Testing Trace Equivalence for Labeled Transition
Systems!

Q. M. Tan, A. Petrenko, G. Luo? and G. v. Bochmann
Department d’TRO, University of Montreal
C.P. 6128, Succ. Centre-Ville, Montreal, P.Q. H3C 3J7, Canada
e-mail:tanq@iro.umontreal.ca Fax:(514)343-5834

ABSTRACT: In this paper, we consider the problem on conformance testing of com-
munication protocols which are modeled by labeled transition systems. The conformance
requirements of specifications are represented as the trace equivalence relation and derived
test suites have finite behavior and provide well-defined fault coverage. For this problem,
we first give a testing framework and then, based on the state identification technique,
we present a test generation method. The advantages of our method over other methods
are that it not only ensures trace equivalence in a class of implementations whose state
numbers are bounded by a known integer, but also requires no transformation of LTSs to
input/output finite state machines.

KEYWORDS: Conformance relations, labeled transition systems, protocol conformance
testing and software testing.

1 Introduction

One of important issues of conformance testing is to derive useful tests for communication
protocols specified in labeled transition systems (LTSs), which serves as a semantic model
for various specification languages, e.g.., LOTOS, CCS, and CSP and assumes a rendezvous
communication, i.e., communication between two processes occurs if both processes offer
to interact on a particular action, and if the interaction takes place it occurs synchronously
in both participating processes. Testing theories and methods for test derivation in the
LTS formalism have been developed in [2, 13, 3, 1, 5]. In particular, a so-called conf
relation and canonical tester [2] became the basis for a large body of work in this area.

Unfortunately, the canonical tester approach cannot be taken into account when test
generation for real protocols is attempted. The canonical tester has infinite behavior
whenever the specification an infinite behavior; no fault coverage is measured for indi-
vidual tests derived in [13]. Moreover, we believe that the conf relation alone is too
weak as a criterion to accept an implementation, because only are the deadlocks that are

!This work was supported by the HP-NSERC-CITI Industrial Research Chair on Communication
Protocols, Universite de Montreal
2G. Luo is with Bell Northern Research Ltd. P.O. Box 3511, Station C, Ottawa, Canada K1Y 4H7



Figure 1: An LTS graph

implemented after the valid traces in the specification to be checked. Since this relation
does not deal with invalid traces, this will lead to a trivial implementation M that has
a single state with looping transitions labeled with all possible actions and conforms to
any LTS specification S with the same alphabet with respect to conf. Thus even though
an implementation is concluded being valid based on conf, another relation, such as
trace-equivalence, has to be tested as well.

Conformance testing for protocols in the LTS formalism should be developed in such
a way that the given conformance relation is determined by the real conformance require-
ments and a test suite has finite behavior and ensures fault coverage in a certain class
of implementations. Several attempts have been made to apply the ideas underlying the
FSM-based methods to the LTS model [6, 3, 1] for several relations. In particular, this
research is directed towards redefining the state identification and eventually the checking
experiments in the LTS realm for a given relation. [3] tries the UIO-based state identi-
fiers [11], which, as it is well known, do not always exist; [6] considers the characterization
sets [4]; and [1] introduces the state identification machines. However, in spite of these
attempts, the problem of deriving a finite test suite with complete fault coverage from
an arbitrary LTS for a given conformance relation remains open. In [10, 12], another
approach is taken, where an LTS is represented as an FSM model, the FSM method is
applied, and then the derived tests are translated back into the LTS formalism. This
approach has the advantage of allowing reuse of existing FSM-based methods and testing
tools for the LTS specifications, but it requires several auxiliary transformations.

In this paper, we adapt the notion of the HSI-state identifiers [9, 8] in /O FSMs
to fit LTSs. Based on this, a test derivation method with complete fault coverage is
presented for LTS specifications and the trace equivalence relation, provided that the
number of states of any implementation is bounded by a known integer. Although in our
method the notion of the HSI-state identifiers is used for state identification, other state
identification techniques, such as that of the W— or Wp-method [4, 7], can be applied to
LTSs in a similar way.

2 Basic Definitions and Notations

In this section, we review some basic definitions and notations which are related to testing

LTSs.



notation meaning

¥ set of sequences over ¥; o denotes such a sequence

p—pq ... fy—q there exists pp for 0 < k < n such that
P=po—H1—=P1---—MUn—7Pn = (¢

p=e=rq p—7"—=q (1 <n)or p=gq (note: 7" means n times 7)

p=a=rq there exist py, py such that py=c=p—a—py=c=¢

p=0=gq there exists py for 0 < k < n such that
P=Po=a1=P1...=0p, =Py, = (¢, 0 =0a1...0,

p=0= there exists ¢ such that p=0=g¢

pFto= no g exists such that p=o=-¢

out(p) out(p) = {a € Xp=a=}

p-after-o p-after-oc = {q € S|p=0c=¢q}

Tr(p) Tr(p) = {o € *p=0=}

Table 1: Notation for labeled transition systems

Definition 1 (Labeled transition system (LTS)): A labeled transition system is a 4-tuple
< 5,8, A, 89 >, where
e Sis a finite set of states, sg € 9, is the initial state.
e Y is a finite set of labels, called observable actions; 7 € ¥ is called an internal action.
A C S x(XU{r}) xS is a transitions set. (p, i, q) € A is denoted by p—p—q.

An LTS is said to be nondeterministic if it has some transition labeled with 7 or there
exist p—a— p1,p—a— py € A but p; # pa. A deterministic LTS has no internal actions
and the outgoing transitions of any state are uniquely labeled.

An LTS can also be represented by a directed graph where nodes are states and labeled
edges are transitions. An LTS graph is shown in Figure 1.

The notations shown in Table 1 are relevant to a given LTS, as introduced in [2]. In
this paper we use M, P,S. ... to represent L'TSs; M, P,Q, ..., for sets of states; a,b,¢,...,
for actions; and #,p,q,s..., for states. Additionally, we also denote Tr(S) by Tr(so),
S-after-o by sgp-after-o, and the sequences in Tr(S) are called the traces of S.

3 Conformance Testing

The starting point for conformance testing is a specification in some (formal) notation,
an implementation given in the form of a black box, and the conformance requirements
that the implementation should satisfy. In this paper, the notation of the specification is
the LTS formalism; the implementation is assumed to be described in the same model;
an conformance relation, called trace equivalence, is used to formalize the conformance
requirements. We say that an implementation M conforms to a specification S if M is
trace-equivalent to S.



Definition 2 (Trace equivalence): The trace equivalence relation between two states p
and ¢, written p &, ¢, holds if and only if Tr(p) = Tr(q).
Given two LTSs S and M with initial states so and mg respectively, we say that M is
trace-equivalent to S, written M =, S, if only if mg ~ty So.

Conformance testing is a finite set of experiments, in which a set of test cases, derived
from a specification according to a given conformance relation, is applied by a tester
or experimenter to the implementation under test (IUT), such that from the results of
the execution of the test cases, it can be concluded whether or not the implementation
conforms to the specification.

The behavior of the tester during testing is defined by the used test case. Thus a test
case is a specification of behavior, which, like other specifications, can be represented as
an LTS. An experiment should last for a finite time, so a test case should have no infinite
behavior. Moreover, the tester should have certain control over the testing process, so
nondeterminism in a test case is undesirable.

Definition 3 (Test cases and test suite): Given an LTS specification S =< S, ¥, A, s >,
a test case for S is a 5-tuple < T, X7, Ar, to,{ > where:
o Xr C X
o < T.YNr, Ar,to > is a deterministic, tree-structured LTS such that for each p € T
there exists exactly one o € X% with tg=0=p;
o (:T — {pass,fail, inconclusive} is a state labeling function.
A test suite for S is a finite set of test cases for S.

From this definition, the behavior of test case T is finite, since T and ¥ are finite.
Moreover, a trace of T uniquely determines a single state in T, so we define {(c) = (1)

for {t} = T-after-o.

The interactions between a test case T and the IUT M can be formalized by the
synchronization operator “||” of LOTOS, that is, T || M. When T || M after an observable
action sequence o reaches a deadlock, that is, there exists a state p € T' x M such that
for all actions a € ¥, T || M=o = p and p#a = we say that this experiment completes a
test run.

Usually, LTSs are supposed to be nondeterministic. In order to test nondeterminis-
tic implementations, one usually makes the so-called complete-testing assumption: it is
possible, by applying a given test case to the implementation a finite number of times,
to exercise all possible execution paths of the implementation which are traversed by the
test case [6, 8]. Therefore any experiment, in which M is tested by T, should include
several test runs and lead to a complete set of observations Obstyy = {o € Tr(T) | Ip €
Tx MYaeX ((T||M)=c=p#a=)}.

Based on Obs(try, the success or failure of testing needs to be concluded. The way a
verdict is drawn from Obs(p ) is the verdict assignment for T. The verdict pass means
success, which, intuitively, should mean that no unexpected behavior is found and the
test purpose has been achieved. If we define the test purpose of T, written Pur(T), to be
Pur(T)={o € Tr(T) | {(0) = pass}, then the conclusion can be drawn as follows.

4



Definition 4 (Verdict assignment v): Given an IUT M, a test case T, let Obs;,y = {0 €
Obsiray | {(0) = fail} and Obspass = {0 € Obs(ry | {(0) = pass},

| pass if Obssay = 0 A Obspess = Pur(T)
0(Obseran) = { fail  otherwise.

Given a test suite TS, we say that M passes TS if and only if for all T € TS
v(Obs(tny) = pass.

4 Test Generation

In this section, we first present a reference model and then a test generation algorithm
for a given LTS specification with respect to trace equivalence.

4.1 Trace Observable System

In the case of nondeterminism, after an observable action sequence, an LTS may enter
a number of different states. In order to consider all these possibilities, the set of the
different states, rather than the single states, is used to define the transition checking and
state identification [6]. The viewpoint is reflected in the FSM realm by the presentation
of a nondeterministic FSM specification as an observable FSM [8], in which each state
is a subset of states of the non-observable FSM. The viewpoint is also reflected by the
refusal graphs [5], in which a node also corresponds to a subset of states. To test trace
equivalence, we do not need refusal sets in the refusal graphs. If these sets of a refusal
graph are dropped and trace-equivalent nodes are merged then we have a so-called trace
observable system for test generation.

Definition 5 (Trace observable system (TOS)): Given an LTS S =< 5,3, A so >, an
LTS S =< S,%,A,5p > is said to be the trace observable system of S, if there exists a
mapping ¢ : [1—= S, where Il = {S; C S | 3o € Tr(so) (so-after-o = 5;)}, such that
o 3o =1(5) where So ={s € 5| sp=e=s};
o 5,—a—3; € Afor3;,5 €S and ¥(S;) =3 iff there exist S;,.S; € II such that
S;={seS|dpes(p=a=s)}and P(S5;) =5;;
o U(5) =(5)) if Upes, Tr(p) = Uses, Tr(q)-

From the above definition, the TOS S of S is deterministic and trace-equivalent to S;
and furthermore, none of states in S are trace-equivalent, that is, S is minimal. For the
LTS in Figure 1, its TOS is given in Figure 2. For any LTS, there are several existing
algorithms and tools [3] for the TOS through determinization and minimization.

4.2 Algorithm

Given any LTS S, the TOS S models all its observable behavior in trace semantics. There-
fore, we assume that LTS specifications for test generation are given in the form of the
trace observable systems. To present our method, we need the following notion for state
identification, which is adapted from the FSM model [8].

5



Figure 2: A corresponding trace observable system of Figure 1

Given a set of sequences V' € ¥*, we use the notation Pref(V') to represent all prefixes

of sequences in V. Formally, Pref(V) = {oy | oz € ¥* (01.09 € V) }.

Definition 6 (A tuple of harmonized state identifiers < Wo, Wy,...,W,,_y >): Given
a TOS S with n states, < Wy, Wy,...,W,_y > is said to be a tuple of harmonized
state identifiers of S, if, for 7,7 = 0,1,...,n — 1,7 # j, W;,W; C ¥* and there exists
o € Pref(W;)n Pref(W;) such that o € Tr(3;) & Tr(3;), where Tr(3,) & Tr(s;) =
(Tr(5:) U THE)\(Tr(m) 1 Tr(s;)).

According to this definition, there exists a tuple of harmonized state identifiers for S
because none of states in S are trace-equivalent. W; is a harmonized identifier of state 3;.
The harmonized identifier catches the following property: for any different state 5;, there
exists a sequence in Pref(W;) N Pref(W;) such that it is a valid trace of S in only one
of the two states, that is, 5; is distinguished from 3; by the sequence.

As an example, for the LTS in Figure 2, we can obtain the harmonized state identifiers
Wy = {a,b}, Wy = {b.a}, Wy = {b.a}, W5 = {a,b}. We only consider Wy: «a is used to
distinguish Sy from 33, so a is also in W3; b is used to distinguish 35y from 5; and 35, so
Wi and W, have b.a where b is its prefix.

We use “.” to represent the concatenation of two sets of sequences. Formally, assuming
Vi, Vo C X%, the concatenation of sets, V1.V;, is defined as a set {o1.05 | 01 € Vi Ao € Vo).
We also write V" = V.V"! for n > 0 and V° = {¢}.

In the following, we give the test generation algorithm for a given TOS and trace
equivalence. This algorithm derives a test suite with complete fault coverage in a class of
LTS implementations in which the number of states in the TOS of each implementation
is bounded by a known integer. Thus, in order to apply this algorithm, the user must
previously give an estimate on this upper bound. The upper bound for implementations
is similarly required in existing test generation methods in the FSM realm. Estimating
the bound is an intuitive process based on the knowledge of the given specification and
implementation. In the simplest case, one may assume that this bound is equal to the
number of states of the specification.

Test Generation Algorithm:



Input: A TOS S and the upper bound m on the number of the states in the TOSs of
all LTS implementations.

Output: A test suite T5S.

Step 1: Let the number of states in S be n (n < m). Find a tuple of harmonized state
identifiers {Wo, W1,..., W, _1} from S.

Step 2: Construct a minimal set of sequences () C ¥* such that
Vi, € SdoeQ (So=0=7).

Step 3: Construct the set P such that
P={0acQ.(U""Y) | So=0=5#a=}

Step 4: Construct a tuple of the sets {Rg, Ry,..., R,_1} such that
R ={0€ Q.U X)) | so=0=75}.

Step 5: Construct the set T' of action sequences such that
T = (U Ri.W) U P.

Step 6: Construct TS by transforming each sequence aj.ay....ar in T into a corre-
sponding LTS po—a1— py ... ppr_1—ar— pr. and applying the following state labeling:

inconclusive : < j

{(p;) = { pass =
fail otherwise.

where 1 < 5 < k such that ay.ay....a; € Tr(3y) but ay.as....a;.a;41 € Tr(30).

This method resembles the HSI-method [8] for non-deterministic FSMs, which was
originally developed for deterministic FSMs [9]. We intuitively explain the validity of this
method. @Q is a cover of all states in S; Rg U Ry...U R,_; is intended to be a cover
of all the transitions in the IUT allowed by the specification, while P is intented to be
a cover of all the transitions forbidden by the specification. If a specified transition is
implemented, the state identification is needed to check the tail state of the transition. If
a specified transition is missed, there exists a sequence in Ry U Ry ...U R,_; which can
not be observed, and the test case corresponding to this sequence will fail the TUT. If an
unspecified transition is implemented, the IUT will fail the test case corresponding to a
sequence in P and no state identification is required, unlike to testing partially specified
FSMs. We note that in FSM testing, transition checking is considered only for the inputs
allowed by the specification and the state identification includes the tail states of all these
transitions.

Theorem Given an LTS specification S of the TOS form and any LTS implementation
M. Suppose n < m where n is the number of states of S, and m is the upper bound on
the number of states in the TOS of M. Let TS be the test suite derived from S using the
test generation algorithm. We have M passes TS if and only if S ~¢ M.



pass incon incon incon incon incon

o O t,
b a c a a a
passy p incory, incon’
fail
a a b b
incoryy pass/
fail fail
a b
pass fail fail fail fail fail fail fail fail

Figure 3: A test suite for the LTS specification in Figure 1

In other words, we claim that the algorithm yields a finite test suite with complete fault
coverage in the sense that it detects any trace—nonequivalent implementation, provided
that the number of states in the TOS of this implementation is not more than m.

As an example, assuming the TOS of any implementation does not have more states
than the specification given in Figure 2, we derive a test suite, which checks trace equiv-
alence with respect to this specification as well as to the specification in Figure 1 and
guarantees full fault coverage, as follows.

Intermediate results:

3 | 51 | 32 s
Wil a, b |ba|ba a, b
Q 5 a a.c
R, |e,ab| a ¢ | ac, cb, cc
P ={b, a.a, ca, a.c.a, a.c.h, a.c.c}

The set T' of test sequences: {b, a.a, c.a, a.b.b, a.b.a, a.c.a, a.c.b, a.c.c, c.b.a, ¢.b.b, c.c.a,
c.c.b}. The resulting test suite TS is given in Figure 3.

Considering a test case tgo—a— t;—c—ty—a— t3, where sequence a.c.a is not a trace of
the specification but its prefix a.c is. According to trace equivalence, a.c.a should not be
implemented and a.c must be implemented, so {3 is labeled with fail and ¢, with pass.
Due to nondeterminism of implementations, several test runs are needed to obtain all
possible observations for the application of this test case, and ty and #; are labeled with
inconclusive for possible deadlocks. In testing, if a.c is observed but a.c.a not, the test
purpose is achieved and a pass verdict is given to the IUT for this test case. On the
other hand, if a.c.a is observed or a.c does not occur, this means that an invalid trace is
implemented or a valid trace is not implemented, so a fail verdict is given.

Similarly, we could also use the ideas of the W- and Wp-methods [4, 7] for test gen-
eration of LTSs with respect to trace equivalence with the same fault coverage power. In
fact, the union of harmonized state identifiers for an LTS can treated as a characteriza-
tion set W for the LTS, in which for any two states there exists a sequence such that one
of its prefixes is a trace of either of the two states, not both. However, such a W may



contain the sequences whose suffixes are not necessary for identification of some states;
thus it follows that the test cases derived may have certain redundancy [12]. For example,
a W set for the LTS in Figure 2 includes b.a, in which the suffix a is not necessary to
identify the initial state sy because b should be blocked in the corresponding state for any
conforming implementation. The given method does not produce the redundancy since
the harmonized state identifiers do not contain such suffixes.

5 Conclusion

LTSs are the basic semantics for the LOTOS language and other specification formalisms.
We presented in this paper a method for generating test cases from a specification given
in the LTS formalism with respect to the so-called trace equivalence relation. For 1/0
machines, several existing methods can be used to derive finite test suites with guaran-
teed fault coverage for trace equivalence, but they are not directly applicable to LTSs.
The existing methods based on LTSs for the trace equivalence either do not assure fault
coverage, or require a transformation from LTSs to I/O FSMs. In the method proposed in
this paper, such transformation is not required and the derived test suites have complete
fault coverage, provided that the state number of the implementations is bounded by a
known integer.

In our method the notion of the HSI state identifiers is used for state identification.
Other state identification techniques, such as the notion of a characterization set, in which
for any two states of a given LTS there exists a sequence of observable actions such that
one of its prefixes is is a trace of either of the two states, not both, can also be used in a
similar way.

Appendix

In this appendix we give the proof of the Theorem. First we recall the basic assumptions for
Test Generation Algorithm and introduce several notations to help the proof, then we prove a
series of lemmas which lead to the Theorem.

Given an LTS specification S and an LTS implementation M, we assume in the following:
(1) All states of S and M are reachable from the initial state sq and g, respectively.
(2) S is the corresponding trace observable system of S and has n states with n > 1.
(3) M is the corresponding trace observable system of M and has at most m states with m > n.
(4) 5;,5;, 5k, 51 and T, m;, Ty, Ty represent the states of S and M, respectively.
(5) A tuple of state identifiers {Wo, Wy,...,W,,_1}.
(6) Sets @, T and the test suite 7S, which are defined in Test Generation Algorithm.

Definition 7 V-equivalence. Given a set V' C ¥* The V—equivalence relation between two
states p and ¢, written p =y ¢, holds if and only if for all o € Pref(V), o € Tr(p) < o € Tr(q).
Given two LL'TSs S and M with initial states sg and mg respectively, we say that M is V-equivalent
to S, written S =~y M, if only if sg =~y mg.



notation meaning
[§i,mi]—a—>[§j,m]‘] For a € ¥,5,—a—75; and my; —a—m;
[§i7 mz] =0= [§]‘,m]‘] For o € E*, §Z':U:>§]‘ and m; :_U:>_m]‘
[5;, m;]-after-V given a pair of states [3;, ;] € S X M, and a set V C ¥*
[s;, m;]-after-V = {[gj, m]‘] | Vo € Pref(V) [s;,m;]=0= [§]‘,m]‘]}

D D =[5y, mp]-after-2*
D, D, ={[5;,m;| € D | 5, =w, m;}
ik ik = Uf:o ¢

Lemma 1 ForV C X*, assume |[So, Tig]-after-V| > k. If|D| > k, then |[§0,m0]-after-v.il| >
k+1;if |D| <k, then [§0,m0]-after-v.il = [So, o ]-after-V.

Proof:
(I) To prove that the lemma holds when |D| > k.
The lemma holds when |[Sp, Tg]-after-V| > k. Consider the case that |[Sy, To]-after-V| = k.

(1) |D| > k and |[So, To]-after-V| =k hypothesis
(2)  [So0,mo]-after-V C D definition of D
(3)  d[Sk, mk] € D\[S0, mo]-after-V/ (1),(2)

a[s;, ;] € [So, T -after-V (1)
do € Pref(V) Jo.a € ¥*([50, o] = 0 = [5;, Tt;] — a— [5k, Tx]) (2)
(1) [5k, k] € [So, Mo]-after-V.5 '\ [So, Tio]-after-V (3)
(5)  [So, mo]-after-V.S' > k+ 1 (4)
(II) To prove that the lemma holds when |D| < k.
(1) |D| <k and |[So, Tp]-after-V| =k hypothesis
(2)  [So0,mo]-after-V C D definition of D
(3)  [So, mol]-after-V.S' =[5y, o]-after-V (1),(2).

Lemma 2 Assume 39 ~q Tg. If |D| > m, then |[5, To]-after-Q.3X"""| > m; and if |D| < m,
then [5y, To)-after-Q. X" " = D.

Proof:

(I) To prove that the lemma holds when |D| > m.
(1) Sp=qg Mg and |D| >m hypothesis
(2)  |[So, m0]-after-Q| > n initially connected S, (1)
(3)  |[S0, Mo]-after-Q.X" " "| > m Lemma 1, (1),(2).

(II) 1t is evident from Lemma 1 when |D| < m.

Lemma 3 If5; =w, my and 5; AW, T, then i = j.

Proof:
(1) ForV CE" 5 ~y M < S R Pref(V) Mk evident
(2) 5 ~w, My, and 5; A, Ty hypothesis
(3) 5 Rpresw,) Tk and 5; ~p.cpw,) Tk (1),(2)
(4) i#y assumption
(5) JoeTr(s)@Tr(s;) N Pref(W;)N Pref(W;) definition of W;, (4)
(6) let o € Tr(s;), then o € Tr () (3)
1) oeTr() (3),(6)
®) i=y (6),(T)&Tr(5) @ Tr(s;).

10



Lemma 4 |D,| < m.

Proof:
(1) M| <m hypothesis
(2) |Di|>m assumption
(3)  3l5i, M, [55, mk](i # J, 5i =w, Tk A'S; =w, Ty (1),(2)
(4) |D,] <m. (3)¢4Lemma 3.

Lemma 5 If 5, ~7 Ty, then [5y, Tpl-after-Q.X" " = D, = D.

Proof:
(I) To prove that the lemma holds when |D| < m.
(1) |D|<m hypothesis
(2) S0 =7 T hypothesis
(3) S =g Mo (2)
(4)  [So, mol-after-Q.X" " = D (1),(3),Lemma 2
(5) V[si,m;] € [So, mo)-after-Q. X" (5; mw, m;) (2)
(6) D=Dr (4),(5),definition of D,
(IT) To prove that the lemma holds when |D] > m.
(1) |D|>m assumption
(2) S0 =7 T hypothesis
(3) [§0,m0]—after—Q.im_n+l cD definition of D
(4) V[si,m;] € [So, o]-after-Q X" " (5 ~w, ;) (2)
(5) [So, Mo]-after-Q. =" "™ C D, (3),(4),definition of D,
(6) [0, mol-after-Q X" " > m 4 1 (1),(2),Lemma 2,Lemma 1
(1) D] > m+1 (3),(4)
(8) [DI<m (5)Lemma 4
(9)  [So, mol-after-Q.X" " =D, =D (6),Lemma 2.
Lemma 6 If sy =7 g, then 59 ~¢p Mg.
Proof:
(1) S0 =7 o hypothesis
(2) VE,m e D30 e QX" ([Fo, o) =0=[5,T)) (1),Lemma 5
(3) 5; oy, My (1)
(4)  not(Sp =y To) assumption
(5) da € X2 EI[E,WZ'] eD not(Ei Rla} mz)) (4)
(6) S0~y o (5)44(3).

Lemma 7 M passes TS if and only if S ~¢p M.

Proof: For each o € T, we obtain a test case be T such that {(o;) = pass where ¢ = 0;.0; and
o; € Tr(S). If S =4 M, then o; € Obs(tny and any o’ € Obs(p ) implies o' € Pref(o;). Thus
v(Obs(r n)) = pass.

On the other hand, if S &%, M does not hold, from Lemma 6, there exists ¢ € T such that

o € Tr(M)\Tr(S) or o € Tr(S)\Tr(M). For the former, T has {(c) = fail and o € Obs(T \);
for the latter, {(c) = pass but o ¢ Obs(r ). Thus v(Obs(t ) = fail.

11



References

1]

2]

[10]

[11]

[12]

[13]

J. Arkko. On the existence and production of state identification machines for labeled
transition systems. In R. L. Tennecy, P. D. Amer, and M. U. Uyar, editors, [FIP
Formal Description Techniques VI, pages 351-365, 1993.

E. Brinksma. A theory for the derivation of tests. In S. Aggarwal and K. Sab-
nani, editors, IFIP Protocol Specification, Testing, and Verification VIII, pages 63—
74. North-Holland, 1988.

A. R. Cavalli and S. U. Kim. Automated protocol conformance test generation based
on formal methods for LOTOS specifications. In G.v. Bochmann, R. Dssouli, and
A. Das, editors, IFIP 5th International Workshop on Protocol Test Systems, pages
212-220. North-Holland, 1992.

T. 5. Chow. Testing software design modeled by finite-state machines. IEEE Trans-
actions on Software Engineering, SE-4(3):178-187, 1978.

K. Drira, P. Azema, and F. Vernadat. Refusal graphs for conformance tester gen-
eration and simplification: a computational framework. In A. Danthine, G. Leduc,
and P. Wolper, editors, IFIP Protocol Specification, Testing, and Verification XIII.
North-Holland, 1994.

S. Fujiwara and G. v. Bochmann. Testing nonterministic finite state machine with
fault coverage. In J. Kroon, J. Heijink, and E. Brinksma, editors, IFIP jth Interna-
tional Workshop on Protocol Test Systems, pages 267—280. North-Holland, 1991.

S. Fujiwara et al. Test selection based on finite state models. IEEF Transactions on
Software Engineering, SE-17(6):591-603, 1991.

G. Luo, A. Petrenko, and G. v. Bochmann. Selecting test sequences for partially-
specified nondeterministic finite machines. In IFIP 7th International Workshop on
Protocol Test Systems, pages 91-106, Japan, 1994.

A. Petrenko. Checking experiments with protocol machines. In J. Kroon, J. Heijink,
and E. Brinksma, editors, IFIP Jth International Workshop on Protocol Test Systems,
pages 83-94. North-Holland, 1991.

A. Petrenko, G. v. Bochmann, and R. Dssouli. Conformance relations and test
derivation. In [FIP 6th International Workshop on Protocol Test Systems, pages
91-106, Pau, France, 1993.

K. Sabnani and A. T. Dahbura. A protocol test generation procedure. Computer
Networks and ISDN Systems, 15(4):285-297, 1988.

Q. M. Tan, A. Petrenko, and G. v. Bochmann. Modeling basic LOTOS by FSMs for
conformance testing. In IFIP Protocol Specification, Testing, and Verification XIIII,
Poland, 1995.

J. Tretmans. Test case derivation from LOTOS specifications. In S. T. Vuong, edi-
tor, IFIP 2th International Conf. on Formal Description Techniques for Distributed
Sysytems and Communication Protocols, pages 345—-359. North-Holland, 1990.

12



