Protocol Synthesis Using Basic Lotos and Global Variables

A. Khoumsi*

G.v Bochmann

Département d’informatique et de recherche opérationnelle

Université de Montréal
Montréal, Québec H3C 3J7, Canada

Abstract

In 6;], a method of protocol synthesis, using basic
LOTOS (BL) as a specification language, is proposed.
In the present paper, we generalize this method. For
that, we propose an extended basic LOTOS (EBL) to
specify the service and the protocol. With EBL, events
are associated to enabling conditions and to transfor-
mation functions that depend on global variables. Next,
we propose a method to synthesize protocols using EBL
as a spectfication language. This method is inspired by
the concept of Transactions and by the method of [6].
Our method has an advantage : There are cases where
it generates a solution while method of [6] is not appli-
cable. This advantage is llustrated in two examples.

Key Words: Protocol synthesis, Shared variable,
Enabling condition, Transformation function,
EBL, Two-phase locking protocol, Partially and fully
completed transaction, Disconnection phase.

Introduction

An approach to design of a distributed system is
to derive the protocol specification from a specifica-
tion of the service desired by the user, in such a man-
ner that the protocol is syntactically and semantically
correct by construction”. The semantic correctness
means that the protocol provides the desired service.
The syntactic correctness means that the protocol is
deadlock-free (resp. livelock-free) provided that the de-
sired service is deadlock-free (resp. livelock-free), and
no unspecified reception errors are possible. Such an
approach to design is called Synthesis. In [2, 9, 7, 8, 6],
different versions of a protocol synthesis method are
proposed. Since [6] is the most general and its correct-
ness has been proved, we consider only this reference
which uses specifications written in basic LOTOS (BL)
[3]. A limitation of the method in [6] is that three
restrictions must be respected by a specification of a
desired service written in BL, in order to ensure the
generation of a correct protocol.

Our first contribution in this paper is the definition
of a language which extends basic LOTOS by the use
of a set of global variables. Such language is called
Extended basic LOTOS and noted EBL. In a specifi-
cation written in EBL, every event is associated to an
enabling condition and a transformation function which

1

*Supported by an FCAR-NSERC-BNR grant

0-8186-7216-1/95 $04.00 © 1995 IEEE

126

possibly depend on a few global variables. An advan-
tage of EBL is that it allows more ways than BL to
specify a given system. A specification in BL is just a
particular case where no variable is used. EBL being
defined, we propose a synthesis method using specifica-
tions written in EBL. This method is mainly inspired
by the concept of Transactions using shared distributed
variables [1, 10] and by the protocol synthesis method
of [6]. A first advantage of our method is due to the
fact that there are more ways to specify a desired ser-
vice by using EBL than by using BL. Therefore, using
EBL increases the possibility to find a specification of a
desired service which respects the three restrictions of
[6] and then ensures the generation of a correct proto-
col. A second advantage is that one of these restrictions
is not required if a restriction on variables is respected.
All these points are discussed in this paper.

The remainder of the paper is organized as follows.
In Section 2, we introduce the synthesis method of [6}
In Section 3, we study two simple examples which i
lustrate the limitations of this method. In Section 4,
we present the model EBL. In Section 5, we present
our method of protocol synthesis which uses EBL. In
Section 6, the examples of Sect. 3 are studied to demon-
strate the efficiency of our method. Finally in Section 7,
we conclude and propose some future works.

2 Protocol synthesis with BL

We assume that the reader is familiar with basic LO-
TOS (BL) [3]. The operations of BL which are consid-
ered in this paper (and in [6]) are the following, where
B, B1, B2 are behaviour expressions, a is an event and
G is a set of gates (observable events) :

stop Inaction ezt Termination

B1[]B2 [Choice a; B Action prefix

B1[> B2 | Disabling || B1 > B2 | Sequence

P[G] Process instantiation

B1]G]| B2 | Parallel composition with rendezvous
on gates of G

Notations 1 .

If G is empty, then operator |G| is noted |[||;

If G contains all the gates, then |G| is noted ||.
Every site of a distributed system 1s identified by a num-
ber ¢ and is therefore noted Site;.

An event may correspond to the occurrence of a :

- Service primitive a in Site;; it is noted a;.

- Internal event 7 in Site;; it is noted ;. _

- Sending of m by Site; for Site;; it is noted sf (m).

- Reception in Site; of m from Site;; it is noted r%(m).

In a;, s7(m) and 7};(m), the lower index specifies the

site where the event occurs, and m is a message.

Let A be a specification in BL :

- AP(A) is the set of sites involved in A,

- SPgA; (resp. EP(A)) is the set of sites where the
first (resp. last) event of A may occur.

For example, for the following specification

A= {(ay; by; exit)|]]|(c3; da; ey ; exit), we have :
SP(A) = {Sitel y Sit€3}, EP(A) = {Sitel, Siieg},
and AP(A)={Site, Stieq, Sites, Sites}.

Boolean operators AND, OR, NEGATION are respec-

tively represented by A, V, —.

The basic idea of the protocol synthesis in [6] consists in
projecting the service specification into each site. The
projections are augmented by adding all the messages
that must be exchanged between the sites such that the
temporal order of events in the different sites ensures
the order of service primitives implied by the service
specification. The rules of the protocol synthesis are
presented in [6]. In the present Section, we only give
three examples which illustrate their use. We note that
operator ” |G]” does not generate messages. In the fol-
lowing examples, two sites Sitey and Sites are involved,
Serv is a specification of a desired service, Prot; is the
the specification of the protocol in Site; generated by
the method of [6], for i = 1, 2.

Example 2.1 Protocol synthesis for a service specifi-
cation containing operator > :

Serv = (ay; exit) > (ba; exit)

Proty = ay ; s3(m) ; exit

Prote = ri(m); exit > bs; ewit
Intuitively, operator > in Serv requires that by must
be executed after a,. Therefore after the occurrence of
a1, Site; must send a message to Sites.

Example 2.2 Protocol synthesis for a service specifi-
cation containing operator [} :
Serv = (ay; by ; exit) [(c1; exit)

Proty = (ay ; s3(ml); exit) [(c1; exit > s3(m2); exit)

Proty = (ri(ml); exit > ba; exit) [| (r3(m2); exit)
Intuitively, when an alternative is selected then a mes-
sage is sent to all the sites which do not participate in
the alternative. Therefore, if the second alternative is
selected then Site; sends m2 to Sitey. Message ml is
used to execute by after aj.

In order to ensure a proper generation of protocol en-
tities, two restrictions must be respected for the choice
expressions of the form A[] B [6] :

R1: SP(A) = SP(B) and are singletons.

R2: EP(A) = EP(B) (Not respected here).

Example 2.3 Protocol synthesis for a service specifi-
cation containing operator [> :
Serv = (ay; ba; exit) [> (do; exit)
Prot) = (a3 ; s%(nzl) s exet > 7*%’(171'2) ; exet)
[> (r¥(m3); exit)
Proty = (ri(ml); exit > by; ewit > si(m2); exit)
[> (da; s3(m3); exit)

127

Intuitively in A[> B, if a first event of B occurs then
a message (m3 in the example) is sent to all places
involved in process A. Besides, all places involved in
process A must be informed if A terminates without
being interrupted (message m2). Message ml is used
for ensuring that a; 1s executed before b.
As for the choice expressions (Example 2.2), two restric-
tions must be respected for the disabling expressions of
the form A [> B [6] :
R2: EP(A)= EP(B) and R3: EP(A) D SP(B).
3 Two practical examples

Here are two examples where the method of [6] is
unable to generate a correct solution.

3.1 First Example

A connection oriented service provided by the trans-
port layer is studied in [6]. It is a simplified version
of the OSI Transport Service [5], it involves two users
in Site; and Sitep, and contains the three following
consecutive phases : the connection establishment, the
data transfer, and the disconnection. We consider here
the disconnection phase (DP), which may be initiated
while data are exchanged between the two sites. Dur-
ing DP, two service primitives are used :

-T.-DISCONN ECT_request, noted dsreq;;
-T-DISCONN ECT.indication, noted dsind;;
Index 7 identifies the site where a primitive occurs.
Informally, DP may be specified as follows :

e The user of Site; may initiate a disconnection by
executing a dsreg; (for i = 1,2).
o If user of Site; executes a dsreg;, then the user of
Site; receives a dsind; (for 7,7 = 1,2 and 7 # j).
e Site; disconnects itself if its user executes a dsreg;
or receives a dsind; (for ¢ = 1,2).
In [6], the above requirements are formalized in BL by
the following specification, which is equivalent to the
finite state automaton of Figure 1 :

SPEC DISC = A(1,2) [A(2,1) WHERE
A4, J) = dsreq; ; ((dsind; ; exit) [} (dsreq; ; C))
C = ((dsind; ; exit) ||| (dsinda; ewit))

Restriction R1 (Example 2.2) is not respected in DISC,
and authors of [6] assert that this example is an ex-
ception where Rl is not mandatory for applying their
protocol synthesis method. But the following protocol
specifications DISC; (in Site;), for i = 1,2, generated
by the method of [6] from the service DISC, contain a
deadlock. In fact, for ¢,j = 1,2 and ¢ # j :

SPEC DISC; = A; [} B; WHERE
A; = (dsreq; ; s](mi) ; exit)
> (1] (pi); eait) [(i) s exit) > C)
B; = rl(mj); exit > ((dsind; ; exit > sl (pj) ; exit)
[(dsreds ; (51 (aj); exit) > Ci))
C; = dsind; ; exit

The deadlock occurs when users of both sites initiate

simultaneously a disconnection :

- In Sitey : Process Ap executes dsreq;, sends message
ml, and then waits for the reception of pl or ¢1.

- In Site, : Process As executes dsreqs, sends message
m2, and then waits for the reception of p2 or ¢2.

In this case, every site is waiting for a message which
will never be sent. This deadlock is due to the fact that
restriction R1 is not respected, i.e., a choice is not cen-
tralized in one site. To avoid this deadlock, processes
A1 and A, must be executed in a mutual exclusion. In
Sect. 6.1, we show how a correct solution is generated.

3.2 Second Example

Here is a simple example of a non terminating ser-
vice, noted S, where the method in [6] is unable to
give a solution, because restrictions R1 and R2 are not
respected (Example 2.2). Informally, S is specified as
follows, for 7,j = 1,2, and 7 # j:

e From the initial state, a; may be executed.

o Site; méy decide to execute b; instead of a;. But
b; cannot be executed before a;.

e Siteg may execute ¢z if both a; and as have been
executed.

o After the execution of either by or b5 or c3, the
inmitial state 1s reached.

The above requirements are formalized by the finite
state automaton of Figure 2, and also in basic LOTOS
by the following recursive specification :

S= (((éax s exit) ||| (az; exit)) > (cg; ewit))

ay; bo s exit)[] (as; by exit)) > S

2

In Sect. 6.2, we show how a solution is obtained.

4 Extended basic LOTOS (EBL)

In the present Section, we propose a model which ex-
tends BL, and is therefore noted EBL (extended BL).
A specification written in EBL uses a set of variables
which may be shared by different sites, and to every
event are associated an enabling condition (EC) and a
transformation function (TF) which may depend on a
few variables. Informally, an event may occur only if
its enabling condition has the value True, and when
it occurs then a few variables are possibly modified by
applying the transformation function.

Let then v!,v2, ... v® be n variables respectively de-
fined in the sets V! V2 ... V™.
The n—tuplet (v!,v?%,...,2") is noted v and its value

is called variable state.
The set of variables is noted V, and the set of possible
variable states is noted V.

An enabling condition 6, w.r.t. V, is any boolean func-

tion : V — {True, False}. It is syntactically repre-

sented by a boolean expression formed from :

- Canonical expressions v' ~ k, where £ € V' and
~€ {=,<,<,2,>}, and

- Boolean operators AND(A), OR(V) and NOT(=) on
canonical expressions.

An enabling condition which is always equal to True

(resp. False) is noted True (resp. False).

The set of enabling conditions, w.r.t. V, is noted £Cv .

A transformation function, w.r.t. V| is any function
V — V syntactically represented by a series of canoni-
cal expressions v’ « #*(v) separated by the sign }, where
#' is a function V — V', Semantically, every expression
v* ¢~ ¢*(v) means that the transformation function sets
variable v to the new value ¢*(v) which depends on
the current variable state v. For the sake of simplicity,

128

@' (v) is noted ¢*.

A transformation function which never changes any
variable is noted /d (for Identity).

The set of expressions defining the transformation func-
tions, w.r.t. V', is noted T'Fy .

Henceforth, all definitions, notations and computations
are w.r.t. V, ECy and TFy. Terms ”enabling con-
dition” and ”transformation function” are respectively

abbreviated by EC and TF.

Example 4.1 An enabling condition and a transfor-
mation function.]

We consider three integer variables v*, for i = 1,2, 3.
The EC (v! <3) Vv (v >0) is equal to True if and only
if o' < 3 or v® > 0.

The TF defined by (v! v +2)1(v? +0) adds 2 to the
value of v! and sets the value of v? to 0. The value of

v? is not changed.

A specification written in EBL is obtained from a spec-

ification in BL if we replace every event o by a trans-

action, defined as follows. A Transaction is obtained if

we associate every event o with an enabling condition

6 and a transformation function ¢. Such a transaction

is noted (o, 8,) and is called :

- eligible if event o is currently possible according
to the BL behaviour expression being executed;

- enabled 1if it 1s eligible and 8 = True; and disabled if
it is not enabled.

The semantics of a transaction (o, 0, ¢) is :

- The transaction may be executed only if it is enabled;
- The execution of the transaction consists of the oc-
currence of o followed by the execution of the TF ¢.
The execution of the transaction is considered com-
pleted only after the execution of ¢.

Example 4.2 Let the specification written in EBL

(ar, True, vl +-0); ((ba, True, vl 1) ||| {c2,v* =1, Id)).
Transaction (a1, True,v! ¢ 0) is initially enabled. Its
execution consists of the occurrence of a; and the set-
ting of v! to zero. After its execution, transactions
(b, True, vt 1) and (c2,v' =1, Id)) become eligible,
but only the first one is enabled. (c2,v'=1,1d)) be-

comes enabled after the execution of (bg, T'rue, vl ¢+ 1).
Informally, the variables contain a history of the system
which is necessary for taking some decisions about the
future occurrences of some events.

Notations 2 (AT(P), ST(P), ET(P))

Let P be a specification in EBL :

AT(P) is the set of transactions involved in P.

ST(P) 1s the set of starting transactions of P, i.e., the
first transactions to be eligible.

ET(P) is the set of ending transactions of P. In other
words, Tr € ET(P) means that 7r may be the last
transaction of P to be executed, according to the oper-
ators of BL. We note that ST(P), ET(P) and AT(P)
do not depend on any variable.

Example 4.3 (AT(P), ST(P), ET(P))

We consider the following specification P
(Trl; Tr2; exit) ||| (Tr3; Trd; Tr5; exit), where ev-
ery T'ri represents a transaction. Clearly :
AT(PY={Trl,Tr2,Tr3,Tr4,Tr5},
ST(P)={Tr1,Tr3}, and ET(P)={Tr2,Tr5}.

5 Protocol synthesis with EBL
5.1 Basic idea

Let V be a set of variables, and Servy be a spec-
ification in EBL (w.r.t. V) of a desired service. Our
method of protocol synthesis consists of :

Step 1. Every transaction of Servy is designed in such
a way that its execution is conceptually equivalent
to an instantaneous execution, and that the con-
sistency of the variables is ensured. This justifies
the term ”transaction”. This problem has been ad-
dressed by several researchers, and [10] contains a
survey of the proposed solutions. Our approach is
inspired from one of these solutions [4, 12, 11].

Step 2. We do as if the execution of every transaction
consists only of the occurrence of its corresponding
event. This approach is correct, because in Step 1
every transaction of Servy is designed in such a
way that its execution is equivalent to an instan-
taneous execution. The method of [6] is therefore
used to synthesize a specification PS; in each Site; .
This is achieved by projecting Servy in each Site;
and by adding all the necessary messages that must
be exchanged between the sites to ensure the or-
der of the transactions implied by the operators of
basic LOTOS in the specification Servy .

An advantage of our approach is that two different
problems are separated in an elegant way. The first
problem is about ensuring the atomicity of the trans-
actions and the consistency of the variables [10], while
the second one is about ensuring the order of the trans-
actions implied by the operators of BL in Servy [6].

5.2 Step1
Let us study how the first Step is realized. The
aim is to design how the transactions contained i the
specification Servy of the desired service are executed.
Let us imagine that the system specified by Servy is
evolving from its initial state, by executing its eligible
transactions. To execute a currently eligible transaction
Tr = (0,0,), the system must execute the following
procedure, noted P(7Tr), in an atomic way :
begin
- Read the variables on which the EC 6 depends, and
then compute 8,
- If = False then the transaction is not executed,
- Else the execution of the transaction is allowed,
- Its execution consists of the occurrence of o followed
by the execution of ¢ which sets certain variables.
end
Tr is considered completed only after the execution of
¢. We note that P{T'r) may be executed several times
without executing transaction 7. This may happen if
Tr remains eligible but disabled for a ”long while” : a
periodic execution of P(Tr) is then necessary to check
if T has become enabled. We also note that (6 =True)
is necessary but may be not sufficient for the execution
of T'r. This is the case if two transactions with the same
event o are synchronized (by operator |[¢]|) and only
one transaction is enabled.
To ensure the atomicity of P(I'r) and the consis-
tency of the variables, the following conditions must be
respected during the execution of P(Tr) :

C1. Variables on which depends 6 are not written by

129

another transaction;
(2. Variables written by ¢ are neither read nor
written by another transaction.

In order to respect Cl and C2, we propose the two-

phase locking protocol the correctness of which has been

proved [4, 12]. It requires that every transaction :

(1) lock the variables it reads or writes before it
actually accesses them, and

(2) not obtain a new lock after it has released a lock.

Two operations are therefore defined :

lock(X,m) : where m = write or m = read and X is
the variable to be locked. A transaction executes
lock(X,read) (resp. lock(X,wrile)) to require a
lock on X, before it reads (resp. writes) X. If an
operation lock(X, m) succeeds, X is said locked or
more precisely m_locked.

release(X) : A transaction executes release(X) to re-
move the lock it has previously executed on X.

The following rules are respected :

Rule 1. A variable which is not locked can be locked,

Rule 2. A variable can be read_locked several times if
it is not write_locked,

Rule 3. A write_locked variable cannot be locked.

With this approach, for any transaction Tr = (o, 8, ¢),
the corresponding procedure P(Tr) begins to execute
a lock(X,read) for every X to be only read, and a
lock(X,write) for every X to be written (possibly af-
ter being read). Therefore, variables which are to be
written by the TF ¢ are write_locked, and variables on
which 8 depends and which are not to be written by
¢ are read_locked. If all the locks succeed, then P(T'r)
may execute its main body which has been already pre-
sented (read variables, computes 6, ..., write variables).
At the end, all variables which have been successfully
locked are released.

There are several approaches to implement a vari-
able X used by different sites. We propose the one
that consists in using a copy of X in each site which
uses this variable. Executing a lock(X, write) consists
in sending a write_lock request to all copies of X, and
waiting a reply from all these copies. A copy replies
to a write_lock request if it is not already locked. Ex-
ecuting a lock{X, read) consists in sending a read_lock
only to the local copy, and waiting a reply from it. A
copy replies to a read.lock request if 1t 1s not already
write_locked. A site writes X by sending the new value
of X to all sites containing a copy of X. And each copy
is automatically released as soon as it is updated. Since
all the copies are identical, then reading a variable ne-
cessitates to read only its local copy.

The two-phase locking ensures that if a transaction
is completed then its execution is correct, but it does
not ensure that a transaction will be completed. In
fact, a deadlock may occur if two transactions attempt
simultaneously to lock the same variable. A solution to
this problem consists in using a timestamp system [11] :
all lock requests are timestamped and the total order
on timestamps defines the priorities. The transaction
having the less priority will abort.

5.3 Step 2

The basic idea of the second Step is introduced in
Sect. 2. For a specification Servy written in EBL, the
method ignores the semantics of all ECs and TFs, but
it respects the syntax of EBL. In other words, an ex-
pression {(0;,8,¢) in Servy is processed as if it were
simply the name of an event executed in Site;. There-
fore, such expression will be contained in the synthe-
sized specification PS;. Besides, since the syntax of
EBL must be respected, every s](m) (resp. 7{(m)),
generated by rules of [6] (Not. 1) is replaced in our case
by (s!(m), True, Id) (resp. (r](m}, True, Id)).
Henceforth, messages generated in the first Step and
in the second Step are respectively called transaction
messages and synchronization messages.

Theorem 1 The protocol synthesized is semantically
and syntactically correct (Sect. 1) if the desired service
1s syntactically correct.

Proof (informal) : We consider the two steps.

Step 1. Every transaction is designed in such a way
that its execution is conceptually equivalent to an in-
stantaneous event. This step is inspired from methods
of [12, 11] whose correctness has been proven.

Step 2. Since every transaction is conceptually equiva-
lent to an instantaneous event, the method of [6] may
be used. Its correctness is proven in [6].

5.4 Particular cases

Here are two particular cases which help to simplify
the design of the transactions. The simplification con-
sists in generating only the useful messages.

5.4.1 First particular case

For a variable X used in a service specification Servy,
let the following condition :

C1: X is updated by only one transaction 7», and T'r
1s executed only once in Servy .

If C1 is respected, let 77 be the set of transactions of
Servy different than T and whose enabling conditions
depend on X, and let the following condition :

C2 : The transactions of 7 r are disabled while X has
not been updated.

If C1 and C2 are respected, the two-phase locking proto-

col may be replaced by a less costly protocol as follows :

- X is initially write_locked,

- Tr may write X without locking it, because X is
already locked.

- X is automatically released after its update by 1.

- After it has been released, X may be read by any
transaction of 7r without being locked, because 1t
will no more be written.

This first particular case is considered in Sect. 6.1.

5.4.2 Second particular case

Firstly, we remind that a transaction 7 is assumed
completed as soon as its TF is executed, 1.e., as soon
as the new value of every variable to be updated by T'r
is sent to the sites containing a copy of the variable.

130

Therefore, the completion of Tr only means that the
update of all variables to be updated has been initi-
ated, but not necessarily terminated. Henceforth, T'r
is said fully completed when the update of the vari-
ables is terminated. A transaction being executed is
said partially completed while it is not fully completed.

In the present Section, we consider a desired service
specified by a finite sequence of processes separated by
operator >, i.e, Servy = Al > A2 > --- > An.
To simplify, each of the successive processes in this se-
quence is called ”process of Servy”. Our aim is there-
fore to propose an approach of protocol synthesis which
ensures the following condition :

Cond1. Let two any consecutive processes P and @
of Servy, i.e., Servy = ---P > Q---. The syn-
thesized protocol must ensure that, as soon as any
transaction of ST(Q) is eligible then no transaction
of AT(P) is partially completed.

The respect of Condl1 allows to design the transactions
of each process of Servy as if the process were exe-
cuted alone. Respecting Condl is therefore interesting
because the two-phase locking protocol may be replaced
by a simpler protocol. If, for instance, a variable X of
P does not need to be locked when P is executed alone,
then X will not need to be locked during the execution
of the whole system, provided that Condl is repected.

For an expression P > @ in Servy, the method of
[6] (Step 2) ensures that the termination of P and the
beginning of () are separated by an exchange of synchro-
nization messages from all sites of EP(P) to all sites of
SP(Q). A sufficient condition which ensures Condl is
therefore that no transaction of P is partially completed
after the sending of the synchronization messages. The
solution consists simply in forcing all sites of EP(P)
to wait a delay ”sufficiently long” before sending their
synchronization messages to the sites of SP(Q). This
delay is estimated as follows.

We assume that the transit delay of a mes-
sage between two sites is bounded by a finite value
Trans_delay. This delay comprises the transmission
delay in the network, and also the time passed in the
two sites (especially waiting in queues). We also as-
sume that the delay during which a memory storing a
copy of a variable is accessed, in order to update this
copy, is bounded by a finite value Upd_delay.

During the execution of a transaction, the update
of a distant copy of a variable necessitates to send the
new value to the corresponding site, and then to ac-
cess the storage of this copy, in order to update it.
Therefore, the delay to update a copy of a variable is
bounded by Trans_delay 4+ Upd_delay. To set a vari-
able X to a new value necessitates to update its differ-
ent copies. If we assume that all the copies are updated
in parallel, then X is updated in a delay bounded by
Total_delay = Trans.delay + Upd_delay. Therefore,
Condl is respected if, after the termination of P, all
sites of EP(P) wait a delay greater than or equal to
Total_delay before sending their synchronization mes-
sages to the sites of SP(Q).

This case is considered in Sect. 6.2. It is interesting
because it helps to simplify the design of the trans-
actions by removing, as much as possible, the useless
lockings.

5.5 How to specify the desired service

The variables used in a given specification in EBL
of a desired service are just a means for express-
ing the desired constraints. The user does not
require that these variables must be used in the
designed protocol. For instance, the specification
(a1, True, vt «0); ((b2, True, vt « 1) ||| (ca, v} =1, Id))
can be replaced by a;; ba; co. In fact, variable v! is
just a means to specify that ¢; may occur only after by.
Since there are many ways to specify a same service in
EBL, two important questions arise.

First question : What are the restrictions on a spec-
ification in EBL of a desired service which ensure a
proper generation of protocol entities ?

Second question : When is it possible to specify a
desired service in EBL in such a way that all messages
are generated in the first Step ? The aim of this ques-
tion is to know under which conditions our method of
synthesis becomes independent on the method of {6].

5.5.1 Answering question 1

Since every transaction is conceptually equivalent to an
instantaneous execution, then respecting R1 and R2 for
operator [], and R2 and R3 for operator [>, ensures
the generation of a correct protocol. In this case, no
condition on the variables is necessary. Let us study in
which cases, restrictions R1, R2 or R3 are not required.
Restriction R1 in an expression A[] B allows to cen-
tralize the choice, in order to ”disable” instantly the
not chosen alternative. This aim is also achieved if the
variables ensure the mutual exclusion between A and
B, i.e., if the following restriction R1 is respected :
R1. In an expression A[] B, transactions of ST(A) re-
main disabled during all the execution of B. And
vice versa. (See Not. 2 for ST(A)).
Therefore R1 may be ”avoided”, because any expres-
sion A[] B which respects neither R1 nor R1 can be
replaced by an expression A 0 B’ which respects R1.
A'[) B' is obtained if we add to A[] B the specification
of a consistent algorithm of choice, by the use of new
variables.

Example We consider
S = {a1,True,Id)[}{bz, True,Id). If during suc-
cessive executions of S, a; is the first event
to be executed, and «a; and b; must be se-
lected alternately, then S may be replaced by
(a1, v! =True, v' « False) [| (ba, v = False, v! «T'rue),
where v! is initially equal to True.

the expression

Restriction R2 may be necessary in expressions A[] B
and A[> B, only if these expressions are followed by
operator > [9, 6]. Therefore R2 may be ”avoided”,
because any expression P 3> (J may be replaced by
an expression P’ ||| Q" such that Q' cannot be executed

while P’ is not terminated.

Informally, P and @ are respectively equivalent to
(i.e., may execute the sequences of events) P and @,
and the order between the two processes is ensured by
the use of new variables, instead of operator > .

Example : P = (aj, True, Id) and Q = (by, True, Id).
P; Q may be replaced by P'1|Q', where P

131

(a1, True, v} «True), Q = (ba,v' =True, Id), and v*
is initially equal to False. Therefore, variable v! en-
sures that Q' is disabled while P’ is not terminated.

Restriction R3 is necessary in an expression A [> B. In
the present study, we do not still know how the operator
[> may be avoided, by the use of new variables.

Therefore for this first question, we deduce that any
desired service may be specified in EBL in such a way
that restrictions R1 and R2 are not necessary.

5.5.2 Answering question 2

For a desired service specified in EBL by Servy, let us
propose sufficient conditions which ensure that Servy

may be transformed into an equivalent Serv;,, such
that no message is generated at the second Step when
our method of protocol synthesis is applied to Serv;,.

Messages generated at the second Step are due to
the use of operators ”;”,”>” ”[]” and ” [>”. For
operators ”;” and ” >”, we have seen in Sect. 5.5.1
that they may be avoided by the use of new variables.
For operator ” [|” in an expression A [] B, the method of
[6] (our second Step) generates no message if AP(A4) =
AP(B) (See Not. 1 for AP(*)). Therefore, the respect
of the two following conditions ensures that Servy may
be transformed in such a manner that all messages are
generated at the first Step.

Conditionl : For any expression A[] B in Servy, we
have AP(A) = AP(B).

Condition2 : Servy does not use operator [>.

6 Two examples of protocol synthesis
Our method of protocol synthesis is applied to the
two examples presented in Section 3.

6.1 Example of the disconnection phase
The desired service, specified in Sect. 3.1 by the au-
tomaton of Fig. 1, contains useless sequences. Its spec-
ification may be simplified by removing states 7,8 and
9 of the automaton of Fig. 1. This means that, after he
has executed a disconnect request, a user is automati-
cally disconnected and then cannot receive a disconnect
indication. The simplified service is defined in BL as
follows, where restrictions R1 and R2 are not respected :
SPEC DISC = A(1,2)[JA(2,1) WHERE
A(i, j) = dsreq; ; ((dsind; ; exit) {] (dsreq; ; exit))
This service is defined in EBL by the following specifica-
tion which respects R1 and R2. Two boolean variables
v! and v? are used, and their initial value is False.
SPEC DISC = A(1,2)]|| A(2,1) WHERE
A(i,) = ((dsreg;, True,v' «True); exit)
[l ({dsind;, v =True, Id) ; exit)

Informally : (for ¢,j = 1,2 and i # j)

- User of Site; may execute a dsreq; or receive a dsind;.

- User of Site; may receive a dsind; only if user of Site;
has executed a dsreq; (v) = True).

Restrictions R1 and R2 are respected by processes

A(1,2) and A(2,1). The synthesized protocol can be

specified as follows , for ¢,j = 1,2 and ¢ # j :

Prot; = ((dsregi, True, v’ + True); exit)
[l ({dsind;, v’ =T'rue, Id); exit)

v! and v?, which are initially False, do not need to
be locked because we are in the particular case of Sec-
tion. 5.4.1. In fact, for ¢,j = 1,2 and i # j :
- FEach ' is written only once, by transaction
(dsreq;, v' = False, v’ « True), and
- Transaction (dsind;,v' =True, Id) is disabled while
v* has not been written.
Therefore, the transactions are designed as follows, for
t,j=1,2and i # j:
e v! and v? are initially write_locked.

o Transaction (dsreq;, True, v’ < True) :
- Executes dsreq;, '
- Sets to True and release the copy of v* in Site;,
- Sends a message from Site; to the other Site; in
order to set to True and to release the local copy
of v* in Site;.
o Transaction (dsind;,vI =True, Id) :
If the local copy of v* in Site; is released, then :

" Reads it and, if it is True then executes dsind;.
The service is therefore provided by using at most two
messages. The aim of each one is to inform a site that
a dsreq has been executed in the other site, by setting
a variable to T'rue and by releasing it. Therefore, the
number of messages is two only if users of both sites
execute simultaneously a dsreg;.

6.2 Example 2
Example of Section 3.2 (Fig. 2) may be specified in

EBL, by the use of two boolean variables v! and v?,
as follows, where ' (v* = True), for i = 1,2, and
0 = (! A?). The service does not depend on the
initial values of v! and v? :

SPEC SS=A>» B >» C >» SS WHERE

A= A(1)]|] A(2)

B = B(1,2) | B(2,1)

A7) = ((4, True, v* + False) ; exit)

B(i,7) = ({ai, True, v’ «True); exit)

0 ((bs, 97, Id); exit)
C = ({e3, 8, Id); exit)] ((is, 0, Id) ; ewit)

Informally :

o Process A set variables v! and v? to False when
the initial state is reached (Fig. 2).

o v' (resp. v?) is set to True if the user of Site;
(resp. Sitey) executes ay (resp. as).
e The user of Site; may (fori,j = 1,2 and i # j) :
Either execute a;;
Or execute b;, but only if v/ is equal to True.

o The user of Sites may execute cz if both v! and v?
are equal to True.

We can easily check that restrictions R1 and R2 are
respected by processes B(t, j) and C, which contain the
operator []. In the obtained protocol specifications, we
use the two following notations :

revi (m) = (vl (m), True, Id) ; exit and

snd?(m) = (s](m), True, Id) ; exit.
The protocol specifications Prot;, for i = 1,2, and Prots
can then be specified as follows (j = 1,2 and j # 9):

132

SPEC Prot; = A; > M; > B; > M, > Prot;
WHERE
Ai = (i;, True, v « False) ; exit
B; = ({(a;, True, v «True) ; exit)
[((b:, vi =True, Id) ; exit)
M; = snd?(mi) > rev! (mj)
M; = snd?(pi) > rcvd(m3)

SPEC Prots = M3 > C3 > My > Prot; WHERE
Ms = (revi(pl) |l revi(p2))
Cs = ({c3,0, Id) ; exit) [] ({13, 8, Id) ; exit)
M = snd}(m3) ||| snd3(m3)
ENDSPEC)
In this example, we are in the particular case of
Sect. 5.4.2. In fact, the desired service is specified by
SS§=A> B> C >» SS, where A = A(1) ||| A(2)
and B = B(1,2)]|] B(2,1). According to the approach
proposed in Sect. 5.4.2 , for i=1,2 :
o After the execution of A;, Site; waits a time equal
to T'otal.delay before sending ma.
o After the execution of B;, Site; waits a time equal
to Total_delay before sending ps.
o After the execution of C3, Sites waits a time equal
to Total_delay before sending m3.
With this approach, the transactions are designed as if
each process A, B or C were executed alone.

Process A : Each variable is written only once and is
never read. Therefore, its locking is not necessary.
Process B : It is similar to the disconnection phase
{Sect. 6.1) which respects the particular case of
Sect. 5.4.1. The variables are initially False be-
cause process B follows process A. According to
the solution proposed in Sect. 5.4.1, the two vari-
ables must be initially write_locked. Therefore, A
must write_lock them before the beginning of B.
The variables will be released after being set to
True. They may be read only after being released.

Process C : Each variable is only read and is never
written. Therefore, its locking is useless.

Therefore, the transactions may be designed as follows,
where i,j =1,2and i # j :

e Transaction (i;, True, v* < False) (in process A) :

- Executes the internal action #;)

- Sets to False the local copy of v* in Site;
(without locking it),

- Sends a message from Site; to Site; in order to
set to True and to write.lock the copy of v in
Site;. Therefore in process B, the local copy
will {Je initially write_locked.

- Sends a message from Site; to Sites in order to
set to True the copy of v* in Sites.

e Transaction (a;, True, v’ <~ True) (in process B) :

- Executes a;,

- Sets to T'rue and release the copy of v* Site;,

- Sends a message from Site; to Site;, in order to
set to T'rue and to release the copy of v* in Site;.

- Sends a message from Site; to Sites, in order to
set to True the local copy of v* in Sites.

e Transaction (b;, v/ = T'rue, Id) (in process B) :
If the local copy of v in Site; is released, then :
Reads it and, if it is T'rue then executes b;,

e Transaction {cs, 8, Id) (in process C) :

- Reads copies of v! and v? in Sites, computes 4.
- If @ = T'rue then executes c3.

o Transaction (i3, =8, Id) (in process C) :

- Reads copies of v! and v? in Sites, computes 6.
- If 8 = False then executes 13.

The messages exchanged during one cycle can then be
separated in two groups :

Six synchronization messages (Step 2) (4,5 == 1,2
and i # j):
- One message mi from Site; to Site;;
- One message m3 from Sites to Site;.
- One message pt from Site; to Sites;

Six or Eight transaction messages (Step 1) :
- Two messages by each transaction

(i;, True, v' « False), (i=1,2);

- Two messages by each transaction
(a;, True, v’ « True) if it is executed, (i=1,2);
It is interesting to note that more than half messages
{eight) are due to the fact that the service is cyclic.
These messages are ml, m2, m3, and those generated
by transactions (i;, True, v’ « False), (i=1,2).

7 Conclusion

In this paper, we develop a formalism called EBL
which extends basic LOTOS by the use of global vari-
ables. Then, we propose a method of protocol synthesis
which extends the method of [6], by using specifications
written in EBL. An advantage of our method is that
there are cases where it generates a correct solution
while method in [6] is not applicable. Two exaraples
llustrate this advantage. We recognize that many as-
pects remain to be studied. Some of them are :

1. To define several service structures which allow to
simplify the design of transactions. Two cases are
proposed in Sect. 5.4 and are illustrated in Exam-
ples of Sect. 6.

2. To extend EBL with timing requirements.
3. To work on more complex examples.

Acknowledgements
We thank Anindya Das and Benoit Caillaud for help-
ful comments on a first version of the paper.

References
[1] P.A. Bernstein, V. Hadzilagos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

G.v. Bochmann and R. Gotzhein. Deriving pro-
tocols specifications from service specifications. In
Proceedings of the ACM SIGCOMM Symposium,
USA, 1986.

T. Bolognesi and E. Brinskma. Introduction to
the iso specification language lotos. Computer Net-
works and ISDN Systems, 14(1):25-59, 1987.

2]

133

[4] K.P. Eswaran, J.N. Gray, R.A. Lorie, and LL.
Traiger. The notions of consistency and predicate
locks in a database system. Comm. of the ACM,
19(11), November 1976.

ISO. Information Processing System—Open Sys-
tems Interconnection-Transport Service Defini-

tion, 1985. IS 8072.

C. Kant, T. Higashino, and G.v. Bochmann. De-
riving protocol specifications from service specifi-
cations written in lotos+. Technical Report 805,
Université de Montréal. Département IRO, Mon-
tréal, Québec, Canada, January 1992.

[5]

[6]

M. Kapus-Kolar. New results on deriving protocol
specifications from service specifications. In Pro-
ceedings of MELECON, pages 1093-1096, Ljubl-
Jana, Yugoslavia, 1991.

M. Kapus-Kolar, J. Rugelj, and M. Bona¢. De-
riving protocol specifications from service specifi-
cations. In Proceedings of IASTED INT. SYMP.
APPLIED INFORMATICS, pages 375-378, Inns-
bruck, 1991.

F. Khendek, G.v. Bochmann, and C. Kant. New
results on deriving protocol specifications from ser-

vices specifications. In Proceedings of the ACM
SIGCOMM Symposium, pages 136-145, 1989.

(8]

(9]

(10]

M. Raynal. Gestion des données réparties : prob-
lémes et protocoles. Eyrolles, 1992.

[11] M. Raynal. Synchronisation et état global dans les
systémes répartis. Eyrolles, Collection EDF, 1992.

[12] 1.L. Traiger, J. Gray, C.A. Galtieri, and B.G. Lind-
say. Transactions and consistency in distributed
database systems. ACM TODS, 7(3):323-342,
1982.

Figure 1: Disconnection phase : Service specification.

Figure 2: Specification of a non terminating service.

