semantics is a

deterministic submachine of the FSM for failure semantics. Both machines have the

same states. The trace FSM only determines whether or not an input action can form

a valid trace for the corresponding LTS. So does the failure FSM, and it also indicates

19

whether or not a set of actions offered as input may be refused after a valid trace. The

difference between these two FSMs reflects the fact that the failure equivalence relation

is a refinement of the trace equivalence relation.

In the following sections, we will formalize the idea of representing an LTS specification

by an FSM model.

5.2 Trace Finite State Machines

The FSM model for a given LTS specification in trace semantics, called the corresponding

trace finite state machine (TFSM), is defined as follows.

Definition 14 Trace finite state machine w.r.t. LTS. Given an LTS S=< S, E, A,SO >>

a trace finite state machine w.r.t. S, is a finite state machine PT =< P, X, Y, h,po >, such

that:

• X = £.

• 3 \̂{0} = E, where 0 represents the null output.

• P is a finite state set, and the sink state s& is in P.

• Let Us be the multi-state set of S. There exists a one-to-one mapping tp : Us— *P\{SQ}

and for all Si € Us and all a G JV,

• (t/>(S,-),a) 6 h(il>(SM iff S^a^S,;

• (se,0) e h(ip(Si),a) iff a € E*mt(Si);

According to the definition, it is possible to construct from the LTS S the corresponding

TFSM PT. Figure 4 (b) is an example of the TFSM with respect to the LTS in Figure 4

(a). From the above definition, it can be seen that all transitions in the TFSM are

labeled with a pair of the form "a/a" or "6/0" . Furthermore, each trace of the TFSM is

a sequence of pairs of the form "a/a" , possibly followed by a sequence of one or several

pairs "6/0" . It is implied that once the first 0 occurs, the TFSM enters the special sink

state SQ, and outputs 0 for any subsequent input.

Given an action sequence a € E*, we use pt(a] to represent an input/output sequence

in which both of its input part and output part are o. Formally, we define pt(a.a) —

pt(a}.a/a and pt(e] = e. TFSMs have the following properties.

20

Proposition 5 Any TFSM is a deterministic FSM.

Proposition 6 Given an LTS S and its corresponding TFSM PT, for all a € E* and all

7 = pt(tr) € r% a 6 Tr(s0) tjflf 7 € Tr(p0)-

Proposition 6 comes directly from the definitions of TFSMs and the multi-state set.

This proposition shows the way in which an I/O FSM models the behavior of an LTS in

trace semantics. The TFSM and its corresponding LTS exhibit identical behavior: any

action sequence is a trace of the LTS iff it is accepted and produced by its TFSM. On

the other hand, since the TFSM is completely specified, any action sequence that is not

a trace of the LTS corresponds to a trace of TFSMs with 0 outputs.

Accordingly, the trace equivalence relation in LTSs directly corresponds to the equiv-

alence relation in FSMs, as stated by the following theorem.

Theorem 1 For any given two LTSs R, S and their corresponding TFSMs PT, QT, R «* S

iff P-p ~ QT-

By virtue of Theorem 1, the test cases for the TFSM model can be used to test the

LTS implementations with respect to their specifications for the trace equivalence relation.

Now it becomes clear that the methods based on DFSMs [10,16,22, 27] are fully applicable

to derive test cases from LTS specifications through TFSMs. However, the obtained test

cases should be further transformed to test cases in the LTS context, because LTSs have

a different, i.e. rendezvous, interface to interact with their environment. We explain this

transformation in Section 6.

5.3 Failure Finite State Machines

In this section, we present the FSM model for a given LTS specification in failure seman-

tics. It is similar to the TFSM construction, and is called a failure finite state machine,

or FFSM. In the FFSM, sets of actions, along with single actions, are treated as inputs.

Definition 15 Failure finite state machine w.r.t. LTS. Given an LTS S=< 5, E, A, SQ >,

a failure finite state machine w.r.t. S, is a finite state machine Pp =< P,X,Y,h,po >,

such that:

21

. X = p(E)\{0}.

• F\{0} = E, where 0 represents the null output.

• P is a finite state set, and the sink state SQ is in P.

• Let Us be the multi-state set of S. There exists a one-to-one mapping ^» : Us— >P\{se}

and for all St € Us and all A € X,

• (V>(Sj),a) e h(il)(Si},A} iff a € A and Si=a=>Sj, or

• (se, 0) e fc(lKS), A) inM 6

Figure 4 (c) shows an example of the FFSM with respect to the LTS in Figure 4 (a).

From the above definition, it can be seen that all transitions in the FFSM are labeled with

a pair of the form "A/ a" where a <E A C E, or M/0". Similar to the TFSM, each trace

of the FFSM is a sequence of pairs of the form "A/ a" , possibly followed by a sequence of

one or several pairs "A/0"; and once the first © occurs, the FFSM also enters the state

SQ, and outputs 0 for any subsequent input.

The following properties hold between multi-states Si of an LTS S and the corre-

sponding states Pi of the FFSM PF- {a € S | Bx € X (pi-x/a-t)} = init(Si) and

{x C E | Ex e X (pi-x/0-j)} U {0} = Ref(Si). Therefore, for each state p of PF, we

define:

init(p) = {a e E j 3x e X (p-x/a->)}

Ref(p) = {A C E | 3x e X (p-A/Q)-*} U {0}.

Similarly, for a G E*, we also have pf(cr) represent any input and output sequence in

which the output part is a and the input part contains a. Formally, pf(cr.a) = pf(a).x/a

and pf(s) = £, where a € a: and x € X.

Proposition 7 In any FFSM PF, letp,q e P, Xi,x% e X and y e Y,
(1) if y = 0 and x% C x\ p— x\/y— >q implies p— x^/y— tq;

(2) if a e xi nx2 then p—xi/y-^q iffp-x2/y->q;

(3) ifxi € \Ref(p)] then init(p) U xi = E.

In FFSMs certain transitions are implied by others. The transition p — {a} /a —t q

implies exactly 2^~l transitions with the same output a for all the inputs that contain a,

and the transition p—x/Q-^pQ implies exactly 2\\ 1 transitions with the same output

22

0 for all the inputs that are subsets of x. The proposition also tells that in any state, the

output complement is always refused.

Proposition 8 Any FFSM is an observable nondeterministic FSM.

Unlike a TFSM, an FFSM is nondeterministic if its corresponding LTS is nondeter-

ministic.

Proposition 9 Given an LTS 5 and its corresponding FFSM PF, for all a e S* and all

(l)<r€Tr(s0) t

(2) if there exists p € P such that po—1-*p then Ref(p) = Ref(so, a).

This proposition shows the way in which an I/O FSM models the behavior of an LTS

in failure semantics. The FFSM and its corresponding LTS exhibit identical behavior: a

set A may be refused after trace a by the LTS iff its FFSM may produce output © once

A is applied after trace pj(o),

Accordingly, the failure equivalence and reduction relations in LTSs directly corre-

spond to the equivalence and reduction relations in FSMs, as stated by the following

theorem.

Theorem 2 For any given two LTSs R, S and their corresponding FFSMs PF, QF,

(1) R < / S i f f PF< QF;

(2) R «/ S iff PF ~ QF.

Since the nondeterministic reduction relation is composed of the trace equivalence

and failure reduction relations, it corresponds to the equivalence and reduction relations,

respectively in TFSMs and FFSMs.

Corollary 1 For any given two LTSs R, S and their corresponding TFSMs PT, QT ond

FFSMs PF, QF, we have R <„ S iff PT ~ QT and PF < QF.

By virtue of Theorem 2, the test cases for the FFSM model can be used to test the

LTS implementations with respect to their specification for the conformance relations in

failure semantics. The existing NFSM-based methods for the reduction relation [24, 25]

or equivalence relation [20, 21] can be exploited to derive relevant test cases from LTS

23

specifications through the FFSMs. Like in the case of trace testing, the obtained test

cases should be further transformed so that they can be executed through the rendezvous

interface of LTSs.

6 Test Generation

It follows from the results of the previous section that the derivation of an m-complete test

suite from an LTS specification can be performed by transforming the specification into

an TFSM or FFSM, according to the given conformance relation, applying an existing

method to it, and then converting the obtained test cases back to the LTS formalism.

The approach is illustrated in the following by several examples.

6.1 Testing Trace Equivalence

Given an LTS specification S and a fault model F, in trace semantics, S can be transformed

into an TFSM PT and the set Ftfsm of TFSMs corresponding to 3F can be treated as a

fault model for PT. In particular, if the fault model J-'(m) for S is given, the fault model

for PT is the set ^rt/sm(m) of TFSMs with at most m states and with the same alphabet

as PT- Since any TFSM is a DFSM, an existing DFSM-based method can be applied

directly to the TFSM to obtain a test suite. Usually, existing DFSM-based methods

assume a fault model F<ysm(m) which is a set of DFSMs with at most m states and with

the same alphabet as the given DFSM specification. Obviously, ^-i/gm(m) C .^/^(m),

and hence if the obtained test suite completely covers .F<#-sm(m) then it also completely

covers

Using an Existing Method
From the definition of the corresponding TFSM, we can get the TFSM shown in Figure 5

(a) for the LTS specification S of Figure 2. This TFSM is not minimal, so it is transformed

into its minimal form, shown in Figure 5 (b), as usually required by an existing method.

We choose the W-method [10] and apply it the TFSM.

According to the W-method, a complete test suite TS over .F<y,m(4) is constructed in

the following way: TS = Q@({e} U X)@W, where Q is a state cover, in which for each

state Pi there exists an input sequence leading to pi, Q@({E} L)X) is the transition cover

24

P4

Figure 5: An example for test generation using TFSM

and W is a characterization set. From the TFSM in Figure 5 we may select Q = {e, a, 6, c}

and W = {a, b.a}. The resulting test suite is {a.b.a, b.b.a, c.b.a, a.a.a, a.a.b.a, a.b.b.a, a.c.a,

a.c.b.a, b.a.a, b.a.b.a, b.b.b.a, b.c.a, b.c.b.a, c.a.a, c.a.b.a, c.b.b.a, c.c.a, c.c.b.a}. This test suite

is also complete over .Ft/«m(4).

In a TFSM, the 0 for an input implies @ for all subsequent inputs. From this we can

note that there is a certain redundancy in the above test suite. For example, the suffix a.a

of test case b.a.a is not necessary because of the G for the first input 6. According to the

LTS semantics, if b cannot form a valid trace of S, then b.a.a cannot do it either. These

suffixes can be removed and the resulting test cases still constitute a complete test suite

for the TFSM over Jri/,m(4): {a.b.a, b, c.b.a, a.a, a. 6.6, a.c.a, a.c.b, c.a, c.6.6, c.c.a, c.c.b}.

In general, if any test suite for a given TFSM is complete over a certain faul model,

that is a set of TFSMs, then removing the suffixes of test sequences that follow the first

input with the output"©" results in a test suite which is still complete over the same fault

model. In order to state this in a formal way, we use pref(V] to represent all prefixes of

sequences in V, i.e. pref(V) = {71 | 71 € F* A 71.72 € V}. The following theorem gives

the validity of this simplification of TFSM test cases.

Theorem 3 Given a TFSM specification PT and a fault model Ftfsm, ifTS is a complete

test suite for PT w.r.t. ~ overFtfsm then TS' - {p.b € pref(TS) \ (E Tr(s0)Ap.6 €

TS) V pt(p).b/Q e Tr(so)} is also a complete test suite for PT w.r.t. ~ over Tifam.

25

fail

incon

p

a
\

O
fail

incon incon

J C

a
incon^

a b
i p i£) incoiv

fail
a

i

)

5) »

)

incon incon incon incon

incon

pass
O

fail

b
O

fail fail fail fail fail fail fail

Figure 6: A test suite for the LTS in Figure 2 and trace equivalence

Modifying an Existing Method
Another solution to the redundancy problem is to modify an existing method in such a way

that the sink state is excluded from the computation. The null output @ distinguishes the

sink state from the others; furthermore, in the LTS semantics it represents the IUT in the

deadlock, so it is not necessary to check the transitions which leave this state. Accordingly,

if an existing method with complete coverage over J-dfsm(iri) is to be modified, according

to Theorem 3, then the resulting method will ensure a test suite completely covering

We demonstrate the modification of the HSI-method [22] and apply it again to the

TFSM in Figure 5 (b) as an example. Let us write Xn = X@Xn~l for n > 0 and X° - {e},

according to the HSI-method, for an FSM with n states (n < m), TS = \J^(Td@Wi)

is a complete test suite over Jrd/sm(m), where TCi = {p € Q@(\J™^+1 Xk) \

and the Wi are harmonized state identifiers for the states p^. We modify the method in

the following way:

(1) We separate the sink state from any other states that may be equivalent to it. In

the example TFSM, p4 is equivalent to the sink state pe> but we keep p± and pe

separately.

(2) We compute a state cover Q which includes no sequence leading to the sink state.

For the example TFSM, we choose Q = {e, a, a.c, c}.

(3) We compute an HSI W» for every state, except for the sink state. For the example

TFSM, we choose W0<3 = {a, b}, Wv = {b.a}, W2 = {b.a} and W4 = {a, b}.

(4) Let pn-i be the sink state, compute

{p € WUJST1 **) I Po-p-»Pi} 0 < t < n - 2

3pj2 Pi (po-

Considering m = n, for the example TFSM, we obtain 7Uo,3 = {e, a.6}, TC\ {a},

7U2 = {c}, 7U4 = {a.c, c.6, c.c} and TC& — {6,a.a,a.c.a,a.c.6,a.c.c,c.a}.

(5) We Construct a test suite TS without identifying the sink state, that is,

TS » 2lVi U (U

We note that the sequences in TCn-\d to SQ, so no state identifier is appended to

these sequences. The resulting test suite for the example TFSM is {6, a.a, c.a, a.b.a, 0.6.6,

a.c.a, a.c.6, a.c.c, c.6.a, c.6.6, c.c.a, c.c.6}, which is complete over

Back to the LTS Formalism
From a test sequence for the corresponding TFSM of a given LTS specification, we can

easily design a corresponding test case in the LTS formalism with respect to trace equiva-

lence by converting the sequence into a corresponding LTS and subsequently labeling the

LTS according to Definition 10, as follows:

Algorithm 1 Test Conversion from TFSM to LTS

Input: A test sequence p for an TFSM PT.

Output: A deterministic and tree-structured LTSJ.

Let p = a\.ai ---- an. Construct an LTS T = to— «i— >ti . . .£n_i — an— >•£„.

An LTS test suite obtained by transforming the above test suite for the TFSM in

Figure 5 (b) is shown in Figure 6. This test suite can be used to test implementations of

the LTS specification in Figure 2 with respect to trace equivalence. The following theorem

guarantees that this test suite is a 4-complete test suite for the LTS specification.

Theorem 4 Given an LTS specification S and a fault model f , the corresponding TFSM

PT and fault model Ft/nm, if a test suite for PT w.r.t. ~ is complete over Ttfsm then the

test suite obtained by Algorithm 1 and Definition 10 is complete for S w.r.t. «t over J-.

27

a,ab,ac,abc/i c,bc,abc/c
Pi P2

Mabc/c

P2

a,ab,ac,

a,b,c,ab,ac,bc,abcye

a,b,c,ab,ac,bc,abtf6

(a)

a,b,c,ab,ac,bc4btf8

(b)

Figure 7: An example for test generation using FFSM

6.2 Testing Failure Equivalence

The traditional transition checking approach in FSMs relies on the general transition fault

model, according to which every transition can be mutated independently of the others [5].

However, this is not the case for the fault model we are considering in testing of LTSs, in

which mutants are really LTSs but are viewed as FFSMs. It has been stated in Proposi-

tion 7 that certain transitions of an FFSM can be implied by others. Implied transitions

in an FFSM should not be treated as completely independent for test derivation. The

dependency among transitions of the FFSM would be fully neglected if an existing test

derivation method is applied to the FFSM in a straightforward manner, and hence any

resulting test suite with complete fault coverage would definitely be redundant. Consider

two transitions PQ — {a}/a-*pi and PQ — {a, b}/a—>pi in the FFSM in Figure 4 (c) as an

example; once the first transition is checked there is no need to check the second. The

reason is that if PQ — {a,b}/Q—*SQ is implemented then it implies po~ (a}/®~ *se-

Proposition 10 Given two states p and q of an FFSM and let V = [Acc(p)\ \Ref(p)~\

we have out(p, X] = out(q, X) iff out(p, V) = out(q, V).

We note that X is the input set of the FFSM, while |ylcc(p)J U \Ref(p)\) is a subset

of X. The proposition states that the subset V, instead of the whole input set X, can

be used to cover all the transitions out of state p. For example, for the FFSM shown in

Figure 7 (a), which corresponds to the LTS specification S of Figure 2, we have

28

States pi

[AccfaK

r^/(pi)i

Po
{a}

{b,c}

Pi

{b}
{a,c}

P2

{b}, {c}

{a}

P3

0

{a,b,c}

P4

0
{a,b,c}

Pe

0

{a, 6, c}

Therefore one can derive a test suite for an LTS specification S with respect to fail-

ure semantics, based on an existing NFSM-based method for the corresponding FFSM

in a way similar to TFSMs - by directly applying the method and subsequently remov-

ing redundancy in the test suite, or by modifying the method to avoid the redundancy.

Proposition 10 characterizes the existing redundancy.

In order to derive a complete test suite over a given fault model F from a given

LTS specification S with respect to failure equivalence, S can be transformed into an

FFSM PF and the set J-jjSm of FFSMs corresponding to T can be treated as a fault

model for PF. In particular, if the fault model F(rri) is given, the fault model for P/r is

the set Fff9m(m) of FFSMs with at most m states and with the same alphabet as PF-

Existing NFSM-based methods usually assume a fault model jFn}sm(m}> which is a set

of NFSMs (of the observable form) with at most m states and with the same alphabet

as the given specification. Obviously, ^7/sm(m) C ^rn/sm(m). Therefore if any existing

method covering .Fn/sm(m) is applied to PF, then the resulting test suite is also complete

over Ffjsmfa}. In the following, we take the FFSM in Figure 7 (a) as an example to

illustrate our approach.

Using an Existing Method

The FFSM in Figure 7 (a) is not minimal, so it is transformed into its minimal form,

shown in Figure 7 (b). We can apply the W-method [20] to the minimal FFSM to derive

a 5-complete test suite. We select a state cover Q = {e, a,c, a.b}, and a characterization

set W = {ac} (Note that a.b represents {a}. {b} and ac represents {a, c}). The transition

cover is {e, a, b, c, ab, ac, be, abc, a.a, a.b, a.c, a.ab, a.ac, a.bc, a.abc, c.a, c.b, c.c, c.ab, c.ac, c.bc,

c.abc, a.b.a, a.b.b, a.b.c, a.b.ab, a.b.ac, a.b.bc, a.b.abc} and the resulting test suite can be com-

puted according to Q@({e} U X)@W and it completely covers

As we have discussed, there is much redundancy in this test suite. From Proposition 10

and the fact that the sink state in FFSMs does not require any identification and the

transitions which leave this state do not require checking, the redundancy can be removed

using the following algorithm.

29

Algorithm 2 Redundancy Removal from an FFSM Test Suite

Input: A test suite TSj derived from an FFSMPF using an existing FSM-based method.

Output: A test suite TSo-

For each p € TSf, construct K. = {7 € Tr(po) \" = p} and for each 7 € /C, do the

following steps (assuming that 7 has the form Xi/yi-x^/y^ . ..xn/yn and corresponds to

the transitions Po-xi/yi-*pi . . .pn-i-xn/yn->pn):

Step 1: From i — 1 to i = n or until yi = & form a new test sequence p1 (initially

p' = e) as follows:

1. In [Acc(pi-\}\ f/?e/(pi_i)] find an xji such that:

(a) x'i e \Ref(pi-i)] and xt C x'i}

(b) x'i € [Acc(pi-i)j, yi £ x'{ and x't C xi} or

(c) y € x\.

2. If Xi € Acc(pi-i) and (xi\init(pi-i)) ^ 0, find a x" in \Ref(pi_i)'\ that

(xi\init(pi-i)) C x", form p'.x" and add it to TSo-

3. p' = p'.x'i.

Step 2: Add the resulting p1 to TSo- Delete any sequence in TSo if it is a prefix of

another sequence.

Using the above algorithm, we can obtain from the above test suite for the FFSM

shown in Figure 7 (b) the following test suite with the same coverage over ^7/»m(5)

and obviously a smaller size: {be, a.ac.abc, bc.b.abc, bc.c.abc, a.b.abc.ac, a.b.abc.a, a.b.abc.c}.

The following theorem gives the validity of Algorithm 2.

Theorem 5 If a test suite TSi is complete for PF w.r.t. ~ overTjjsm, then the test suite

o obtained by Algorithm 2 is also complete for PF w.r.t. ~ over Tfjsm-

Modifying an Existing Method
Because of Proposition 10, it is sufficient to check only the transitions covered by the

input set [>lcc(p)J U \Ref(p)] for each state p. Moreover, as in the case of TFSMs, the

sink state does not require identification and the transitions which leave this state are

excluded from checking. Accordingly, if an existing method with complete coverage over

30

Fnfsm(iri) is modified in such a way, then the resulting method will provide a test suite

with complete coverage over ^7/sm(m).

We here demonstrate the modification of the GWp-method [20] and use the FFSM in

Figure 7 (a) as an example. There are the following five steps:

(1) We separate the sink state from any other states which may be equivalent to it. In

the example FFSM, p± is equivalent to the sink state p&, but we keep p\d pe

separately.

(2) We compute a state cover Q, in which, for each state pi except the sink state,

there exists p e Q such that po — p—tpi. For the example FFSM, we choose Q =

{e, a, c, a.bc}.

(3) We compute a characterization set W and a tuple of partial characterization set Wt

for each state, except for the sink state. We here choose W = {ac} and let Wi = W

for the example FFSM.

(4) We use |ylcc(p)J U [#e/(p)"| to compute a transition cover. In general, given any

FFSM Pp with n states (n < m), the transition cover can be computed recurrently,

starting with 7U(0) = Q and for k < m - n + 1, by

7U<*> = {p.x | p € TC^-V A (3 p € Po after p (p ± pe A x G _Acc(p}\ |7te/(p)l))}

Let Pn-i be the sink state /?e> we further compute

Considering m = n for the example FFSM, we obtain the transition cover

{e, be, a, a.ac, a.b, c.a, c.b, c.c, a.bc.abc} and TUe = {be, a.ac, c.a, a.bc.abc}.

(5) We construct a test suite TS without identifying the sink state, that is,

TS = IUn_iU(7U(m-n)\7Un_i)@Wu(U"r027C'i@Wi).

The resulting test suite for the example FFSM is {ac, bc.ac, a.ac.ac, a.b.ac, c.a, c.b.ac,

c.c.ac,a.b.abc.ac}, which completely covers -F//sm(5). Note that in the transition cover,

only c.a uniquely leads to the sink state, and thus W or Wi is not appended to it.

31

fail pass fail A fail
-' c

fail fail fail fail fail fail A fail P358

fail pass fail pass

Figure 8: A test suite for the LTS in Figure 2 and failure equivalence

Back to the LTS Formalism
In order to obtain a test case for an LTS specification in respect to failure equivalence from

a test sequence for the corresponding FFSM, similar to the case of testing trace equiva-

lence, the test sequence is first converted into a set of deterministic and tree-structured

LTSs, and secondly the resulting LTSs are labeled according to Definition 11. The con-

version is performed in the following algorithm:

Algorithm 3 Test Conversion from FFSM to LTS

Input; A test sequence p for an FFSM Pp.

Output: A set of deterministic and tree-structured LTSs.

Construct /C = {7 6 Tr(p0) | 7m = p}- For each 7 € 1C, do the following steps

(assuming that 7 has the form £i/2ft*#2/ffe • • • xn/yn)'-

• Construct an LTS T with only the initial state to. Let t = to-

• From i = 1 to i = n or until yi = Q, for each a € Xi, add a new transition t—a—ttj

to T; t — tk ift—Xi-^tk-

An LTS test suite obtained by transforming the above test sequences for the FFSM in

Figure 7 (b) is shown in Figure 8. This test suite can be used to test implementations of the

LTS specification in Figure 2 with respect to failure equivalence. The following theorem

32

guarantees that such a test suite is complete for the specification and the conformance

relation.

Theorem 6 Given an LTS specification S and a fault model T, the corresponding FFSM

PF and fault model ,7y/8m, if a test suite for PF w.r.t. ~ is complete over Ff/sm then the

test suite obtained by Algorithm 3 and Definition 11 is complete for S w.r.t. «/ over f.

6.3 Testing the Other Relations

Using the FFSM model and an NFSM-based method for the reduction relation, such as

the method given in [24], we can derive test suites for LTS specifications with respect

to the failure reduction relation in a similar way as discussed in the above subsection.

Algorithm 2 can still be used to remove redundancy in the FFSM test cases obtained by

applying the existing method; Algorithm 3 can still be used to convert the FFSM test

sequences to corresponding LTSs, but they are labeled according to Definition 12. The

adaptation of the NFSM-based method is also similar.

Since the nondeterministic reduction relation consists of the trace equivalence relation

and the failure reduction relation, the test derivation for an LTS specification with respect

to this relation can be obtained by transforming the LTS specification to a TFSM and an

FFSM, respectively, and then applying an existing FSM-based method for equivalence to

the TFSM and an existing FSM-based method for reduction to the FFSM. The obtained

two test suites can be merged into one test suite and then be converted to the LTS

formalism using Algorithm 3. The resulting LTS are labeled according to Definition 13.

7 Conclusion

Labeled transition systems (LTSs) are the basic semantics for the LOTOS language and

other specification formalisms. This paper deals with test suite development from a

specification given in the LTS formalism. We have introduced a framework for testing

LTSs with respect to several common conformance relations through finite experiments.

Afterwards we have shown that in the context of trace semantics, LTSs can be represented

equivalently by an input/output finite state machine model (FSM) - the trace finite state

machines (TFSMs); and in the context of failure semantics, by the failure finite state

33

machines (FFSMs). The benefit of this transformation is that the problem of deriving a

conformance test suite for an LTS can be transferred into the realm of the FSM model,

where the test derivation theory has been elaborated for several decades and several testing

tools have already been constructed [30].

Trace FSMs are deterministic FSMs, so the existing methods for FSMs can be applied

to the TFSMs directly for the derivation of test suites to check the corresponding LTSs

with trace equivalence. An example is presented which illustrates the process of test

derivation from an LTS specification for trace equivalence, by transforming the LTS into

a TFSM and subsequently applying the W-method. The removal of redundant tests is

discussed. A slight modification of the HSI-method for TFSMs is also proposed to avoid

the redundancy of tests.

Failure FSMs are observable, nondeterministic FSMs, so the existing methods for

such machines can be applied to the FFSMs for the derivation of test suites to check the

corresponding LTSs in failure semantics. However, since certain transitions in the FFSMs

may not require testing according to the LTS semantics, an adaptation of the existing

methods to FFSMs is needed to avoid redundancy. Two examples of test derivation for

failure equivalence, the direct application of the GWp-method to an FFSM and a slight

modification of this method, are used to illustrate the process of test derivation for LTS

specifications in respect to failure semantics. Meanwhile, we also give the algorithms for

redundancy removal from the FFSM tests obtained by applying an existing method, and

the conversion of the FFSM tests to the LTS formalism.

A number of existing FSM-based methods provide complete fault coverage for a well-

known fault model [3] which is the set of mutants with at most m states, where ra is

a known integer. An identical fault model has also been considered in the LTS realm.

Therefore, for a given LTS specification and any of the conformance relations discussed

in this paper, the transformation approach will produce a test suite with complete fault

coverage if the chosen FSM-based method guarantees such fault coverage.

Though our transformation approach is encouraging, much work still remains to be

done. Other conformance relations on LTSs in trace or failure semantics, such as conf [6]

and completed trace equivalence [35], are left for further study. We also note that, due to

34

nondeterminism, the test execution may be blocked unexpectedly before the designated

transition or deadlock for a test case is checked; therefore the test case may have to be

executed repeatedly until the test purpose can be achieved. It is therefore important

to select appropriate preambles and state identifiers which minimize the nondeterminism

and reduce the number of repeated test executions. Another problem is the derivation

of tests with fault coverage for LTS specifications according to the so-called failure trace

semantics, for which testing may proceed after a refusal by applying a different offer. This

is contrary to failure semantics where a refusal is the end of a test run.

Acknowledgments

This work is supported by a strategic grant from the Natural Sciences and Engineering

Research Council of Canada.

Appendix

In this appendix, we give the proofs for the theorems and propositions included in the

paper.

Proposition 1 Proof: M passes T, according to Definition 10, then there exists a €

Obs(TtM) and 4*(<7) = fail, which imply a € Tr(rao)\Tr(so), or there exists a € Pttr(T)

and a g O6s(T,M), which imply a € 7Y(s0)\Tr(mo). The both cases further imply M fa S.

Thus M passes T with respect to «t.

Proposition 2 Proof: M passes T, according to Definition 11, then there exists a €

0&S(T,M) and ^WC0") = fa^) which imply init(tQ after a) 6 Ref(m0,a)\Ref(so,cr}, or

there exists a € Pur(~T) and a & O&S(T,M)> which imply initfa after a) e Ref(mo, a)\Ref(so, a).

The both cases further imply M ij6/ S. Thus M passes T with respect to «/.

Proposition 3 Proof: Similar to the proof of Proposition 2.

Proposition 4 Proof: Similar to the proof of Proposition 2.

Proposition 5 Proof: Suppose there exist pk,Pi,Pj € P, a € X such that pk—a/a—tpi,

Pk — a>/y —* Pj and Pi ^ Pj where y = a or 0. From the TFSM definition, y = S is

35

impossible, so we have y = a. Let pk = ip(Sk),pi = ip(Si),pj = if>(Sj), 5* = S after a1

and a = a'.a. Obviously, if Pi ̂ PJ, then Si ^ Sj because tp is a one-to-one mapping.

However, it is impossible since S after a = St — Sj by the definition of the multi-state

set. Therefore PT is deterministic.

Theorem 1 Proof: (1). =». Since R «< S, for any Ri = TO after a and 5^ = SQ after <r,

<r e E*, init(Ri) — init(Si); and furthermore from Proposition 5, for any 7 6 F* and

7 = pi(a) there is PQ— 7—>p in Pr iff there is go—Y~*q in Qr- init(Ri) = init(Si) means

also that {x € X \ = [x € X | g-rr/0-4} where p = ip(Ri) and <? = ^(Si).

Thus it is shown that a set of all the traces of PT which have at most one "x/B" is equal

to a set of the traces of QT which have at most one "a:/0". Furthermore, any trace with

two or more pairs of the form "x/O" is implied by its prefix with only one "ar/@", thus

Tr(p0) = Tr(qQ), that is, M' ~ S'.

<=. From Proposition 6, if PT ~ QT, that is, Tr(p0) = Tr(q0), then Tr(r0) = TV(s0)-

Proposition 7 Proof: (1) and (2) are evident from the FFSM definition.

(3) Let PF is the FFSM of LTS S. From Definition 15, for each node p € P,p ^ se,

there exists Si € Us such that p = i()(Si) and \Ref(Si)^ = f/2e/(p)]. Here we denote

blk(s) = £\{a € E | s — a—>} for a stable state s of S and blk(s) = 0 if s is unstable.

Besides, for the transitions s—rn-+t (1 < n), if s = t, we say that it is a r-Cycle.

If there are no r-Cycles in S, then Ref(Si) = U(«e,?i) p(blk(s)). Note that blk(s) = 0 for

unstable s. Let s € Si be stable and blk(s) be in \Ref(Si)]. From the definition of init(p),

init(Si) = init(p), init(p] D init(s). So, E = init(p)\Jblk(s) for each blk(s) € \Ref(p)~\.

If there are r-Cycles in 5,-, then each of the r-Cycles can be collapsed into a single

state with failure equivalence. Let W be the state set in one of the r-Cycles, w be the

state after collapsing W. If w is unstable, none of elements in Ref(Si) are determined by

W. If w is stable, then \Ref(W}\ (blk(w)}. Thus for each B e \Ref(Si)] (\Ref(p)]),

there exists s € Si where s is a stable state or s is in a W. Similar to the case without

r-Cycles, init(p) D init(s). So, E = init(p) U B.

For the sink state SQ, init(s&) = 0 and \Ref(sQ)] = {E}, Proposition 7 also holds.

Proposition 8 Proof: From Proposition 7, for an FFSM P^, E = init(p) Ux1 for each

state p e P if x1 € \Ref(p}~\. As a result, for all x e X and all p e P, since X = p(E)\0,

36

a € x for a € mi£(p), or a; C x' for #' € |7te/(p)]. From Definition 15, the transition

s—x/a—toT s—x/Q—tSQ is specified in PF.

Suppose there exist pk,Pi,Pj £ P,x € X and y € Y such that pk-x/y-*Pi, Pk—x/y-*Pj

and Pi 7^ PJ. Obviously y ^ Q because, from the FFSM definition, y = © implies

Pi = Pj = Pe- Let pk = ip(Sk),pi = ^(Si),pj = *l>(Sj), Sk = S after a1 and a = a'.y.

Obviously, if p* ^ p^, then Si ^ Sj because if) is a one-to-one mapping. However, it is

impossible since S after a = Si = Sj from the definition of the multi-state set. So Pp is

observable.

Proposition 9 Proof: We first prove that any p/(a) e Tr(p0) iff a e Tr(s0).

(1). For each trace a € Tr(so), let transitions SQ = a\- s\... sn_i = On => sn have a,

1 < n. Obviously, for each s<, 0 < i < n, there exists So,Si,...,Sn e 1X5 such that

So € SQ,SI € 52,...,sn € S'n- Therefore there exist transitions ij>(So)—pf(<?)->il>(Sn) in

PF- On the other hand, If there exists 7 in Tr(po) where 7 = p/(a), Similarly, because ^

is a one-to-one mapping, a is in TT(SQ).

(2). If there exists 7 € Tr(po) such that 7 = P/(<T),<T e £*, let Po—7—>Pi, then from the

above proof, Si = s0 after a and Pi = i/)(Si). Furthermore since Ref(s0,cr) = Ref(Si),

from the definition of the Re/fa), Ref(so,cr) = Reffa).

Theorem 2 Proof: (1). =». Since R </ S, that is, Ref(r0,a) C Ref(s0,cr), from the

proof of Proposition 9, for any 7 € F* where 7 = p f (a) if 7 € TV(p0) then 7 6 Tr(qo) and

further if there is PQ—7—»p in P^- then there exists <?o~7~^<7 m QF and Ref(p) C Ref(q).

It is shown that a set of all the traces of PT which have at most one "z/G" is a subset of

a set of all the traces of QT which have at most one "x/6". Furthermore, any trace with

two or more pairs of the form "a:/6" is implied by its prefix with only one "ar/6", thus,

Tr(p0) C Trfob), that is, PF < QF.

•*=• If PF 5: QF> then for any a € £*, let 7 = p/(cr), if there exists PQ —7^p in Pp

then there exists go =7=^9 in QF and Ref(p0) C Ref(qo), which, from Proposition 9,

mean that Ref(ro,a) C Ref(so,a) for a €. Tr(ro). On the other hand, for a g Tr(ro),

(a 0 Tr(s0)), ^e/(r0, a) = 0 (Ref(s0, a) = 0). Thus R </ S holds.

(2). =>>. From the definition, if R «/ S then R </ S and S </ R. From the above proof,

PF < QF and QF < PF, that is , PF ~ QF.

<=. Similarly, if Pp ~ QF then Pp < QF and QF < PF- Prom the above proof, R </ S

and S </ R, that is, M «/ S.

Theorem 3 Proof: pref(TS) is a complete test suite iff IS" is complete. Let pref(TS) =

TSiUTS2, where TSi = pref(TS') and 7S"2 = TS\T$i. Obviously TS2 is a set of the

sequences in pref(TS] by which PT produces the two or more "0"s. If there exists any

TFSM M in Ftfsm that is not equivalent to PT, then there exists 7'" in pref(TS] which

M fails (i.e. 7 £ rr(mo) n Tr(po))- If 7in € TSi then 7*" € pref(TS'). If 7'"" € TS2, then

there exists a.b in TSi which is a prefix of 7*" such that pt(a).b/Q € Tr(so). Prom this,

M fails a.b because if pt(a).b/Q € Tr(m0) (Tr(s0)) then for any % of the form "6/0",

pt(a).b/Q.it e Tr(mo) (Tr(sQ)). Thus pref(TS') is a complete test suite, i.e. TS' is

complete.

Theorem 4 Proof: Let TStfsm be the test suite for the TFSM PT and TSlts be the

converted test suite for the LTS S. From Proposition 1, any T € TSits is sound. For any

M 6 ? we have M' 6 ^i/sm and from Theorem 1 if M fa S then M' ̂ PT. Since !$/„»

is complete over Ftfgm, there exists 7*" € TStjgm such that 1) p0 — 7—> and m'Q /7 —>

or 2) po — 7 —>• and m'Q /7 -4. From Proposition 6, This corresponds to SQ — 7* —> and

™o7Vn-*or SQ—7m—^and mo-fy™-*. Let T € 75^ correspond to 7*". For T, according

to Definition 10, the case 1) implies 7*" € Pur(T) and 7*" £ O&S(T,M) an<^ ^e case 2)

implies 4*(7in) = fail and 7*" e O6s(M,T). According to Definition 8, this says that M

fails T.

Proposition 10 Proof: =x It is evident because V C X.

<=. Assume that out(p, X) ^ out(q,X). It happens in either of the cases: 1) p—x/y—t

and q /-x/y —>• or 2) p /-x/y -> and q — x/y—t. Consider the case 1). If y = 0 then

p—x/Q-t implies x e Ref(p), and therefore there exists x' € \Ref(p)~\h that x C x'.

x' e Ref(p) implies p — x'/Q —»• and, since out(p, V) = out(q,V), q — x'/Q—t. From

Proposition 7, q—x'/Q—^ and x C x1 imply q—x/Q^. This contradicts q-fa/Q-*. If y ̂ 0,

let y = a, then p—x/a—> imply a G rr and p — {a}/o->. Therefore if {a} e Ref(p) then

there exists x' e f^?e/(p)] such that {a} C x'; otherwise {a} € [^^(fOJ and x' = {a}.

From Proposition 7, p—x/a-> implies p—x'/a—t and, since out(p, V) = out(q, V), q—x'/a—t.

Furthermore, since a G x (~\1, from Proposition 7 q — x'/a—t implies q — x/a—t. This

contradicts q-/x/a—t.

38

Consider the case (2. If y — 0 then p-fa/Q—t implies x € Acc(p), and therefore there

exists x' 6 |ylcc(p)J such that x1 C x. From Proposition 7, q— a;/0-> implies q—x'/Q-t

and, since out(p, V) = out(q,V), p—x'/Q—t. This contradicts x' € Acc(p). If y ^ 0,

let y = a, then p fic/a ->• implies {a} € Ref(p) and p /{a}/a -*; from this there exists

#' € f.Re/(p)l such that {a} C x1. On the other hand, q—x/a-+ implies a e X', furthermore

since a € x', from Proposition 7, q-x'/a->. Since owi(p, V) = out(g, V), we have p—x'/a-t

and, from Proposition 7, p— {o}/a— K This contradicts p-/{a}/a-».

Lemma 1 In any FFSM P, letp,q € P,x € X and y € F, ifp—x/y—tq then there exists

x' e lylcc(p)J U f.Re/(p)"] suc/i tfm* p-x'/y-tq.

Proof: See the proof of Prosistion 10 in which p—x/y—tis treated as p—x/y—tq.

Theorem 5 Proof: Since TSi is given to be complete, for M € Ffftm, if M ~ PF

does not hold, then there must exist p = xi...Xi-i.Xi e pref(TSj) such that pQ-

Xi/yi...Xi-i/yi-i-+pi-i, m0-xi/yi . ..Xi-i/yi-i-tmi-i such that yj ^ 0 for 1 < j < i

and 1) pi-i —Xi/yi—t and ra^ -/xt/yi — > or 2) pi-i T^t/J/t — > and m^! —Xi/yi—t. (That an

FFSM outputs the first 0 implies that the FFSM subsequently outputs 0 and stays in

the sink state.)

According to Algorithm 2 and Lemma 1, we have (J = x\ . . x^^.x^ € pref(TSo),

Po-Xi/yi • • -^i-i/y.-i-^Pi-i and m0-xl1/yi . ..x>i_llyi-i-^mi-i. If y{ ̂ 0, considering

case 1, then j/j € X{ since Pi-i—xi/yi—t. According to Algorithm 2 and Lemma 1, yi G o^;

furthermore from Proposition 7, pi-i-x'Jyi-^, and m'i_l-/x'Jyi^ because if m^-x'Jyi-^

then m'i^ — Xi/yi-*. Now consider case 2) for j/j 7^ 0- ?/t £ #* since nii-i—Xi/yi-*, and

t/i e Xj\mit(pi_i) since p^iy^/?/,-— >. Obviously, there exists a;̂ € [/?e/(pf_i)] such that

(xi\init(pi-i)) C o;^. j/j G 3^, so from Proposition 7, pj-iT^/yj-^and m^!— x'Jyi—t.

Consider case 1) for j/j = @- Since p^i—Xi/Q—^, Xi € Ref(pi^i). From this there

exists x^ € f^?e/(pi_i)] such that x^ C o;^. Thus, Pi-i—x^/®—*, and m'i_l-/x'iIQ—} because

from Proposition 7 if m^j— x'i/G— »-then m'^—Xi/Q^. Consider case 2) for j/» = Q- Since

pi-i-fai/Q— >, OTj e ^4cc(pi. From this there exists a^- € [^4cc(p)J such that or(- C Xi and for

any a e a;^, pi-i—Xi/a-t. Thus p^i-^JQ— >-and, from Proposition 7, m^_ x — o;J/0— K

Lemma 2 Given a test case T /or an LTS1 specification S w.r.t. «/, /or any ai 6

), there exists Oj e Pwr(T) such that G{ is a prefix oj Oj.

39

Proof: Let t = to after cr,-, according to Definition 11, t is labeled with fail only if

init(t) & Ref(crj,s0). We only consider Oj £ TT(SQ), because if cr,- # Tr(s0), since

Oi € Tr(so) is a prefix of cry, then there exists a prefix cr* of cr,- such that cr* € Tr(so) and

Oi is a prefix of cr*. At first let cr,- = a*. If £«/(i) = fail then init(t) & Ref((?j, SQ). This

implies init(t) ^ 0 and for all a €. init(t) OJ.Q, € Tr(s0). Let cr,- = aj.a. If 4*/(i) = fail

then repeat the above process. Since any cr € Tr(to) is a finite sequence, it is impossible

for the above process to repeat for ever, so there must exist such a cr,- € Tr(to) that

pass.

Theorem 6 Proof: Let TSffsm be the test suite for the FFSM PF and TSits be the

converted test suite for the LTS S. From Proposition 2, any T e TSits is sound. Assume

that M »/ S does not hold. For any M € T we have M' 6 Fjfsm and from Theorem 2, if

M ttf S does not hold then M' ~ PF does not hold. Since 72>//sm is complete over jFffsm,

there must exist x\ .Xi-i.Xi € pref(TSffsm) such that Po— ̂ i/J/i • • -£»-i/y»-i— ̂ Pi-i,

m'0—Xi/yi . ..Xi-i/yi-i-tm'^! such that yj ̂ 6 for 1 < j < i, and 1) Pi-i— Xi/yt- >and

m-_! yki/j/f -»• or 2) p»_i At/3/i -> and m^! -Xi/yt-4. Let cr = yx . . . &_! and T € 75//STO

be the corresponding test case.

Consider case 1). If Xi € Ref(pi-\) then there exists Pi~\— Xi/Q — % thus since

ra'^j /-Xi/6 ->, x,- € ^^(mj.i). From Proposition 9, xt e Ref(pi-i) also implies

Xj € Ref(s0,a) and hence according to Definition 11, a € Pur(T). Moreover, from

Proposition 9 and the definition of Acc(p), X{ € Accfa1^) also implies x^ & Ref(mo,cr)

and hence a $• O6s(T,M)- According to Definition 8, M fails T.

Otherwise, x^ € Acc(pi-i). From the FFSM definition, pi-i—Xi/yi—> implies yt 6 Xt;

furthermore according to Algorithm 3 a.yi € Tr(T). Therefore from Lemma 2 there

exists cr' € Pttr(T) such that cr.i/j is a prefix of a'. On the other hand, from Proposition 9,

m'i-i-fai/yi— ^implies cr.g/j ^ Tr(mo) and hence a1 £ O&S(T,M)- According to Definition 8,

M also fails T.

Consider case 2). If x^ € Ref(pi-i) then there exists pi_i— Xi/Q— >. Thus j/f ^ @. This

again implies Xi e J4cc(mJ_1). As we have proved, M fails T.

If Xi £ Reffa-i), then from Proposition 9 Xi $. Ref(so,a) and furthermore from

Definition 11 £«/(cr) = fail. If y, = 0 then X{ 6 Ref^m'^) and furthermore from Propo-

sition 9 Xi € Ref(cr, mo). This implies a e 06s(T,M) an(i according to Definition 8, M also

40

fails T. If yi ̂ 0 then mJ_1—a;j/t/,—> implies yt € Xi and a.yi 6 Tr(mo) from Proposition 9,

that is, a.yi 6 O6s(T,M); moreover pf_i /Zi/t/i -> implies cr.yf £ Tr(s0). According to Al-

gorithm 3, a.yi € TV(T) and from Definition 11, £«/(a.j/j) = fail. Therefore according to

Definition 8, M also fails T.

References

[1] J. Arkko. On the existence and production of state identification machines for labeled

transition systems. In IFIP Formal Description Techniques VI, pages 351-365, 1993.

[2] F. Belina and D. Hogrefe. The CCITT-specification and description language SDL.

Computer Networks and ISDN Systems, 16(4):331-341, 1989.

[3] G. v. Bochmann and A. Petrenko. Protocol testing: Review of methods and relevance

for software testing. In Proceeding of the ACM 1994 International Symposium on

Software Testing and Analysis, pages 109-124, Seattle USA, 1994.

[4] T. Bolognesi and E. Brinksma. Introduction to the ISO specification language

LOTOS. Computer Networks and ISDN Systems, 14(l):25-59, 1987.

[5] G. v. Bochmann, A. Petrenko, and M. Y. Yao. Fault coverage of tests based on finite

state models. In IFIP 7th International Workshop on Protocol Test Systems, pages

91-106, Japan, 1994.

[6] E. Brinksma. A theory for the derivation of tests. In IFIP Protocol Specification,

Testing, and Verification VIII, pages 63-74, 1988.

[7] E. Brinksma and et al. A formal approach to conformance testing. In IFIP 2th

International Workshop on Protocol Test Systems, pages 349-363, 1990.

[8] S. Budkowski and P. Dembinski. Introduction to ESTELLE: A specification language

for distributed systems. Computer Networks and ISDN Systems, 14(l):3-23, 1987.

[9] A. R. Cavalli and S. U. Kim. Automated protocol conformance test generation based

on formal methods for LOTOS specifications. In IFIP 5th International Workshop

on Protocol Test Systems, pages 212-220, 1992.

[10] T. S. Chow. Testing software design modeled by finite-state machines. IEEE Trans-

actions on Software Engineering, SE-4(3):178-187, 1978.

41

[11] Brookes S. D., Hoare C. A. R., and Roscoe. A theory of communicating sequencetial

processes. JACM, 31(3):560-599, 1984.

[12] R. De Nicola and M. Hennessy. Testing equivalences for processes. In Theoretical

Computer Science (34), pages 83-133, 1984.

[13] K. Drira, P. Azema, B. Soulas, and A.M. Chemali. Testability of a communicating

system through an environment. In 4th International Joint Conj. on Theory and

Practice of Software Development, pages 329-341, 1993.

[14] K. Drira, P. Azema, and F. Vernadat. Refusal graphs for conformance tester genera-

tion and simplification: a computational framework. In IFIP Protocol Specification,

Testing, and Verification XIII, pages 257-272, 1994.

[15] S. Fujiwara and G. v. Bochmann. Testing nonterministic finite state machine with

fault coverage. In J. Kroon, J. Heijink, and E. Brinksma, editors, IFIP 4th Interna-

tional Workshop on Protocol Test Systems, pages 267-280, 1991.

[16] S. Fujiwara et al. Test selection based on finite state models. IEEE Transactions on

Software Engineering, SE-17(6):591-603, 1991.

[17] C. R. A. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[18] Z. Kohavi. Switching and Finite Automata Theory. McGraw-Hill Computer Science

Series, New York, 1970.

[19] G. Leduc. Conformance relation, associated equivalence and new canonical tester in

LOTOS. In IFIP Protocol Specification, Testing, and Verification XI, pages 249-264,

1991.

[20] G. Luo, G. v. Bochmann, and A. Petrenko. Test selection based on communicat-

ing nondeterministic finite state machines using a generalized Wp-method. IEEE

Transactions on Software Engineering, SE-20(2): 149-162, 1994.

[21] G. Luo, A. Petrenko, and G. v. Bochmann. Selecting test sequences for partially-

specified nondeterministic finite machines. In IFIP 7th International Workshop on

Protocol Test Systems, pages 91-106, 1994.

[22] A. Petrenko. Checking experiments with protocol machines. In IFIP 4th International

Workshop on Protocol Test Systems, pages 83-94, 1991.

[23] A. Petrenko, G. v. Bochmann, and R. Dssouli. Conformance relations and test

42

derivation. In IFIP 6th International Workshop on Protocol Test Systems, pages

91-106, 1993.

[24] A. Petrenko, N. Yevtushenko, and G. v. Bochmann. Testing Deterministic Imple-

mentations from Nondeterministic Specification. In IFIP 9th International Workshop

on Protocol Test Systems, pages 79-94, 1996.

[25] A. Petrenko, N. Yevtushenko, A. Lebedev, and A. Das. Nondeterministic state ma-

chines in protocol conformance testing. In IFIP 6th International Workshop on

Protocol Test Systems, pages 363-378, 1993.

[26] D. H. Pitt and D. Freestone. The derivation of comformance tests from LOTOS

specifications. IEEE Transactions on Software Engineering, SE-16(12):1337-1343,

1990.

[27] K. Sabnani and A. T. Dahbura. A protocol test generation procedure. Computer

Networks and ISDN Systems, 15(4):285-297, 1988.

[28] Q. M. Tan, A. Petrenko, and G. v. Bochmann. Modeling basic LOTOS by FSMs for

conformance testing. In IFIP Protocol Specification, Testing, and Verification XV,

pages 137-152, 1995.

[29] Q. M. Tan, A. Petrenko, and G. v. Bochmann. A framework for conformance testing

of systems communicating through rendezvous. In 26th IEEE International Sympo-

sium on Fault-Tolerant Computing, pages 230-238, 1996.

[30] Q. M. Tan, A. Petrenko, and G. v. Bochmann. A test generation tool for specifications

in the form of state machines. In IEEE International Conference on Communications

- 96, Dallas, USA, 1996.

[31] J. Tretmans. Test case derivation from LOTOS specifications. In IFIP 2th In-

ternational Con}, on Formal Description Techniques for Distributed Sysytems and

Communication Protocols, pages 345-359, 1990.

[32] J. Tretmans, P. Kars, and E. Brinskma. Protocol conformance testing: A formal

perspective on ISO IS-9646. In IFIP 4th International Workshop on Protocol Test

Systems, 1991.

[33] J. Tretmans. A formal approach to conformance testing. Ph.D. thesis, Twente Uni-

versity, 1992.

[34] J. Tretmans. Testing labelled transition systems with inputs and outputs. In IFIP

43

8th International Workshop on Protocol Test Systems, pages 461-476, 1995.

[35] R. J. van Glabbeek. The linear time-branching time spectrum. Lecture Notes on

Computer Science, 458:278-297, 1990.

[36] C. D. Wezeman. The CO-OP method for compositional derivation of conformance

testers. In IFIP Protocol Specification, Testing, and Verification IX, pages 145-158,

1990.

44

