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ABSTRACT.

This paper deals mainly with modeling and design of distributed communicating systems with temporal

requirements. Firstly, timed traces and their corresponding untimed traces are defined and used to model

behaviours of real-time discrete event systems (RTDES). These traces use a conceptual digital global

clock which generates periodically an event tick. Next, a model based on timed automata is defined

and studied. This model is convenient to specify a service desired by a user of a distributed RTDES

(DRTDES) and the supremal behaviour of the medium. Timed automata use a digital global clock, and

several fictitious timers and counters. A second model, based on temporized automata, is used to model

the protocol and temporal constraints on the medium. Contrary to timed automata, temporized automata

do not use counters. Next, we propose two procedures of protocol synthesis, respectively for sequential

and parallel DRTDES. The entries of these procedures are specified with timed automata, while the

results of these procedures, i.e., the protocol and the temporal requirements of the medium, are

specified with temporized automata. Compared to [10], the application field is much broader, because

two important restrictions are removed. Firstly, temporal requirements are between events which are not

necessarily consecutive. Secondly, the systems considered can be parallel and concurrent. Compared to

[11], three important additions are made. Firstly, the temporized automata are formally defined, and we

present the principle to compute them. Secondly, the specifications obtained by the protocol synthesis

are optimized in the sense that they do not necessitate to synchronize the different local clocks of each

site of the distributed system. Thirdly, the specifications obtained by the protocol synthesis are

improved in the sense that they are more concise, by parameterizing some of their transitions.

INDEX TERMS. Concurrent System, Desired Service, Discrete Event System,

Protocol Synthesis, Sequential System, Supremal behaviour of the Medium,

Temporal Constraint, Temporized Automaton,
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1. Introduction

A discrete event system (DES) is a dynamic system where events are executed instantaneously, causing

a discrete change of the state of the system. If sequences of events are a regular language, the DES can

be specified by a finite automaton. A first example of DES is a telecommunication network; an event

can then be the transmission of a packet of data. Another example is a communication protocol, and an

event can be execution of a service primitive. For a real-time DES (RTDES), it is not enough to

represent the ordering of events, we must also specify temporal constraints on event occurrences. As

RTDESs grow in size and complexity, it has become important to develop models and theory which are

used to reason about their behaviour. Several models have then been proposed to model and study

RTDESs.

1.1. Background literature on modeling real-time discrete event systems

Two approaches have been used to model RTDESs : Discrete-time models and Dense-time models.

Discrete-time models use the domain IN of integers to model time, and some of these models use a

fictitious digital global clock which generates a tick event [5,24,25]. Time is then viewed as

a global state variable that ranges over IN, and is incremented by one with every tick event. RTDESs are

then specified by a timed transition model (TTM), where a fictitious timer T0 and an interval [I0,u0] is

associated to each transition a. As soon as a becomes firable, Ta is set to zero and is incremented by

one with every tick event; a is enabled only when the value of T0 belongs to interval [I0,u0]. RTDESs

can also be specified by an untimed transition model (UTM) where the event tick is explicitly

represented by a transition.

Dense-time models use a dense domain to model time. The latter is then viewed as state variable that

ranges over a dense domain and evolves indefinitely. In [1.8,10,31], RTDESs are specified by timed

automata (TA), where several clocks are defined. Clocks can be set to zero with the occurrence of any

event, and evolve synchronously with time. In [1,8,31], a boolean enabling condition E0 depending on

the value of one or several clocks and a set R0 of clocks are associated to each transition a. As soon as

a becomes firable, it may be executed only if E0=True. When a is executed, clocks of R0 are set to

zero. In [10], several enabling conditions E10,E20, ...,Ek0 are associated to a transition a, and each of

them depends on only one clock. Only one of these enabling conditions is active, depending on the last

executed transition. Several other models have been developed, such as time Petri Nets [4,20,21], timed

Petri Nets [26], and timed LOTOS [18,19,23].

In this paper, we propose two different models [11] which both use a discrete time. The first model

(timed automata) is used to specify the entries of the protocol synthesis (Sect. 4), while the second

model (temporized automata) specifies the results of the protocol synthesis (Sect. 6).
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1.2. Background literature on protocol design

Two approaches may be used for the design of communication protocols: Analysis and Synthesis [35].

In the analysis approach [33], the protocol designer starts with an initial version of the protocol, and

protocol validation is performed with analysis techniques after the design to detect possible errors and

omissions in the design. The sequence of redesign, analysis, error and omission detection, and

correction is applied iteratively until the protocol becomes error free.

In the synthesis approach -which is the one we have used-, several methods have been developed

[3,6,7,9,10,13,14,15,16,17,27,28,29,30,34,35]. Contrary to analysis, this approach is direct and does not

necessitate a validation of the synthesized protocol which is correct by construction. Timing

requirements are considered in [10,15,16], but only in particular cases. In [15], the transit delay in the

medium is supposed negligible, while in [16] it is bounded by a maximum value. As for [10], timing

requirements are only between consecutive events, and the systems considered are sequential. In the

present study, these constraints are removed and the systems considered can then be parallel and

concurrent. The application field is therefore much broader. Compared to [11], three important additions

are made. Firstly, the temporized automata are formally defined (Sect. 6.1) and the principle used to

compute them is presented (Sect. 6.2). Secondly, the specifications obtained by the protocol synthesis

are optimized in the sense that they do not necessitate to synchronize the different local clocks of each

site of the distributed system (Sect. 7 and 8). Thirdly, the specifications obtained by the protocol

synthesis are improved in the sense that they are more concise : several transitions are represented by

one parameterized transition (Sect. 7.2 and 7.3).

The reasons of using timed, untimed and temporized automata are respectively explained at the

beginnings of Sections 4, 5 and 6.

The rest of this paper is organized as follows. In Section 2, we introduce the problem of the protocol

derivation. The basic principle used for deriving the protocol is explained. In Section 3, we introduce

the models of timed and untimed traces used to specify the behaviour of a RTDES. In Section 4, we

present the model of timed automata used to specify: (a) the service desired by the user; (b) the

supremal behaviour of the medium. In Section 5, we present the approach which consists of

transforming a timed automaton into an untimed automaton containing transitions tick. In Section 6, we

present the model of temporized automata and the approach which consists of transforming an untimed

automaton into a temporized automaton. In Sections 7 and 8, we propose two procedures for deriving

automatically the specifications of the protocol and of t iming constraints on the medium (temporized

automata), from the specifications of a desired service and of the supremal behaviour of the medium

(timed automata). Section 7 deals with sequential systems, while Section 8 deals with concurrent and

parallel systems. And at last, we conclude in Section 9. We will notice that the possible concurrency in

the parallel systems, and the timing requirements cause a problem of state space explosion and of

complexity.
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2. Problem of the protocol synthesis in real-time systems

In a real-time distributed system (RTDS, Fig.l), n protocol entities (with n>l) communicate : (a) with

the user of the system through several service access points (SAP); (b) with each other through a

medium assumed reliable. Without a loss of generality, we suppose that to each site i correspond one

SAP and one protocol entity, respectively noted SAP; and PEj.

1
SERVICE

SPECIFICATION

Protocol
Entity 1

Protocol
Entity 2

Ke

• * •
Protocol
Entity n

lahle medium

Figure 1. Service and protocol concepts

In the user's viewpoint, the RTDS is a black box where only interactions with the user are visible.

These interactions correspond to the executions of service primitives (or simply primitives). Therefore,

the specification of the service desired by (or provided to) the user defines the ordering and timing

requirements between the executed primitives.

But in the designer's viewpoint, it is necessary to compute the specifications of the local real-time

protocol entities PEj, for i=l,2 n, which may provide the service desired by the user. The designer

must also compute timing requirements which must be respected by the medium. In order to avoid the

computation of timing requirements impossible to respect by the medium, the designer may refer to a

model of a supremal behaviour (Sect. 4.2) of the medium, and compute only t iming requirements

which respect this supremal behaviour. Informally, if for instance we know that the medium needs at

least two units of clock time (uct) to carry messages between two protocol entities, this information is

contained in the model of the supremal behaviour. In this case, the designer will not compute timing

requirements such as : some message must be carried in one uct. We will see that the medium not only

carries a message, but it also adds an information about the transit delay of the message in the medium.

The problem of protocol synthesis is then (Fig. 2) to derive systematically the different local protocol

specifications and the timing requirements on the medium, from : (a) a global specification of the

service desired by the user ; (b) a model of the supremal behaviour of the medium.

protocol

timing requirements
on the medium

Figure 2. Protocol synthesis

The approach used for deriving protocols is synthesis . For the sake of simplicity, we explain the

basic principle of protocol synthesis [3,10,13,14,30] only for sequential systems. But parallel systems also

are considered, farther in this paper (Section 8). The principle is then : if a primitive A is executed by a

protocol entity PEa, and is followed by execution of a primitive B by PEt>, then after execution of A by

PEa, this one sends a message to PEb to inform it that it may execute B. If after execution of A by PEa,

desired ^
service

supremal behaviour >^_
of the medium

protocol
synthesis

^
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there is a choice between several primitives executed by different PEy, for i=l,2 p, then PEa selects

one PEy and sends a message to it to inform it that it may execute one of its primitives. Our main

contribution is to consider timing requirements in a more general case than in [10,15,16] (Sect. 1.2).

3. Timed and untimed traces

To model a RTDES, we use a conceptual global digital clock which generates a fictitious event tick at a

constant frequency; the delay between two consecutive ticks is called unit of clock time (uct). The time
is then modeled by a global variable noted i, called discrete time, and belonging to the set IN of natural

numbers. The variable x is initially equal to zero and is incremented by one after the passing of each unit

of clock time (uct), i.e., after the occurrence of every event tick [5,11,24,251.

3.1. Timed traces and Timed languages

A finite timed trace trc over an alphabet V is a finite sequence of pairs (aj.ti), where Oj is an event of V,

and T, is an integer such that tj+i >t\. Such trace is represented by trc = (ai,Ti)...(an,tn) and contains all

events that have occurred before time in+l. Each (aj.tj) means that the event aj has occurred when the

discrete time is equal to l\. It is clear that there is an inaccuracy of one uct on the exact delay of event

occurrences.

An infinite timed trace Trc over an alphabet V is an infinite sequence of pairs (dj/Cj) ; any finite prefix

of Trc is called a finite timed trace over V. Such infinite trace is represented by Trc= (ai,ti)...(ai,tj)...

Each pair (a;,!;) defined in Trc is called a component of Trc which is noted : {OJ.TJ} eTrc. Since a TJ may

be equal to tj+i, several consecutive events may occur at the same discrete time, i.e., during one uct or,

in another words, between two ticks of the clock.

Definition 3.1. ( Finiteness property)

An infinite timed trace respects the finiteness property (FP) if the number of events executed during one

uct is bounded by an arbitrary constant Me. Formally, Trc = (G\,T.\}...(G\,T.^.... respects the FP if and

only i f : V i > 0 , 3 j > i such that T J . I = T J < T J and j < i+Mc. The FP is differently defined in

[31], where it only requires that a finite number of events occur in any finite time interval. D

Example 3.1. Let Trc be the following infinite trace Trc=(O],2){o2,4)...(aj,2i)... Trc respects the

finiteness property because one event occurs when T is even, and no event occurs when T is odd. D

Example 3.2. Let Trc be the following infinite trace Trc=(ai,l)1 (a2,4)2...{ai,2i)'..., where (a,T>P

means that a occurs p times when the discrete time is equal to T. Trc does not respect the FP because

the number of events during one uct is not bounded. But Trc respects the FP as it is defined in [31]. D

Definition 3.2. (Timed trace and timed language)

In this paper, we consider only infinite timed traces. Such traces, will be simply called timed traces,

A timed language L over an alphabet V i s a set of infini te timed traces over V.

We say that L respects the finiteness property (FP) if all its timed traces respect the FP. D
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Infinite timed traces, which will be simply called timed traces , are executed by non terminating

processes. This is not really a restriction. In fact, a terminating process which may be executed infinitely

often, can also be considered as a non terminating process.

Definition 3.3. (Projection of a timed trace)

Let V be a subset of an alphabet W, and let Trc= (a\,t\)...(G\ be a timed trace over W. The

projection of Trc on V, noted Proj v(Trc), is obtained by removing from Trc all (cJi.Ti), where G\& V. D

Definition 3.4. (Projection and Extension of a timed language)
Let V be a subset of an alphabet W. Let L\e a timed language over W. The projection of L\n V,

noted Projv(£lX is defined by : Projv(£i )= {Trc, over V I 3 Tree e L\h Trc=Projv(Trce)};

Let £2 be a timed language over V. The extension of LI to W, noted Ext\v(£2), ls defined by :
Ext\y(£2)={Trc , over W I Projv(Trc)e £2}- D

Remark 3.1. (a) if W=V then Projv(£)=Extw(£ )=£ ; (b) Proj v(Ext\vf£ ))=£ and £CExtw(Projv(£ )).

3.2. Untimed traces and untimed languages

So far, an infinite sequence of events has been represented by a timed trace Trc=(aj ,l\.

If we represent explicitly the fictitious event tick , the same sequence can be represented by an untimed
trace TRC= aja2...aj ..., where each Oj for j=l,2,..., is equal to tick or to one of c\, (72,...

Example 3.3. The timed Trc=(ai,2)...(Oi,2i)... can equivalently be represented by the untimed :

TRC=tick tick <3}tick tick G2...G\.\tick tick aj tick tick Oj+]... D

A formal definition of the untimed trace corresponding to a timed trace is the following.

Definition 3.5. (Untimed trace, operators UntimeT and TimeT)

Let Trc = (OI.TI)... (ai,Tj)... be a timed trace. To obtain the untimed trace TRC corresponding to Trc, we

define the operator UntimeT, by : TRC=t/nrimer(Trc)=a[CC2 ... ocj ...
with : (oCj+Ti=Oj) and (a-}=tick , if $ k>0 such that j=k+Tic), for i,j=l,2,...

If Trc respects the finiteness property (Def. 3.1), we also say that TRC respects the finiteness property.

Since the operator UntimeT is a bijection, we can define the inverse operator TimeT, by :
TRC =UntimeT(Trc) <=> Trc=7Ym«7rTRC) D

Property 3.1. Let TRC= CX]CX2 ... Oj ... be a infinite untimed trace respecting the finiteness property .
3 Mc>0 such that: V k>0, 3 li>k, 3 l2>k with o^, *tick , l2-k <Mc+l, and a\=tick .
Proof : See Appendix A fj

More informally. Property 3.1 means that the untimed TRC corresponds to an infinite timed trace (by
CLi^tick ) which respects the finiteness property (by l2-k <Mc+l and ocl2= tick ).

_

Definition 3.6. (Untimed language, operators UntimeL and TimeL)
Let £ be a timed language. £u, which is called untimed language and noted Cu=UntimeL(Q, is defined

by : Lu=UntimeL(£)={TRC 13 Trc e £ with TRC=£//7ft>ner(Trc) } D

Since the operator UntimeL is a bijection, we can define the inverse operator TimeL, by :
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Theorem 3.1. Let L\d LI be two timed languages over a same language.
VntimeL(L\r\L2)=UntimeL(L'2)r\VntiineL(L2). (Proof: See Appendix A ) D

4. Timed Automata to specify a desired service and a supremal behaviour of the medium

The aim of this section is to define a model based on timed automata and used to specify the two entries

of the protocol synthesis (Sect. 2), i.e., a global specification of the service desired by the user (Sect.

4.1), and a specification of the supremal behaviour of the medium (Sect. 4.2). Since these two entries

are initially unformally specified, timed automata must be as intuitive as possible, so that the

transformation from an unformal to a formal specification is easy to determine. Before defining

formally the timed automata, let's show in simple examples how timed automata are used to model a

global specification of the service desired by the user, and a specification of the supremal behaviour of

the medium.

4.1. Service desired by the user

Traditionally, a service desired by the user is defined by the sequences of service primitives which are

accepted by the user. But in our case where t iming constraints must be respected, two additional kinds

of requirements define the desired service; they are the following :

(1) Constraints on the delays between executions of service primitives. In other words, constraints on

the numbers of ticks between executions of primitives;

(2) Constraints on the numbers of primitive executions during one unit of clock time. In other words,

bounds on the numbers of primitive executions between two ticks of the digital clock.

The service desired by the user of a distributed system is initially unformally specified. Therefore, the

model used to formally specify the desired service must be as intui t ive as possible, so that the

transformation from an unformal to a formal specification is easy to determine. Here is a simple

example of a desired service which is initially unformally specified.

Unformal specification :

51 : Two service primitives AI and 82 must be executed alternately. The indexes 1 and 2 identify the

sites where the primitives are executed, i.e., A i and 62 are respectively executed in sites 1 and 2;

52 : Between executions of AI and 62, there may be at most two ticks of the clock;

53 : Between executions of 82 and AI , there may be at most two ticks of the clock;

54 : Between two ticks of the clock, there may be at most the execution of one primitive. Let's notice

that S4 implies the finiteness property (Def. 3.1).

The above unformal specification can be easily formalized as follows.

S i can be represented by the two state automaton of Figure 3.a.

S2 can be formally defined by the use of a fictitious timer t (Def. 4.1):

- the timer is set to zero after the occurrence of AI ,

- a necessary condition of 62 execution is : t < 2 ;
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53 can be formally defined by the use of the same timer t. In general, when the service is sequential

and the timing requirements are between consecutive primitives, then one timer is sufficient :

- the timer is set to zero after the occurrence of 82,
- a necessary condition of A j execution is : t < 2 ;

54 can be formally defined by the use of a fictitious counter c (Def. 4.3):

- the counter c is set to zero after every tick,

- c is incremented by one after execution of every primitive,

- a necessary condition of every primitive execution is : c < 1.

Such specification can be formally represented by the timed automaton (TA) of Figure 3.b. Each

transition of the TA is then defined by :

- starting and reached states;
- two enabling conditions (t < 2 and c < 1);

- a set of timers which are set to zero with the occurrence of the transition ({t}).

3.a. Automaton 3.b. Timed automaton
Figure 3. Example of service specification

4.2. Supremal behaviour of the medium

The specification of the supremal behaviour of the medium is used in order to avoid, in the protocol

synthesis, the derivation of timing requirements impossible to respect by the medium (Sect. 2) which is
assumed reliable. The supremal behaviour is defined by a timed automaton SupMerf; = (Fig. 4) for every

oriented pair of sites i and j, where site i is the sender and site j is the receiver. Let then the events s^ and
rj meaning respectively "Site i sends a message to site j" and "Site j receives a message coming from

site i". SupMed\ specifies that the number of ticks between s-j and rj belongs to a given interval

Iy=[tijn; t^j"], where t£jn and t^" are constant integers such that 1 < r$n < t^x < «> . Therefore, we

suppose that there is at least one tick of the clock during the transmission of a message.
Temporal constraints between sj and rj can be formally defined by the use a fictitious timer t j j :

- tj j is set to zero after the occurrence of s| ,

- a necessary condition of rj occurrence is : Eg(tjj)=(tij > (t-jm -1) )A(IIJ < t-j3*).

Contrary to example in Section 4.1, no counter is used because timing requirements ensure the

finiteness property (Def.3.1) due to 1 < tjj". Therefore the second enabling condition of transitions in

SupMed\,j is always True. The timed automaton SupMedl;>j is represented on Figure 4.

(sj ;True; ( t i j ) ; True)

(rj;Eij(tij);0;True)

Figure 4. Supremal behaviour SupMed\ of the medium for a pair (sender i, receiver j)

Remark 4.1. Timing requirements on SupMed-j and SupMed^ may be different.
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In the remaining part of the present section 4, timed automata are formally defined and studied.

For defining aTA, which is an extended FSM accepting a timed language (Def. 3.2), we use in general:

- a global digital clock which generates the event tick, and then informs about the passing of time,

- a finite set of fictitious digital timers (Def. 4.1), for specifying the timing requirements,

- a finite set of counters (Def. 4.3), for respecting properties stronger than the finiteness property

(Def.3.1).

4.3. Timers and counters

Definition 4.1. (Timer and timer state)

A fictitious timer t, is a variable which belongs to the set IN of natural numbers, tj is automatically

incremented by one with every tick. The operations we can do on tj are :

- Reset : a timer tj, which is increasing regularly with every tick, can be set to zero. Therefore, t;

represents the time elapsed from the last reset.

- Comparison : tj can be compared to a constant integer. The comparison operators are =, > and < .

Other operators < and > are not necessary because timer values are integers.

Initially, when the discrete time t is equal to zero, tj also is equal to zero.

Let the Nt-uplet ts=(ti,..., IN), where Nt (or ITI) is the number of timers t j , 12,.... INI- Any value of ts is

called timer state . D

We deduce that if several timers t j , t2 t^ are used, then they are automatically and simultaneously

incremented with every tick, i.e., when the discrete time i is incremented. Therefore, all the timers are

synchronized on the digital global clock.

Definition 4.2. (T_Condition, set ET)

LetT={ti, t2 tNt) be a set of timers. A T_Condition E(ts), w.r.t. T, is a boolean function which

associates to a timer state a value TRUE of FALSE. E(ts) is formed from :

(a) canonical boolean functions tj-k, where ke IN*, and ~ is =, < or > ;

(b) operators AND(A), OR(v), and NOT(—i) on these canonical boolean functions.

The set of all T_Conditions, w.r.t. T, is noted Ej. . fj

Definition 4.3. (Counter and counter state)

A fictitious counter Cj, w.r.t. an alphabet Vcj, is a variable belonging to IN. c j is automatically :

(a) incremented after the occurrence of any event of Vcj;
(b) set to zero with every tick, i.e.,when i is incremented.

Let the Nc-uplet cs=(ci,..., CNI), where Nc (or ICI) is the number of counters c\ C2,..., cj^. Any value of

cs is is called counter state . fj

Definition 4.4. (F_Condition, set EC)

LetC={ ci, C2,..., CNC} be a set of counters. A F_Condition K(cs), w.r.t. C, is a boolean function

which associates to a counter state a value TRUE or FALSE. K(cs) is formed from :
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(a) canonical boolean functions Cj < MCJ, where Mqe IN*;

(b) operator AND(A) on these canonical functions. The set of all F_Conditions, w.r.t. C, is noted EC- D

4.4. Timed automata

Let A=(Q,V,5,qo) be a FSM where Q is a set of states, V is an alphabet, q0 is the initial state, and

ScQxVxQ defines the transitions, i.e., a transition of A can be represented by [qi;o;q2]. Let's see how

a timed automaton can defined from the FSM A.

Definition 4.5. (Enabled and eligible timed transition, Reset)

LetT={ti, ..., tNt) be a set of timers, and let G={CI CMC } be a set of counters, w.r . tVqCV, for

i=l,2 NO Let ET (resp. EC) be the sets of T_Conditions (resp. F_Conditions), w.r.t. T (resp. C).
A timed transition , w.r.t. A and T and C, is defined by Tr=[qi;a;q2;E(ts);R;K(cs)], where [q i;a;q2Je8,

E(ts)e ET, K(cs)e EC, and RGT. R is called Reset of the transition Tr. The semantics of Tr is the

following. Let q i be the current state :
(1) a may occur only if E(ts) (Def.4.2).anJ K(cs) (Def.4.4) are true;

(2) after the occurrence of a : (a) the state q2 is reached, timers of R are set to zero, and

(b) q is incremented if ae Vc;, for i=l,2,..., Nc.

Besides, K(CS)=(CJI<MCJI)A...A(CJP<MCJP), where Cj],..., CJP are all counters respectively w.r.t. Vqi

Vqp, such that eye VcjiPi...nVcjp.

A timed transition [qi;a;q2;E(ts);R;K(cs)] is enabled i f : q i is the current state and E(ts)AK(cs)) is true.

A timed transition Tr=[qi;a;q2;E(ts);R;K(cs)] is eligible i f :

Tr is enabled or will become enabled with the passing of time (without occurrence of any event). D

A timed automaton (TA) A1 can then be constructed if we transform each transition tr=[qi;a;q2] of A

into a timed transition Tr by associating to it, a T_condition E(ts), a Reset, and a F_Condition K(cs).

Definition 4.6. (Timed automaton)

Formally, a timed automaton A'=(Q,V,T,^8,qo) is defined as follows. Q is the set of states, qo is the

initial state, V is the alphabet, T is the set of timers t j , t2,...,tNt. <V=(vcj I for i=l,2,...,Nc} d 2V, where

each Vcj is associated to one counter q . 8cQxVxQxETx2TxEc defines the timed transitions, where

ET and EC are the sets of T_Conditions and F_Conditions (Def.4.2 and 4.4). Besides, A1 accepts only

infinite timed traces (Def. 4.10), and is called a TA. D

Remark 4.2. In the particular case where no timer (resp. counter) is used, then the T_Conditions (resp.
F_Conditions) of all transitions are equal to True. If Nc=0, then V=0. D

Example 4.1. Let's consider a communicat ing system which executes the three following service

primitives : connect.request, connect.confirm, and disconnect.indication. These primitives are

respectively abbreviated by cr , cc , di. The informal desired behaviour is the following. The primitive

cr is first executed. It can be accepted and followed by cc , or refused and followed by di. And this

process is repeated indefinitely. Between two consecutive cr , there may be at most 9 ticks. After cc
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or di, we must wait at least 3 ticks before the next cr . After its execution, if cr is not refused (i.e., not

followed by di ) 2 ticks after its occurence, it will be inevitably accepted (i.e., followed by cc ) within

3 ticks after its occurence. With this informal specification, the finiteness property (Def. 3.1) is

automatically respected, because of the minimum 3 ticks between cc or di and cr .

This desired behaviour is formally specified by the TA of Figure 5, which uses two timers t ] and t2.

ti is used for defining timing requirements between : two cr , cr and cc , cr and di. t2 is used for

defining timing requirements between : cc and cr , di and cr . In this example, the use of counters is

not mandatory, because the timing requirements ensure the finiteness property. But in the general case,

where timing requirements do not ensure the finiteness property, at least one counter must be used. In
this example, Nt=2, T={ti,t2), ts=(ti,t2), Nc=0 and C=0. Therefore, the F_Condition of all timed

transitions is True (Remark 4.2). The T_Conditions are E](ts)=((ti<9)A(t2>2)), E2(ts)=(ti<3),

E3(ts)=(ti<2), and the Resets are RI = { I I} , R2={t2K R3={t2)- The TA of Figure 5 is then defined by

At=(Q.V,T,0,8,qo) where: Q={q0,qi}, V=[cr,cc,di}, T={ti,t2). C=0, 8 ={[q0;cr;q1;E1;R1;True],

[qi;cc;qo;E2;R2;True], [qi;d/;qo;E3;R3;True]}. Q

Let's mention that a timed transition Tr=[q;a;r;E;R;K] is represented graphically by : GD °' ' '

(cr,E] ,Rt,True)

(cc,E2,R2,True)

(di.E3.R3,True)

Figure 5. Timed automaton

As for example of Section 4.2, SupMedy is formally defined by (Qij,Vy,{ty}JVy},&y,qQy), where

Qi,j=(qOij,qli,j}, Vij={ s},rj}, 8ij={[qOiij,s],qli)j,True,{tij},True], [qty.rj^Oy.Ej/tjjX^Troe]}, with :

Definition 4.7. (set T of timer states)

Let T={ti, ..., tNt) be a set of timers used for defining a TA A1, and let M t j be the maximum value a

timer t; is compared to, for defining the T_Conditions (Def.4.2) of all the transitions of A'. In this

case, ti does not need to be incremented as soon as t j=Mt j+ l . In fact, in this case the incrementation

would have no influence on truths of the T_Conditions. Therefore, we can limit tj by Mtj+1, for i=l, 2,

.... Nt, and the set T of timer states ts=(tj, ... , INI) is equal to or included in (0;Mti+l)x...x(0;MtNt+l),

where (0;Mtj+l ) is the set of integers belonging to the interval [0;Mtj+ 1 ]. Q

In Example 4.1, Mti=9, and Mt2=2, and then T C (0;10>x(0;3)

Definition 4.8. (Addition between T and IN)

LetT={ti, .... INI} be a set of timers used for defining a TA A1. The addition between T and IN is

defined as follows : if ts=(t] ..... tNt)e T and pe IN, then ts+p=(inf(ti+p,Mti + l),..., inf(tNi+p, MtN+1)).

Where inf is defined by : inf(A,B) e {A,B} and ( (inf(A,B)=A) «. (A<B) ). D

Intuitively, if ts is the current timer state, then ts+p is the futur timer state after the occurrences of p

ticks of the clock. In Example 4.1, if ts=(4,l) and p=3. then ts+3=(inf(4+3;10), inf(l+3;3))=(7,3)*(7,4).
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Definition 4.9. (set C of counter states)

Let G={CI, ..., CMC } be a set of counters used for defining a TA A1, and let Mq be the maximum value
which bounds c\. Therefore, the set C of counter states cs=(ci, ... , CMC) is equal to or included in
<0;Mc i)x...x(0;McNc), where (0;Mci) is the set of integers belonging to the interval [0;Mcj]. D

In example of Section 4.1,Mcj = l, and then C^(0;l>.

Definition 4.10. (Acceptance of a timed trace and of a language, equivalence, partial order relation)
Let AtbeaTA(Q,V,T,V,8,qo), withT={ti tNt), 1^{Vci VCNC), and then G={CI cNc}.
Let 1/i=TriTr2...Trj... be an infinite sequence of transitions of A1, wi th:

V is W* : TrKqMiOiiqiiEjOs^RiiKKcs^eS.

Let <?$. be a function which sets to zero all timers in RjCT, i.e., <J^(ti,...,tNt)=(x I,...,XN() where :

X j = O i f t j e R j , andxj=t j i f t j g R j , for j=l,..., Nt.

Let j[ be a function which updates cs with the occurrence of event a,, i.e., Si(c\)
where : yj =Cj + l if CTje Vcj, and yj =Cj if G\£ Vcj, for j=l,..., Nc.

Let: -10=0, the Nt-uplet tso=(0 0), and the Nc-uplet cso=(0 0)

-Foral l i>0: uSi^n+tj-ti-i and tSi = <^(uSj); vsj=0 if t j>t j_ i , vsj=csj_j 'f ^1=^-1. and csj=^(vsi)

- The infinite timed trace Trc= (ai,Ti)...(Oi,!;)... is accepted by Tr, if and only if :

Ej(usj)=True and Kj(vs;)=True, for all i>0.
- The infinite timed trace Trc= (<3\,T.\}...(<3\,t\}... is accepted by A1, if and only if there exists an

infinite sequence Tr of transitions of A' which accepts Trc.

Informally, a system specified by A1 may execute a trace accepted by A1.
- A timed language, noted L^i, is accepted by A1 if it contains all and only the traces accepted by A1.
- A\d A!2 are equivalent , and noted A\=A12, if and only if L^ =L/^2 .

- A\5 smaller than or equal to A^, and noted AjSA^, if and only if L^\, . D

Property 4.1. Let Al=(Q,V,T,1<5,qo) be a timed automaton specifying a non terminating system, with
V=(Vc\, Vc2,.-.,VcNc}c2v. If Vciu...uVcNc=V, then the language £AI accepted by A1 (Def. 4.10)
respects the finiteness property. In this case, we say that A' respects the finiteness property.

Proof: See Appendix A . D

4.5. Product of timed automata

The global desired service may be made up of several services concurrent with each other (Def. 4.11). If
every of these services is specified by a TA, we show in the present section how to compute the TA

which specifies the global service. For the sake of simplicity and without a loss of generality, we

consider only the case where there are two concurrent services.

Definition 4.11. (Independent and concurrent DES)

Let A; be two TA over alphabets Vi, for i=l , 2, specifying two processes.
If V inV2=0, the two processes are independent with each other.

If VinV2*0, the two processes are concurrent. In fact, they may run in parallel by executing
respectively events of Vi - V2 and V2- V l , but they must execute conjointly events of V irYV2. D
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4.5.1. Product of two timed automata over the same alphabet

Let A\d A2 be two TAs (Def. 4.6) defined over the same alphabet V. An intuitive definition of the

synchronized product of A\d A2, noted A\xA2, is the following : A\xA2 is a TA specifying a system

which may execute all and only the infinite timed traces accepted by both A\d A2.

Definition 4.12. (Product over a same alphabet)

Let Ai=(Qi,V,Ti,'M,Si,qio), for i=l,2, be two TA over a same alphabet V, with TinT2=0, and

1^={Vcii,...,VciNci}- Each A- uses then a set Ti={tii,...,tiNti) of timers and a set Ci={cii,...,ciNCi) of

counters, where each cij is w.r.t. Vcij. The product, noted Al=A\xA2, is defined by Al=(Q,V,T,1^8,qo),
with T^Vlu^, T=TluT2, QcQlxQ2, q0=(qlo,q2o)e Q, and :

Definition of 5 : Let ET\, Ej2 and Ej be the set of T_Conditions (Def. 4.2), respectively w.r.t. Tl, T2
and T=TluT2. Let ECI, Ec2 and EC be the set of F_Conditions (Def. 4.4), respectively w.r.t. Cl, C2
and C=CluC2. Then V <ql,q2>, <rl,r2>€Q, VoeV, VEeET, V RcT, VKeE C :

([<ql,q2>,a,(rl,r2>,E,R,K] e5) <=> ( 3 EleETi, 3 E2eET2, 3 RicTl, 3 R2CT2, 3 KleEa, 3 K2eEC2,)

(with: R=RluR2, E=ElAE2, K=KlAK2, and )

([ql,a,rl,El,Rl,Ki]e5l, and [q2,.a,r2,E2,R2,K2]e 82. ) D

Theorem 4.1. If £ '̂1 arK* A\ are respectively the timed languages accepted by A\d A2 over the

same alphabet, then: ^AixA^-^Ai n ^Ar (Proof: See Appendix A ). D

Property 4.2. In Def. 4.12, if VcliU...uVclNci=Vc2iU...uVc2Nc2=V, then A1,, A2, and A\xA2

respect the finiteness property. (Proof: See Appendix A). D

Remark 4.3 : (a) In Def.4.12, if there exist i<Nq and j<Ncj such that Vcij=Vc2j, then counters clj and

c2j are equal, because they are incremented and set to zero simultaneously. Therefore, only one of

them, for example clj, is used to define A\ A2 . and A\A2 .

(b) From Theorem 4.1, we deduce that if A\d A2 specify two sequential processes over the same

alphabet, then their synchronized product also specifies a sequential process.

Example 4.2. A\d A2 are respectively represented on Figures 6.a and 6.b. A\=(Ql,VITl,'P;>8l,qlo)

and At2=(Q2,V,T2,^,62,q2o), with V={Vcl) = {Vc2} = {V), Ql = {ql0 ,ql), Tl={tli , t l2), Q2={q2o,q2},

T2={t2i,t22}, V={a,b), and Mcl=Mc2=10. 8l={[ql0,a,ql,Eli,{tli ),Kl], [ql,b,ql0,El2,{tl2),Kl]}, with:

Eli=(t l i< 5), El2=(tli<2)A(tl2< 5), and Kl = ( c l < 1 0 ) . 82={[q2o,a,q2,E2i,{t2i),K2],

[q2,b,q20,E22,{t22},K2]}, with: E2i=(t22<3), E22=(t2i>0), and K2=(c2<10). Since V=Vcl=Vc2, only

one counter, for example cl, is used (Remark 4.3.a), and transitions of A\ A2, and A\xA2 are enabled

only if (cl<10). The synchronized product of A\d A2 is represented on Figure 6.c. D

(a:(ti,<5);(ti1):ci<10))>fc _(a;(t22<3); [t21);c2<10X_ ^^ (a; ((tii$5)A(t22g));{ 111.121};

^2(b;
6.a. Aj 6.b. A2 6.c. A1 =AjxA2

Figure 6. Synchronized product over the same alphabet
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4.5.2. Product of two timed automata over alphabets Vj and ¥2 with

Before defining the product over alphabets V j and V2, with V iCV2, let's give two definitions.

Definition 4.13. (Operator © on ET)

Let Ei(ts), E2(ts),..., Ek(ts) be k T_Conditions (Def. 4.2), depending on a set of timers {t i , t2, ..., INI}.

We define E(ts)=Ei(ts)©E2(ts)©...©Ek(ts) as follows.

(E(ts)=False) <=> {V is {1,... ,k}, V pe IN: Ej(ts+p)=False } D

Informally, Ei(ts)ffi...©Ek(ts) is false if and only if all Ej(ts) are false and remain false with the passing

of time. If for instance T={ti},Ei(ti)=(t!<5), E2(ti)=((t1>2)A(t1<6)), then E(t1)=Ei(ti)©E2(ti)=(t1<6).

Definition 4.14. (Extension of a timed automaton)

Let At=(Q,V,T,'K5,qo) be a TA over an alphabet V with T={ti tNt}, V={Vci VcNc), and then

C={CI,...,CNC)- Let ET (resp. EC) be the set of T_Conditions w.r.t. T (resp. F_Conditions w.r.t. C). Let

W be an alphabet such that VcW. The extension of A1 to the alphabet W, noted Ext\v(A l), is a TA

defined by (Q,W,TX5exi,qo). where 5extcQxWxQxETx2TxEc is such that:

(!)Vql,q2eQ, VaeV, VEeET ,VRcT, V KeEc: [<ql,a,q2.E,R,K] e6 <=> [(ql,a,q2,E,R,K] e5ext.

(2) V qeQ : LetEj e ET, for i=l,..., k, be all the T_Conditions of ET such that : 3 qseQ, 3aje V,

3 Rje2T ,3 KieEc, with [(q,ai,qj,Ej,Rj,Kj] €5, and let then E= Ei©E2®... ©Ek .

Then Vae W-V: [<q,o,q',E',R,K]68ex, <=> (q'=q, E'=E, R=0, K=True).

If B^ExtwKA1), then A' is called projection of B< in the alphabet V, and is noted Al=Projv(B ')• D

Informally, Extw(Al) is obtained by adding selfloops of all events of W-V to each state of A1 . The

resets of these selfloops are empty, and their T_conditions are defined as follows. The T_Condition of

the added selfloops at a state q of A1 is true if at least one of the transitions defined in A1 from q is

eligible (Def. 4.5.) The F_Condition for events of W-V is always true, and then Extw(A<) does not

necessarily respect the finiteness property (Property 3.1).

Intuitively, let <Pext and (P be two non terminating processes respectively specified by ExtwtA1) and A1,

where A1 is defined over the alphabet V. An external agent who can observe all and only the events of

V, cannot differentiate the two processes. If the T_Conditions of the added selfloops in Ext\v(Al) were

always true, the external agent may see <Pext as a terminating process. In fact in this case, it is possible

that a selfloop of an event of W-V is indefinitely executed. In Example 4.3 (next Section 4.5.3), the two

timed automata of Figures 7.a. and 7.b. are extended into the two timed automata of Figures 8.a and 8.b.

Lemme 4.1. If £At is the timed language accepted by a TA A1 over an alphabet V, and if W is an

alphabet such that VcW, then: £Extw(Al)=Extw(^A1)- (see Def.3.4 for Extw(£A1))

(Proo f : See Appendix A). fj

Before defining formally the product over Vi and V2 with VlcV2, let's give an intuitive definition. Let

A\d A12 be two TA defined over Vl and V2 with VicV2. The product of these two TA is a TA

specifying a system which may execute all and only the infinite timed traces which both :

are accepted by A12, and whose projections (Def. 3.3) on V1 are accepted by A'J .
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Definition 4.15. (Product over V 1 and V2 with V lcV2)

Let Ati=(Qi,Vi,Ti,'M,5i,qio), for i=l,2, be two TA (Def. 4.6) over alphabets Vl and V2, with Vl£V2,
TinT2=0, and <M={Vci1,...,VciNci}, i.e., each A- uses a set Ci={ci] ..... ciNci} of counters where each cij

is w.r.t. Vcij. Their synchronized product, noted A\®A2, is defined by :

^ =(Q,V2,TluT2,'Hu'^, 5,q0)= ExKr^A^xA'j (See Def .4. 12 and 4. 14 for x and ExtV2(A'I)). D

7heorem 4.2. If L&\d L ̂ \e respectively the timed languages accepted by A\d A'2

respectively over alphabets Vl and V2, with VicV2, then: AViBA^^Ex^Aj/^Ar (Proof : See

Appendix A ). D

Property 4.3. Let A\d A2 be two 7A, respectively over alphabets Vl and V2 with Vl£V2. If A2

respects the finiteness property (FP), then A\®A12 respects the FP. (Proof : See Appendix A ). D

Remark 4.4. (a) in Definition 4.15, if Vl=V2, then A'^A^A^Aj (Def. 4.12), because ExtV2(A\)=At1 ;

(b) From Theorem 4.2, we deduce that if A\d A2 specify two sequential processes respectively over
alphabets V 1 and V2 with V lcV2, then their synchronized product also specifies a sequential process.

4.5.3. General parallel product of two timed automata

Before defining formally the parallel product of two 7A A', and A2, respectively over alphabets Vl and

V2, let's give an intuitive definition. The product of A\d A2 is a TA specifying a parallel system
which may execute all and only the timed traces over the alphabet Vl«^»V2: (a) whose projections

(Def.3.3) on Vl are accepted (Def.4.10) by A\ ; (b) whose projections on V2 are accepted by A2.

Definition 4.16. (Parallel product of two TA)
Let A-=(Qi,Vi,Ti,1'S,5i,qio), fori=l ,2, be two TA over alphabets Vl and V2, with TinT2=0, and

/M={Vcii,...,VciNci}- Their parallel product, noted A^JA-j, is defined by :

A\ A2= (Q,VluV2,TluT2,Vlu'P2,5,qo) =Extvi uV2(Atl)xExtV2uvi (A2). D

Remark 4.5. In Definition 4. 1 6, i fVlcV2 then A'JA^A'^Aj, a n d i f V l = V 2 then A'JA^

Theorem 4.3. If L^\d £A^ are the timed languages accepted by two TA A\d A2 over

alphabets Vl and V2, then : ^AilA2=^ExtViuv2(Ai)n^ExiviuV2(A2) (Proof: See Appendix

A), a
Property 4.4. If two TA A\d A2, respectively over alphabets Vl and V2, respect the finiteness
property, then A'JA^ respects the finiteness property. (Proof : See Appen dix A ). D

Example 4.3. Let A\=(Ql,Vl,Tl,Vl,8l,qlo) and A2=(Q2,V2,T2,V2,52,q2o) (Figure 7), with

-M={Vcii}={Vi},Qi={qio,qi},7i={tii,ti2}, Mc=Mci l = IO, for i=l,2. Vl={a,fe},V2={fl ,c}. Timers are

t l i , t !2 , t2i and t22, and counters are cl i a n d c 2 t .
5l={[qlo,a,ql,El l ,{tl l},Kl],[ql,Z7,qlo,El2 ,{tl2},Kl]}> Eli=(tl ,<5), El2=(tl,<2)A(tl2<5), Kl=(cl ,<lO).

52={[q20,fl,q2,E2l,{t2l },K2],[q2,c,q2o,E22,{t22 },K2]}, E2i=(t22<3), E22=(t2i>3), and K2=(c2,<!0).

ExtviuV2(A\ and Extv2uvi(A2) are on Figure 8, and the product of the two parallel TA is on Figure 9.

The F_Conditions (Def. 4.4) of transitions in A\|| A2 (Fig. 9) are as follows.
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Transitions with event a are enabled only if both (cli<10) and (c2i<10) are true (ae VclinVc2i).

Transitions with event b are enabled only if (cli<10) is true (because b e Vcli).

Transitions with event c are enabled only if (c2j<10) is true (because c e Vc2i).

(a;(ti,^5); (Ui};(cn<10)) ̂ ^ (a;(t22<3); [t2,):(c21<10)}_
" (OP (qzo^ Tq2)

(S; ((ti,<2)A(tiiS5)); {ti2};(ci ,<!()}) (c; (ta,>3); {t* };(c?<10]r

7.a. A1! 7.b. A^
Figure 7. Two concurrent automata

•
(c; u,<5; 0;True) (c; ((U,S2)A(ti,S5)); 0;Tnie) (b; (t22 <3); 0;True) (b; True; 0;True)

^ __ Ja; (t22<3); [t21):(czi< 1 0)V

"Xc; (t2»>3); (12,

8.a. Extyiuv2(Ai) 8.b. Extv2uvi(A2)

Figure 8. Extensions of the two concurrent automata of Figure 7
-

(c;

_

(b; ((ti,S2)A(ti2<5)A(t2Z<3)); {ti2};(ci,<10)) ̂  (c; ((t2,>3)A(ti,<2)A(ti2<5));{t22);(c2fClO))

Figure 9. Synchronized product AjIJA^

5. Untimed automata

The problems we have encountered with timed automata, are the following :

(a) Respecting the timing requirements (T_Conditions and F_Conditions) does not ensure to avoid

states respecting a given "indesirable" property, such as deadlock states;

(b) Finding and removing these "indesirable" states is not self-evident;

(c) Several processings (reductions, projections, minimization, ... ) are not self-evident.

The approach we have used to tackle these problems consists in transforming a timed automaton into an

equivalent untimed automaton (Def. 5.1) where transitions do not depend on parameters and where the

event tick is represented by a transition. Therefore, all known methods used for FSMs can be used for

untimed automata. Let's see two examples :

- We can remove deadlock states;

- An untimed automaton (UA) defined over an alphabet W'=Wu{ric&} can be projected in any alphabet

VcW.

Thus, before making some processings, it may be convenient to transform a TA into a UA.

Definition 5.1. (Untimed automaton, operator UntimeA )

Let Al=Al =(Q,V,T,{ V},5,qo) be a TA over an alphabet V which accepts (Def.4.10) a timed language £,

and let Lu=UntimeL(£). The untimed automaton Aul=(Qut,Vu{nd: },6ul,(q0,0,0}) is the minimal FSM

over the alphabet V(j{tick} which accepts the untimed language £u.
•
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tick }xQi* defines the transitions of Au t , and (q0,0,0) is the initial state of Aut .

In other words : £Aut =£/nfl'meL(£Ai), (Def.3.6, for UntimeL), and A1 and A11 are called equivalent.

A sufficient condition of existence of Au is the finiteness of the sets of timers and counters.

We also define the surjective operator UntimeA such that : Att-=UntimeA(Al). D

Example 5.1. Let's consider the timed A1 =(Q,V,T,{ V},5,q0) on Figure lO.a, where we use one timer t],

and one counter cj w.r.t. V. Since Mtj=5 and Mcj=5, t j is smaller than or equal to 6, and c j is smaller

than or equal to 5. The obtained untimed Aul is on Figure 10.b, each state being defined by (q,ti,ci),

where q is a state in A1.

Remark 5.1. Since untimed traces accepted by Aul correspond to infinite timed traces accepted by A1,

then Aut accepts only infinite untimed traces, and does not contain indesirable states. An indesirable

state is either a deadlock state or a state from which only a selfloop tick is executable.

- A deadlock in Aut is indesirable, because it has no sense. In fact, a deadlock state means that the event

tick is not executable. Therefore, the passing of time is stopped!

- A state from which only a selfloop tick is executable is indesirable, because it implies that Aut

accepts a trace TRC=UntimeT(Trc) where Trc is a finite timed trace!

Informally, Aut allows to represent a real-time system specified by A1, as a system without timing

requirement, but where a new event tick is added. This event, which models the passing of one unit of

clock time (uct), is processed like any other event.

.tick

(a; (ti>0)A(ii<5);0;ci<5)^

(c;True;{ti];True)

\k

lO.a. A1 lO.b.A"'
Figure 10. Timed and untimed automata

Let's give an idea of how Au t is obtained from A1 over an alphabet V, when only one counter GI , w.r.t.

VcpV is used. This implies that A' respects the finiteness property (Property 4.1). Let T={tj,..., t^} be

a set of timers used for defining A1, let Mtj be the maximum value a timer tj is compared to, for defining

the T_Conditions (Def. 4.2) of all the transitions of A1. In this case, t, does not need to be incremented

as soon as tj=Mtj+l (Def. 4.7). A state of Aut is defined by (ql,ts,ci), where ql is a state of A1,

ts=(ti,...,tNt) is a timer state (Def. 4.1). The passing of one uct is represented in Aut by the event tick .

Execution of tick from state (ql,ts,C]) leads to state (ql,ts+l,0), i.e., timers are incremented and the

counter is set to zero. Execution of an event a*tick from state (qi,ts,ci) of Au t leads to state

(q2,ts',ci+l), where q2 is a state of A1 which is reached by a transition tr=[ql;a;q2;E;R;K] from state q 1

of A1 (with E and K=(cj<Mci) are equal to TRUE for the current timer state ts, and ci<Mcj), and ts1 is

page 17



obtained from ts by setting to zero timers belonging to R. Besides, Aut is minimal and does not contain

indesirable states.

Remark 5.2. (a) if ts=(Mti+l,..., MtNt+1) then ts+l=ts. In this case, an event tick is a selfloop in A u t ;
(b) Since two Af over alphabets V^tick }, for i=l,2, are FSM, we can use the classic synchronized

product between them, noted A'J'xA^1, where events of (V ioV2)u{ tick] are executed conjointly.

(c) The product UntimeA(A\}xUntimeA(t^1) may contain deadlocks, therefore it does not correspond to

a real DBS. In fact, a deadlock prevents the event tick , i.e., the passing of time is stopped.

Lemmas 5.1. Let A' =AJ=(Q,V,T,V,6,q0) be a TA and A*=UntimeA(Al)=(Q»*,Vv{ tick },6ut,(q0,0,0».

Let's remind some notations : (a) Nt and Nc are the numbers of timers and counters; (b) Me bounds all

the MCJ, for i=l,...,Nc; (c) Mt is the maximum constant any timer is compared to; (d) IQI and 181 are

numbers of states and of transitions of A1.

5.1.a. The number IQ"M of states of A11 is bounded by : IQI*(Mt+2)Nt*(Mc+l)Nc

S.l.b. The number I5UI of transitions of Aul is bounded by : (IQI + l5l)*(Mt+2)Nt*(Mc+l)Nc

S.l.c. The complexity for calculating Aut is in : O( IQutl2)=O( IQI2*(Mt+2)2xNt*(Mc+l)2xNc ) _

\Qt\, I &t\ the complexity for calculating Aut are then exponential in the numbers of timers

and of counters. (Proof : See Appendix A ). D

Remark 5.3. (a) The number of counters is not really a problem. In fact, in general one counter is

sufficient, for ensuring the finiteness property. Therefore, the complexity is essentially due to the

number of timers, (b) If the timing requirements are only between consecutive events, one timer is

sufficient for specifying temporal constraints. In this case, the complexity is no more exponential.
Properties 5.1. Let A1, and A'2 be two TA respectively over alphabets V j and V2.

S.l.a. I fVi=V 2 , then: UntimeA(A\xAl^UntimM(A\)xUntimeA(]$)

S.l.b. If V!CV2 , then : UntimeA (A1,®A2) <UntiimA(A\)xUntimeA (A2)

S.l.c. I fVi-V2*0and V2-V1*0, then: UntimeA(A\\^<UnUmeA(A\^VntimeA(^

S.l.d. IfVi=V2 , then: LA\^LA<2 =» £untimeA(A\)^LUntimeA(ti)
S.l.e. If V jcV2 , then : UntimeL(Proj v{ (L& ))=Proj vt (UntimeL(Lj^2))

(where A < B means LAC,LQ) Proof : See Appendix A D

6. Temporized automata to specify a protocol and timing requirements on the medium

As it is mentioned at the beginning of Section 5, the use of untimed automata is convenient to make

several processings. This fact is taken into account by the procedures of protocol synthesis in Sections 7

and 8, where timed automata are transformed into untimed automata (Sect. 5), before making some

computations on the specifications. The results of these procedures are then untimed automata which

specify modules to be implemented.

The problem with untimed automata is that they are not convenient to specify systems to be

implemented, because the number of states and transitions may be very important (Lemmas S.l.a and

S.l.b). Our aim is then to transform every untimed automaton Aut into an equivalent and more concise

page 18



automaton. The first idea which comes into the mind is to compute a timed automaton A1 such that

Aut=t/nrimM(At) (Def. 5.1). The main problems with timed automata are:

- the respect of timing requirements in a TA may lead to deadlocks;

- the computation of a TA A1 such that A**=6te/mM(Al), is not self-evident.

Therefore, we propose a second model based on temporized automata where the above problems do not

exist. Temporized automata are not used to specify a desired service and a supremal behaviour of the

medium (Sect. 4), because they are less intuitive than timed automata, and then cannot be easily

computed from an unformal specification.

6.1. Temporized automata

Before defining formally a temporized automaton, let's give an intuitive idea. A temporized automaton

A1? uses a variable I and a timer t. The enabling condition of every transition of A1P depends on i and t.

When a transition occurs, the current values of t and I may change.

Definition 6.1. (Timer t, variable t)

Timer t is a variable which belongs to a finite set T={0, 1,..., tmax} of natural numbers.

t is automatically incremented by one with every tick, if its value is smaller than tmax.

The variable i is a variable which belongs to a finite set 1 ={1 ,2 imax) of natural numbers..

t and I can be set with the occurrence of any transition. D

Let A=(Q,V,5,qo) be a FSM where Q is a set of states, V is an alphabet, q0 is the initial state, and

5cQxVxQ defines the transitions, i.e., a transition of A can be represented by [q,o,r]. Let's see how a

temporized automaton can defined from the FSM A.

Definition 6.2. (Transformation function, temporized transition)

Let 7 and 1 be respectively the sets of values of timer t and variable I.

A transformation function, w.r.t. 7 and 1 , is any function : 1 xT —»1 xT . Let then y? be the set of

transformation functions, w.r.t. 7 and 1 .

A temporized transition, w.r.t. A and 7 and 1 , is defined by Tr=[qi,a,q2;/4], where [qi,o,q2]e5 and

Ae.J% . The semantics of Tr is the following.

Let q i be the current state, ii be current value of I , and 11 be the current value of t.

(1) amay occur only if/4(i] , t i) is defined;

(2) a must occur if /4(ii ,ti) is defined and if /4(ii,t) is not defined for any t>tj.

(3) after the occurrence of a : (a) the state q2 is reached;

(b) timer t is set to t2, and variable I is set to \2, where/4(ij,ti)=(i2,t2). D

A temporized automaton AT can then be constructed if we transform every transition tr=[qj,o,q2] of A

into a temporized transition Tr by associating to it a transformation function.

Definition 6.3. (Temporized automaton)

Formally, a temporized automaton A'P =(Q, V, 5T, 1 , T,q(), i0,to) is defined as follows. Q is a set of

states, V is the alphabet, 1 and 7 are respectively the sets of values o f t and t, q0 is the initial state, i0
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is the initial value of i, to is the initial value of t, and STciQxVxQxy? defines the temporized transitions

(Def. 6.2). D

Definition 6.4. (Acceptance of a timed trace and of a language, equivalence, partial order relation)

LetAT=(Q, V,'ST,T , T , qo,io,to) andletTrc= (ai,Ti)...(aj,Tj)... be an infinite timed trace.

Let 1rt=TriTr2...Trj... be an infinite sequence of transitions of AT, with :

VieIN*:Tri=[qi.i ,ai ,qiAi]€ 6<P.
- The infinite timed trace Trc= (O\,T\}...(OJ,I\)... is accepted by Tr, if and only i f :

For all i>0 : Ui=Cj.i, Vj=tj.i+ti-t;j.i , and (cj , t j)=Aj(ui,vj); where io=0, co=io-

- The infinite timed trace Trc= (c\,l\)...(o\,i\}... is accepted by AT if and only if there exists an infinite

sequence 1r of transitions of AT which accepts Trc.

- A timed language, noted £AT. w accepted by A'n if it contains all and only the traces accepted by AT.

Informally, a system modeled by AT may execute a trace accepted by AT.

- A'JP and A^ are equivalent, and noted A^=A^, if and only if £A'p =L$ .

- Atp is smaller than or equal to A^, and noted A^A1^, if and only if £A<p £l£A!P • Ll

Definition 6.5. (Operator Temp )

Let Au be an untimed automaton accepting the untimed language £Aut, we define the operator Temp

by:

A^P=Temp(Alt) <=> £Atp=77/?K?L(£Aut) <=> £Aui=l//j/wu?L(.£Atp) (See Def. 3.6).

If AT=7em/?(Aut) then AT and A"1 are called equivalent. Q
-

6.2. Transformation from an untimed automaton to a temporized automaton

Since a temporized automaton A'P is automatically computed from an untimed automaton Au t , let's

show in a simple example the principle of the transformation from Aul to A'P. The untimed automaton

considered is represented on Figure 11.a, and our aim is to transform it into an equivalent temporized

automaton modeling the same behaviour (Def. 6.5). The main steps to transform Au t into A'P are

semiformally enumerated below.

Step 1: Defining states of A*P

To each subset S of states of Aut which are closed under tick, corresponds one state S in AT. Let then:

- Q1* and Q be respectively the sets of states of Aut and AT,

- 2Qut<ack) be the set of subsets of Q1* closed under tick,

- The bijection PAut: 2Qut<tick> -» Q, such that PAm( J)=S.

In the example (Fig. ll.a), Q.ut={l, 2 13}, 2Qut<'ick)={ A ®, C}, where ^={1,2,3}, <S={4,5},

G={6,..., 13}, and then Q={A, B, C}, with PAm(^)=A, PAut(<B)=B, PAut(Q=C.

Step 2: Relabeling the states ofA"1

All the states of Aut are renamed as follows.

For every subset S of states closed under tick, i.e., associated to a same state S of A'P :

- Let NS be the number of states Sj , . . . , SNS of S without an ingoing tick ;
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- Every state of S is associated to an Ns-uplet. The latter is computed with the three following rules;

Rl : A state Sj (without an ingoing tick) is associated to the Ns-uplet ( t j ..... t j , ..., INS) with

t; = 0, and tj = X. if j * i, where X is a negative value.

R2 : Let e be a state of S associated to an Ns-uplet (t i , .... INS)- For every state sj (with i<N$), if e

cannot be reached from sj by a sequence of ticks then : tj = X .

R3 : Let e and f be two different states of S, respectively associated to the Ns-uplets (ti,...,tNS) and

(u I,...,UNS). If f is reached from e after a tick then : U j= t j+ l if tj * X, for i=l, ..., NS .

- Every state e of S is then relabeled by (S;t), where S is the same for all states of S, and t is an Ns-

uplet computed with the the three above rules.

- If t = (ti,...,tNS), then every t j is called the component i of t, if t j * X.

- Let then *2s be the set of all Ns-uplets associated to the states of S; TS { (with i<N$) is then the set of

components i of elements of 1$.

The relabeling of states of A1* of Figure 1 La is represented on Figure 1 l.b, with :

-NA=l,NB=l,Nc=2,

- rA={0, 1, 2}, TB={0, 1 }, TC={(0, X), (1, X), (2, X), (3, X), (X, 0), (X, 1), (X. 2), (4, 3)},

•£,={0,1,2,3,4}. Oc2={0, 1,2,3}.

Step 3 Computing transitions o

For every pair jj and S{ of sets of states closed under tick :

- Let S, and Sf be the corresponding states in A'P (see Step 1);

- All transitions executing a same event a, from any state of Si towards any state of Sf, are represented

by a same transition Tr=[Sj,a,Sf^4] in AT1, where A is a transformation function (Def. 6.2) computed

as follows.
- If a transition tr=[(Sb,t),a,(Sr,u)] is defined in A"1, with t=( t j ..... tNSb) and u=(ui, ..., UNSf) then :

for any i <NsbSuch that tj^X, /4(i,ti)=(k,Uk), where k is the smallest indice such that Uk*X.

For the example of Figure 1 l.b, we obtain the temporized automaton A'P=(Q, V, S'P, T, 1 , q0, to.i

represented on Figure 12, with :

1 ={ 1,2} because two sequences of ticks (from states 6 and 10 of Fig. 1 La) are closed under tick.

T={0,1, 2, 3, 4, 5} because 4 the biggest length of a sequence of ticks.

qo=A, io=l, to=0, and the transformation functions are :

Ai(l,0)=Ai(l,l)=Ai(l,2)=(l,0), A2(l,0)=(l,0), A3(l,l)=(2,0),

A4(l,2)=A4(1.3)=A4(2,2)=(l,l).and A5(1,3)=A5(1,4)=A5(2,3)=(1,2).

® (O'A) X~' ^
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11.a. Untimed automaton Aut ll.b. Relabeling states of Aut with values of timers

Figure 11. Renaming states of Aut before transforming it into a temporized automaton

Figure 12. Temporized automaton corresponding to the untimed Aut of Figure 1 1

" uProperty 6.1. Let A and B be two untimed automata over a same alphabet V.
. -r- „, , . . _ /nA <B <=> Temp(A )<Temp(R )

(where Temp (A ) < Temp(E ) means £,Temp(Au() Proof : See Appendix A D

Lemma 6.1. Let Aut be an untimed automaton and A^=Temp(Aui}. Let IQutl and I5utl be respectively

numbers of states and of transitions of AU I . The complexity for calculating A^ from Aut is in :

O( IQutl*|VI*Iog2(IQutl*IVI) + l5utl*IQutl2 *log2(IQlltl) ) (Proof : See Appendix A ). D

7. Protocol derivation for sequential real-time systems

The two starting points of the protocol derivation are (Sect. 2) : (a) a specification of the desired service;

(b) a model of the supremal behaviour of the medium. They are specified with timed automata (Sect. 4).

The results of the protocol derivation are the specifications of (Sect. 2): (i) the protocol in each site of

the distributed system; (j) the timing requirements on the medium. They are specified with temporized

automata (Sect. 6).

In the present section, we propose a procedure of protocol derivation when the desired service is

sequential and specified by one timed automaton. Before presenting the main steps of the procedure,

let's give the following definition.

Definition 7.1. (outgoing, ingoing, out(q), in(q), outstj(q), nbrout(q) )

Let SS1 be a TA specifying a desired service, and let q be one of its states.

Outgoing (resp. ingoing ) transitions of q are transitions which are executable from (resp. lead to) q.

out(q) (resp. in(q)) contains identifiers of sites where outgoing (resp. ingoing) transitions of q occur.

outstj(q) is the set of states of SS1 reachable from q by transitions executed by PE,.

nbrout(q) is the number of transitions executable from q. D
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Example 7.1. For SS1 of Figure 3.b (Sect. 4.1), in ( l )={2} , in(2)={l}, out(l)={ 1 },out(2)={2},

ousti(l)={2}, oust2(l)=0, ousti(2)=0, oust2(2)={ 1}, nbrout(l)=nbrout(2)=l. D

As mentioned in Section 2, the principle of the protocol synthesis is the following.

If after execution of a primitive Aa by a protocol entity PEa, there is a choice between several

primitives executed by different PEy, for i=l,2 p, then :

When PEa executes the primitive Aa, it selects one PEbi and sends a message to it to inform it that it

may execute one of its primitives. This principle implies the two following rules.

Rule 1. The outgoing transitions (Def. 7.1) of the initial state q0 of SS1 are executable by a same

protocol entity, i.e., cardinal of out(q0) is equal to one (Iout(q0)l=l). D

Informally, Rule 1 requires that the first action of the desired service is always executed by a same site.

Rule 2. After execution of a primitive Aa by PEa. the choice between several primitives executed by

different PEbi, for i=l,2,..., p, is achieved in two steps.

- First Step : PEa selects one PEbi ;

- Second Step : The PE^ selected chooses one its primitives. D

7.1. Transformation of the service specification

The first thing to do is to transform SS1 into another timed automaton TSS1 (Transformed SS1) with the

following rules.

. . r oo f (nf\: E(ts): R;K(cs)) fn\ step : each timed transition of SS1: ^ k ^>-4E>

t~h (Ak: E(ts): R;K(cs)) ,_/O\) .̂ (£\s replaced by : W'— — >-\Ly —^-^

A new state r is then inserted between each pair of states q 1 and q2 connected by a transition.

r and q2 are connected by an internal transition i(q2) parameterized by q2.

After this first step, we obtain a TA noted TS1. Let's notice that if a state of TS1 is reachable by an

internal transition i(q), then its outgoing transitions are not internal.

Second step : The specification TS1 is transformed into an equivalent TSS1, such that every state qiof

TSS1 respects either condition Cl or condition C2, defined below.

Cl = only an internal transition i(q) is executable from qi (Fig. 13.a),

C2 = no internal transition is executable from qi, and all outgoing transitions (Def.7.1) of qi are

executable by a same protocol entity, i.e., cardinal of out(qi) is equal to one (lout(qi)l=l,

Fig.B.b). On Figure 13.b., out(qi)={k) and outstk(qi)={rl, . . . , rp}.

(A l k :E l ( t s ) ; RUKl (c s ) ) >^/a\. (APk: Ep(ts); RP:Kp(cs)) >^g)

13.a. internal outgoing transition 13.b. non internal outgoing transitions

Figure 13. Outgoing transitions in a state of the transformed specification TSS1.

The way for obtaining TSS1 from TS1 is the following. Every state q of TS1 reachable by internal
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transition(s) (Fig.l4.a), is replaced by as many states qi as the cardinal of out(q) (Fig.l4.b) . Outgoing

transitions of states qi (which are not internal) must respect the preceding condition C2, and the

following condition C3. Ingoing transitions of states qi must respect the following condition C4.

C3 : Outgoing transitions of two different states qi and qj of TSS1 (Fig. 14.b), generated from a same

state q of TS1 (Fig.H.a), are executed by two different protocol entities.

C4 : The sets of ingoing transitions (which are internal) of two different states qi and qj of TSS1,

generated from a same state q of TS1, are equal to the set of ingoing transitions of state q (Fig. 14).

(Aifc.EKtsXRuKUcs))^^ (Aik .Ei(ts).Ri.Ki(w)) ~

Ptfte} PT 1ft(rt\\. -^*<V_X\ b2(ts). K2. imcgjj^Qp *foTV_>^ \(A*.E3(ts).R3.K3(cs)).

i(q}^<>^v
(A3k , E3(ts), R3, K3(CS)) > f c x > . Cfc— KS) ^Y^i (A^n. '

14.a. State e in TS1 14.b. Transformation of e in TSS1

Figure 14. Example of transformation from TS1 to TSS1

Remark 7.1.(a) if two states rl and r2 of TSS1 are connected by a transition i(q) then Iin(rl)l=lout(r2)l=l;
(b) if TSSMTS1, then TSS1 is non deterministic; (c) if for every state q of SS1, lou(q)l=l, then TSSl=TSl.

Definition 7.2. (Operator Transf)

Operator Transf is simply defined by : TSSt=rra/t^/(SSt). D

Example 7.2. SS1 of Figure 3.b (Sect. 4.1) is transformed into TSS1 of Figure 15. In this example, only

the first step of the transformation is used, because lou(l)l=lou(2)l=l (Remark 7.1.c).

(A,; t < 2 ; { t ) ; '

"(1) V^*- (B2; ts l ;{t)

Figure 15. Transformation of SS1 of Figure 3.b.

7.2. Procedure of protocole derivation for a sequential desired service

The entries of the procedure are : (a) a TA SS1 specifying a sequential desired service; (b) For each pair
(PEj.PEj), a TA SupMedy (Sect. 4.2) specifying the supremal behaviour of the medium.

The proposed procedure of protocol derivation, is called (Der_Seq_<Prot and consists of ten steps.

Stepl: SS1 is transformed into TSS1, i.e., TSSt=Tra^/(SSt) (Sect. 7.1, Def. 7.2).

Step 2 : From TSS1 and the different SupMed-j, we generate MedSSg with the following rules :

- A not internal transition remains unchanged.

- An internal transition i(q) © — >-© is replaced by :

Case a : if in(ql)=out(q2) (Def. 7.1), the transition becomes : © >-©

Case b : if in(ql)={i}?iout(q2)={j}, the transition becomes :
(sj (q):True: { t i j ) ; T r u e f r K q ) : E8j(tg); 0;

The transformation of Step 2 uses SupMed-j (Sect. 4.2), but with s\d rj parameterized by q.
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Informally, i(q) consists in : (a) doing nothing, if it connects two consecutive transitions of SS1 executed

by a same PEj ; (b) sending a message from PEj to PEj, if it connects two consecutive transitions of SS1

respectively executed by PEj and PEj. The message is parameterized by q.

Step 3 : Transitions e of MedSSe are removed by projection for obtaining MedSS1. An algorithm for

removing these e is proposed in [2].

Step 4 : MedSS1 is untimed (Def. 5.1) for obtaining MedSSul=t/nrimM(MedSSt). MedSSut is a minimal

FSM containing the event tick. Let's notice that the four following steps process FSMs with event tick .

Step 5 : We generate an untimed automaton GPSul (global protocol specification), by adding a second
parameter to each event s|(q) or rj(q) in MedSSut, with the following rule :

A transition ©———>© is replaced by a transition @) '' —>W . The same transformation is

made on transitions rj(q). This transformation allows to differentiate two transitions s-j(q) (or r](q))

which do not lead to the same state in MedSS ut.

Intuitively, if a primitive A; is executed by a protocol entity PEj, and is followed by execution of a

primitive Bj by PEj, then after execution of A; by PEj, this one sends a message to PEj to inform it that it

may execute Bj. When there is no timing requirement, the message contains only one parameter q which

informs PEj about the primitive which has been executed. When there are timing requirements, PE;
sends a message with a second parameter q2 (event s-|(q,q2)); the latter informs the medium about the

delay ti between Aj and s-j(q,q2). When the message reaches its destination, the medium replaces q2 by

r2 (event rj(q,r2)); the latter informs PEj about t=ti +12, where 12 is the transit delay of the message in the

medium.

Step 6 : For each PEj, the untimed automaton PSj" is derived by projecting GPSut in the alphabet
V\(u{tick }, where V, contains all events in GPSU| executed by PEj. An event of V; may correspond to :

(a) execution of a primitive by PEj; (b) an event sj(q,q2); (c) an event rf(q,r2), with j,k *i.

Step 7 : For each pair (PEj, PEj) and each q, where PEj sends to PEj a message whose first parameter is

q (i.e., events s-|(q,*) and rj(q,*) exist in GPSut), the untimed automaton ReqMecffj(q) is generated by

projecting GPS^ in the alphabet V{j(q)u{r/'c/: }. An element of V,j(q) may be any event s-j(q,*)and

rj(q,*) of GPSul. The obtained ReqMedy (q) specifies the behaviour of the medium when it carries, from

PEj to PEj, a message whose first parameter is q.

The informal semantics of the different PS-" (Step 6) and ReqMedy(q) (Step 7) is the following. If the

different protocol entities PEj are specified by PS"', and if the medium respects the specifications
ReqMedfj(q), then the service SS1 is totally or partially provided (Def.7.3 and 7.4).

Step 8 : The systems specified by PS"1 and ReqMecfj'j(q) - obtained at steps 6 and 7 - must be in their

initial states simultaneously, when the discrete time t (Sect. 3.1) is initialized to zero. In another words,

the specifications PS"1 and ReqMedjj(q) are relative to an absolute time. This implies that the local

clocks in all sites of the distributed system are synchronized and then equivalent to a global clock. The
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aim of the present step is to transform the specifications in such a way that the local clocks do not need

to be synchronized.

Let's remark that there is a redundancy in t imings constraints of the specifications PS"1 and
ReqMecf-j(q). In fact: (a) Since timing constraints on sendings of messages are specified on PSf, they

do not need to be specified on ReqMedy(q); (b) Since timing constraints on receptions of messages are

specified on ReqMecfjj(q), they do not need to be specified on PS"1. Therefore, the transformation which

consists in removing timing constraints on : - Receptions of messages from any PS"';
- Sendings of messages from any ReqMerffj(q).

does not modify the service provided to the user (Def. 7.3).

Besides, with this transformation the local clocks of the different sites do not need to be synchronized.

More formally, the transformation consists in :
For every PS"' and any k*i:

- a sequence of ticks which precedes a transition rH(q.r) is replaced by a sequence of e;

- a selfloop tick is added to any state from which a transition if(q,r) executable.

For every ReqMed;j(q):

- a sequence of ticks which precedes a transition s](q,r) is replaced by a sequence of e;

- a selfloop tick is added to any state from which a transition s](q,r) executable.

After this transformation, transitions e are removed by projection.

Step 9 : The untimed automata PS"' and ReqMerfy(q) obtained at Step 8 are transformed into

temporized automata, by using operator Temp (Def. 6.5). Therefore :

- Every protocol entity PEj is then specified by PS'^Tem^PS"1);

- The behaviour of the medium, when it carries from PEj to PEj a message whose first parameter is q,

is specified by ReqMed^.(q)=7i2m/7(ReqMed^j(q)).

Step 10 : The temporized automata are transformed as follows.
For any i,j,q : all transitions [qi, s-j(q,*),q2, ?] (where * is any parameter and ? is any function) are

represented by one transition [qi, s-j(q,x),q2, fx], where x is a variable and fx is a transformation function
depending on the value of x. The same transformation is made on transitions [qi , rj(q, *),q2, ?].

An example of this transformation is given in Section 7.3.

End of (Der_Seq_(prot •

Let's remark that Steps 8, 9 and 10 are closely related to the three important contributions (mentioned in

Abstract and Section 1.2) of this paper. In fac t :

- In Step 8, the untimed specifications obtained by the protocol synthesis are optimized in the sense that

they do not necessitate to synchronize the different local clocks of each site of the distributed system

(Sect. 7 and 8).

- Step 9 uses temporized automata which are formally defined in Section 6;
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- In Step 10, the temporized specifications obtained by the protocol synthesis are improved in the sense

that they are more concise : several transitions are represented by one parameterized transition

(Example in Section 7.3).

Definition 7.3. (Provided service PrSSut)

For computing an untimed automaton (with event tick ), noted PrSSut, which models the service

provided to the user, one only has to project MedSSut (Step 4) in Vu{ tick], where V is the alphabet of

SS1. Informally, this projection consists in keeping visible, in sequences accepted by MedSSut, only

events of SS1*. D

Theorem 7.1. If SS1 specifies a desired service, let SSut=t/m/mM(SSl) (Def.5.1), and let PrSSut be the

specification of the provided service. Then : PrSS1* < SSul (i.e., £prSS"t C £sS"t )•

The safety is then ensured. (Proof: See Appendix A . D

Definition 7.4. (Service totally or partially provided)

Let SSut and PrSSut be untimed automata specifying respectively the desired and the provided service.

The service is said totally provided if and only if : SSut = PrSSut, i.e., £prSS"t — £ssut .

The service is said partially provided if and only if : SSU( < PrSSu, i.e., £p,-ssut c£ssut • Ll

7.3. Example

We consider the desired specified by SS1 of Figure 3.b (Sect. 4.1), and the supremal behaviour of the

medium modeled by SupMerfu and SupMecf2 , (Fig. 4, Sect. 4.2), with tf$=qy=l and t7a2x=t£a,x=2.

Let's notice that the timers and counters, used for specifying a desired service and the supremal

behaviour of the medium, are, fictitious. For example, the desired service of Figure 3.b just means that

the user wants that there must be at most two ticks between primitives Al and B2. But the timers do not

really exist.

<Der_Seq_(Prot (Sect. 7.2) is used and the intermediate results of Steps 1 to 8 are represented on

Appendix B.

Step 9 : The specifications obtained are represented on Figure 16.

PS;p=(Qi, Vb 5lp,l I.T!, qi,0, i 1,0, t l f0), with :

-!,={!}, Ti={0,l,2,3}, qi.o=l, ii.o=l, t,.o=0.
- The transformation functions are: Fi(l,0)=Fi(l,l)=Fi(l,2)=(l,0), F2(l,0)=(l,0), F3(l,l)=(l,0)

F<1,*)=(!,!) and Fs(l,*)=(l,2), where * is any value7 { .

PS*=(Q2, V2, 62P, 1 2, T2, q2,0, i2.o, t2.o)

-*2={U, T2={0,1,2}, q2.0=l, i2,o=l, t2.o=0.

-The transformation functions are: G i(l, *)=(!,()), G2(l,*)=(!.!), G3(1,0)=G3 (!,!)=( 1,0)

G4(l,0)=(l,0) and Gs(l,l)=(l,0), where * is any value T2.

ReqMedtpj2(2) =(Q3, V3, 5?, 1 3,T3, q3,o, i3,o, t3>0)

-13={1,2}, T3={0,1,2,3}, q3.o=l, 13.0=1, t3.o=0.
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- The transformation functions are: Hi(l,+)=(l,0), H2(l,*)=(2,0), H3(l,l)=(l,0)

H4(1,2)=H4(2,1)=(1,0), where * is any value T3.

ReqMedf j(l)=(Q4, V4, 64P, 1 4, T4, q4>0, i4,0, M.o)

-14={1,2}, T4={0,1,2,3}, q4.o=l, i4.o=l, U.o=0.
- The transformation functions are: Ki(l,*)=(l,0), K2(l,*)=(2,0), K3(l,l)=(l,0)

K4(1,2)=K4(2,1)=(1,0), where * is any value T4.

Let's mention that 1 3=1 4, T3=T4, and Ki=Hi, for i=l, 2,3,4.

The elements of Qj and Vj, for i= 1,2,3,4, are represented on Figure 16.

, ,
(r ft 1.3). F 5).

(sf(2,6), FZ)

(s?(2.7), F3)

16.a. PS!P

). H ,

©
G4) (r2(2,10),H3) (rf(l,2),

(4(1,15), G 5)

16.c. ReqMedtp2(2) 16.d.

Figure 16. Temporized specifications obtained at Step 9

^XD
K3)

16.b. PS*

Step 10 : The specifications obtained are represented on Figure 17, with :

glO=Gl,

k2=K3, k3=K4,

Jrfd.x), f x)

=Ki, k15=K2 ;

(A,, Ft)

r2'(2,x), gx)

17.a. PS!P

(sUl,x),k»)

), hx)

17.b. PS2P 17.c. ReqMecfp2(2) 17.d.
Figure 17. Parameterized temporized specifications obtained at Step 10

The informal semantics of PS1,1*, PS2P, ReqMecf P2(2), and ReqMecfp ,(l) is the following. If PEt and PE2

respect respectively the specifications PS^5 and PS'2P, and if the medium respects the specifications

ReqMerff (2) and ReqMed'f .(1), then the desired service SS' of Section 4.1 is totally provided.
* ,j£- ^' ^

The service is totally provided (Def. 7.4) because the projection of MedSSut (Step 4) in alphabet

Vu[tick}, is equivalent to SSul=C/nrime/USSl) •

8. Protocol derivation for parallel and concurrent real-time systems

8.1. Introduction

For the sake of simplicity and without a loss of generality, we consider only a parallel system composed

by two sequential systems. A desired parallel service is then specified by two TA (Def.4.6) SS'[i] over

alphabets V[i], for i=l,2. Each SSl[i] specifies a sequential desired service. Let's consider three cases :
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(a) V[l]cV[2] : SSt=SSt[l]®SSt[2] (Def.4.15) is a sequential service (Remark 4.4.b), and we may use

the procedure (Der_Seq_<Prot (Sect. 7.2) for deriving the protocol providing the service specified by

SS1.

(b) V[i]*0 and V[i]rYV(j]=0, for i,j=l, 2, and i*j : SS'fl] and SSl[2] are independent and compose a

parallel system (Def. 4.1 1). We may process each sequential service separately, i.e., for each SSl[i], we
use (Der_Seq_(Prot for deriving the sequential protocol which provide SSl[i].

(c) V[i]-V(j]*0 and V[i]nV[j]*0, for i,j=l, 2, and i*j : SS'[1] and SS<[2] are dependent and compose

a concurrent system (Def. 4.1 1). This case is studied in detail in the rest of the present section 8.

8.2. Solution for the problem of the choice

In a concurrent system, we think that one of the main problems consists in avoiding possible deadlocks.

For that, Rule 2 (Sect. 7) is too weak. Therefore, a more restrictive rule is used.

Rule 3. All choices are executed by a same protocol entity PEC. Therefore, after execution of a primitive

Aa by PEa, the choice between several primitives executed by different PEy, for i=l,2,..., p, is achieved

by PEC as follows : - PEa "passes the buck" to a given PEC;

- PEC selects PEy and the primitive to be executed. D

Rule 3 seems too restrictive, and we intend to weaken it in a next version.

To respect explicitly Rule 3, we must add to SS'[1] and SS'[2] some timed transitions (Def. 4.5) noted

[qi, ic, q2, True,0,True], where ic is executed by PEC. These timed transitions are added as follows :

For each state q of SSl[i], for i=l, 2, where nbrout(q)>l (Def. 7.1), the structure of Figure 18.a. is

replaced by the structure of Figure 18.b, where Tri ..... Trm are ougoing transitions of state q. The

specifications obtained are noted SSc[l] and

Tf| >© (ic:True-.0;True)Q Tr,

Trm (^ ^-\ (ic;True; 0;Truc) ̂  • Trr

18.a. Before adding events ic 18.b. After adding events ic

Figure 18. Adding events ic

Instead of using Rule 1 (Sect.7) for the two services SS'[1] and SS'[2], the following stronger rule is

used.

Rule 4. The outgoing transitions (Def. 7.1) of the two initial states qi,o and q2,o of SSl[l] and SS'[2] are

executable by a same protocol entity, i.e., out(q i,o)=out(q2,o) and Iout(qi,0)l=lout(q2,o)l=l- D

Informally, Rule 4 requires that the first action of the desired service is always executed by a same site.

Without Rule 4, if SS'[1] and SSl[2] are dependent then synchronizing the local clocks of the different
sites is mandatory, and the transformation of Step 8 of (Der_Seq_<Prot cannot be used.
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8.3. Procedure of protocol derivation for a concurrent system

Let two TA SSl[i] over alphabets V[i], for i=l,2, and a TA SupMed^.v for each pair (PEU,PEV), the

procedure of protocol synthesis for concurrent systems, called (Der^onc^rot, consists of eleven steps.

Step 1 : SSl[i] are modified into SSc[i], for i=l,2, (Sect. 8.2). Besides, any two states of respectively

SSc[l] and SSc[2] must be identified differently. This is necessary for not confusing exchanged
messages, which are parameterized by identifiers of states (see ®er_Seq_(prot in Sect. 7.2).

Step 2 : Steps 1 to 5 of (Der_SeqJProt are applied to each SSc[i] for obtaining GPSc'[i], for i=l,2, but

with the following difference : at the third step of ®er_Seq_<Prot, not only transitions e , but also

transitions executing event ic are removed. Let Vg[i]u{rfc£ } be the alphabet of GPS£l[i], then

V[i]cVg[i],

Step 3 : The synchronized product GPS^It=GPS^t[i]xGPS(y1[i] is computed.

Step 4 : Indesirable states are removed from GPS"1 for obtaining GPSut. A state is indesirable if it is

either a deadlock or only a selfloop tick is executable from it (Remark 5.1). For removing indesirable

states, we may use a fixpoint method similar to the one used in the control theory for computing

supremal controllable languages [12,32].

Step 5 : The untimed protocol specification PS"1 of PEC (Sect. 8.2) is obtained by projecting GPS1* in
alphabet Vcu{ tick }. Vc contains all events of GPS ul executed by PEC, and these events are of the form

Sc(*,*) and TC(*,*) (see Step 2 of <Der_Seq_<Prot), where * may be any parameter.

Step 6 : The sequential GPSut[i] are obtained by projecting GPS"1 in alphabets Vg[i]u{t.ick] of GPS£'[i]

(Step 2), for i=l, 2. The sequential processes specified by GPS"'[i], for i=l,2, interact with PEC specified

by PS"1 and do not lead to an indesirable state.

Step 7 : For each GPSut[i] (for i=l,2), we apply Step 6 of <Der_Seq_(Prot for obtaining the untimed

automata (UA) PSj"[i] which specify PEj (j=l n).

Step 8 : For each GPSut[i] (for i=l,2), we apply Step 7 of (Der_Seq_<Prot for obtaining the UA
ReqMedjlk(q). Each ReqMedjk(q) depends implicitly on i, because q identifies a state of SSc[i], and

states of SSc[l] and SSc[2] are identified differently (see Step 1).

The informal semantics of PSg' (Step 5), PSj"[i] (Step 7), and ReqMedJk(q) (Step 8) is the following. If

each PEj, for j=l, ... ,n, is specified by PSj^llxPS"'^], and if the medium respects the specifications

ReqMecfg(q), then the desired concurrent service specified by SSt=SSt[l]xSSl[2] is totally or partially

provided by the help of PEC specified by PS"1.

Step 9 : Since Rule 4 is respected, the transformation of Step 8 of <Der_Seq_(Prot is applied to the

untimed specifications obtained at Steps 6,7 and 8. With this transformation, the clocks of the different

sites do not need to be synchronized.

Step 10 : The untimed specifications obtained at Step 9 are transformed into temporized automata
(Sect.6, Step 9 of (Der_SeqJPmf).

page 30



Step 11 : The transformation of Step 10 of (Der_Seq_(prot is applied to the temporized specifications

obtained at Step 10, which becomes more concise.
End of (Der_ConcJProt •

8.4. Example

Since the problem of concurrency exists even for systems without timing requirements, let's give an

example for such systems. In this case, the T_Conditions (Def.4.2) and F_Conditions (Def. 4.4) of timed
transitions (Def.4.5) are True, and their Resets are 0. The untiming operation (Def. 5.1) consists just in

adding a selfloop tick to every state. For these reasons : (a) timed transitions [qi,Aj,q2,True,0,True] are

represented just by [qi Ai,q2]; (b) event tick is not represented, therefore A1, AM=UntimeA(Al), and

A'P=rg/np(Aul) are not differentiated and are refered to by A; (c) the messages exchanged contain only

the first parameter. The second parameter which implicitly contains only temporal informations, is not

necessary. Then :
(a) Step 2 of <Der_Conc_<Prot is composed only by steps 1 to 3 of <Der_Seq_<Prot.

(b) Step 4 of <Der_Conc_<Prot just consists in removing deadlocks.

(c) Steps 8 to 11 of (Der_Conc_(prot are not necessary.

The desired concurrent service is represented on Figures 19.a and 19.b, and is specified by SS[1] and

SS[2] respectively over alphabets V[l]= {A 1,82, OC2) and V[2]={A], 62,72). SS[1] and SS[2] are then

synchronized on Ci and D2- After the first step, we obtain SSJ1] and SSC[2] on Figures 19.c. and 19.d.

Ci Ci

19.a. SS[1] 19.b. SS[2] 19.c. SSC[1] 19.d. SSC[2]

Figure 19. Example of concurrent desired service without t iming requirements

If we apply (Der_Conc_(Prot, we obtain :

- at Step 5, the specification PSC of PEC is represented on Figure 20.a.

- at Step 7, the specifications PS ][1], PS2[1], PSj[2] and PS2[2], are represented on Figures 20.b to 20.e.

20.a. 20.b. PS i [ 1 ] 20.c. PS 2 [ 1 ] 20.d. PS, [2]

Figure 20. Specifications od the protocol entities

20.e.PS2[2]
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9. Conclusion

In this paper, we have developed two models for specifying real-time discrete event systems. The first

model, based on timed automata, is used to specify a desired service and a supremal behaviour of the

medium. The second model based on temporized automata, is used to model the protocol and temporal

constraints on the medium. Next, the two models are applied to synthesize protocols for real-time

applications. Two procedures of protocol synthesis, respectively for sequential and parallel distributed

real-time discrete event systems, are proposed. The synthesis approach used for deriving a real-time

protocol providing a desired service is inspired by other works, but our main contribution has been to

consider timing constraints .

Let's make an informal and succint comparison between our two models and models which have

mainly inspired us.

Model of timed automata : It is partially inspired from [1,31]. In [1], a dense time and a set of clocks

are used. The clocks are used as we use the timers in our model, but the semantics is quite different

because we use a discrete time. The main advantages of our model are :

(a) Contrary to our model, where the finiteness properly can be ensured by using counters, the finiteness

property is supposed respected in [1,31], but it is not ensured.

(b) In [31], the composition is defined only when the two TA have a same alphabet, and in [1], the

authors specify only how events executed conjointly by the two composed systems are processed.

(c) Algorithms which deal with distributed real-time systems are relatively straightforward when the

time is discrete.

Our limitation is that there is an inaccuracy equal to the delay between two ticks.

Model of temporized automata : It is inspired from [5,24,2?] only in the sense that it uses a discrete

time, and a fictitious event tick generated by a conceptual clock. Our model is more suitable to be

automatically computed from an untimed automaton.

And to conclude, we propose the following future works. Firstly, we intend to replace Rule 3

(Sect.8.2) by a weaker rule. Secondly, we are investigating how we can modify systematically several

existing protocol entities, which provide an old service, for providing a new desired service. For that, we

intend to use control theory of the discrete event systems .
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APPENDIX A : Proofs

Proof of Property 3.1.
Let TRC= a ]OC2 ... Oj ... be a infinite untimed trace respecting the finiteness property (FP), and

Trc=7wtt;r(TRC)={ci ,Ti)...(ai,Tj).... Since TRC respects the FP, then Trc also respects the FP (Def. 3.5).

Since Trc is infinite, then V i > 0 , Oj and <3\e defined (1)

Def. 3.1 implies : 3 Me > 0, such that: V i > 0 , 3 j > i with TJ.J = tj < TJ and j < i+Mc. (2)
Def. 3.5 implies : (ai4/Ii=ai ) and (a^tick , if $ j>0 such that k = j + T j ) , for i,j=l,2,... (3)

Let Me defined in (2), k>0, i such that i+ TJ < k < i+ l+Tj + 1 ; (4)

- li = (i+l)+Ti+i > k > i+Tj : From (3), ttj, =01+1 #tick ;

Let's consider two cases, for computing 12:
Casel: k+l<i+l+tj+1; (5)

-I2 = k + l > k ; (6)
- (4), (5) and (6) imply : i+ TJ < 12 < i+l+Tj+ 1 ; (7)

- (6) implies : l2-k = 1 < Mc+1;

- (3) and (7) imply : oq2 =ftc& ;
Case 2: k+l= i+l+Tj+i; (8)

- (2) implies : 3 j such that i+l< j < i-f 1+ Me and TJ.I = i-l+\ TJ ; (9)

- l 2 =j+Ti+i ; (10)
-(8)and(10) imply: l 2 -k=j- i ; (11)
- (9) and (10) imply : j-l+ TJ., < h <j+t j ; (12)

- (3) and (12) imply : c^2=tick ;

- ( 9 ) a n d ( l l ) i m p l y : l 2 > k and !2-k < Mc+1; •

Proof of Theorem 3.1.

To demonstrate the equality between UntimeL(L\r\L2) and VntimeL(L2)<^UntimeL(L2},
we will prove the inclusions in the two directions.

(1) UntimeL(L\r\L2) ^VntimeL(L\)r\UntimeL(L2)

Let TRC e VntimeL(L\r\L2\6 implies : 3 Trc 6 L\r\Li such that TRC=Untim.eT(Trc) and Trc=77m<?7XTRC) (1)

(1) implies : Trc e L\, Trc € £2 , and TRC=f//7/;77?€r(Trc) (2)

Def. 3.6 and (2) imply : TRC € UntimeL(L\) and TRC e UntimeL(£ti (3)

Therefore, (3) implies : TRC e UntimeL(L\)r\UntiineL(L2)

(2) UntimeL(L\)r\UntimeL(L2) c UntimeL(L\r\L'£)

Let TRC e VntimeL(L\)C\lJnumeL(Li) (4)

(4) implies : TRC € UntimeL(L\} and TRC e UnAmeL(L\) (5)

Def. 3.6 and (5) imply : 3 Trci e L\h that TRC=f/nrim«r(Trc i) (6)

3 Trc2e £2 such that TRC=l/m/m«r(Trc2) (7)
Def. 3.5, (6) and (7) imply : Trc 1=Timer(TRC) and Trc2=r/me7(TRC) (8)
(6), (7) and (8) imply : Trci=Trc2=77/ne71(TRC) e £]n£2 (9)

Therefore, (9) implies : TRC e UntimeL(Lir\L2) •
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Proof of Property 4.1.
Let:-At=(Q.V,TX5,q0), with «M={Vc,, Vc2,..,VCNc} ;

- Trc= (ai,Ti)...(as,Tj)... be any timed trace accepted by A1;

- l7i=TriTr2...Trj... be the infinite sequence of transitions of A1, which accepts Trc, with

Tr,=[qi.i;ai;qi;Ei(ts);Rj;Kj(cs)]e 6, for i>0 ;
- Me = Me i+Mc2+...+McNc.

We intend to prove that: (Vc iu...uVcNc=V) implies : (V i >0 , 3 j>i with vy\ TJ < TJ and j < i+Mc).

Let then i > 0 and j=i+Mc. Let's prove that TJ < TJ or, in other words, that TJ = TJ is impossible.

Hypotheses : TJ = TJ : (1)
Vciu...uVcNc=V (2)

(1) implies : there is no tick between the occurrences of Trj and Trj. (3)
(3) implies : no counter is set to zero between occurrences of Tn and Trj. (4)
Def. 4.5 and (2) imply : The F_Condition of any Trj depends on at least one counter,

i.e., Kj(cs) is not the constant True. (5)
(5) implies : at least one counter is incremented with the occurrence of any transition. (6)
Def. 4.9 implies : no counter cp can be incremented more than Mcp times without

being reset to zero (7)
j=i+Mc implies : there are Mc-f 1 transitions from Tr; to Trj. (8)
(4), (6), (7) and (8) imply : Me 1+Mc2+...+McNc > Mc+1 (9)
Therefore, hypotheses (1) and (2) lead to inequation (9) which is incompatible with
Me = Mci+Mc2+...+McNc.
We deduce that hypothesis (2) implies TJ < TJ and then Trc respects the finiteness property. •

Proof of Theorem 4.1.
Let A|c=(Qk,V,Tk,'Mc,8k,qko) be two TA, for k=l,2, over a same alphabet V. To demonstrate the equality

between £A\A2 anc* A\ n A^ > we Wl^ prove the inclusions in the two directions.

(1) £A« n£A'2 c £A<xA'2

Let Trc= <ai,Ti)...(ai,Ti>... e LA\A<2, and then Tree LA\d Tree £A<2 . (1)

(1) and Def. 4.10 imply that there exists, for k=l, 2, an infinite sequence

7^k=TrkiTrk2...Trkj... of transitions of A'k, which accepts Trc, with

Trki=[qki.i;Oi;qki;Eki(tsk);Rki;Kki(csk)]e 5k ' , for i>0. (2)

(2) and Def. 4. 10 imply that any Trkj is enabled at time T J , for i>0, and k=l, 2. (3)

(3) and Def. 4. 12 imply that transitions Trj of A'jXA^, are enabled at time TJ , for i > 0,

withTr i=[(qlj.1 ,q2i.i);a i;(ql i ,q2 i);Elj(Lsl)AE2 i(Ls2);RljuR2i);Klj(csl)AK2 i(cs2)]2 . (4)
(4) and Def. 4. 10 imply that T^Tri^.-.Trj... accepts Trc. (5)

(5) and Def. 4. 10 imply that A\*A12 accepts Trc, i.e., Tree £A'lXA2 •

(2) £A',xA'2 c £At n £A-2

Let Trc=(ai,Ti)...(ai,Ti>... be a timed trace accepted by A'^Aj, i.e., Tree £A'lxA<2. (6)

(6) and Def. 4. 10 imply that there exists an infini te sequence 7>=Tr|Tr2...Trj... of transitions of A'^AJ,

which accepts Trc, with :

Tn=[{qli .1 ,q2j.1);ai;{qli ,q2i);Eli(Lsl)AE2i(Ls2);Rl iuR2i);Klj(csl)AK2 i(cs2)]2. (7)

(7) and Def. 4.10 imply that any Tr; is enabled at lime TJ , for i>0. (8)

(8) implies that any transition Trkj of A'k is enabled at time T J , with :

Trkj=[qki.i;aj;qkj-3ki(tsk);Rkj;Kkj(csk)]€8k ' , for i>0, and k=l , 2. (9)
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(9) implies that the infinite sequence '7/k=Trk1Trk2...Trki... of transitions of A'k accepts Trc, with

Trki=[qki.i;ai;qki£ki(tsk);RkiJCki(csk)]e5k ' , for i>0, and k=l,2. (10)

(10) and Def. 4. 10 imply that Trc is accepted by A\d A2, i.e.. Tree £A', n£A2 .

Footnotes (Theorem 4.1).
1 Eki(tsk)isaT_Condition(Def.4.2), w.r.t. Tk, a n d R k j C T k , fork=l,2,

2 El; (tsl)/\E2i(ts 2) is a conjunction of two T_Conditions, respectively w.r.t. Tl and T2.

Therefore Eli(tsl)AE2j(ts2) is a T_Condition, w.r.t. TluT2.

Klj(csl)AK2i(cs2) is a conjunction of two F_Conditions, respectively w.r.t. Cl and C2.

Therefore Kli(csl)AK2i(cs2) is a T_Condition, w.r.t.

Proof of Property 4.2.
Property 4.1 and VcliU...uVclNci=Vc2iU...uVc2Nc2=V imply that both £A>, and £A'2 respect the

finiteness property (FP). Therefore, their intersection £A',n£A2 also respects the FP. (1)

Theorem 4.1 and (1) implies £A'lxA<2=£A'in£A2 and then £A<lX,A2 respects the FP. (2)

Since £A«, £A<2 and £At,xA'2 respect the FP, then A1,, A2, and A\*A12 also respect the FP (Prop. 4.1) •

Proof of Lemme 4.1.
Let - A1 be a TA over V, and let W be such that VcW.

- Trce= (O] ,ti)...(ai,tj)... be a timed trace over the alphabet W.
Def. 3.3, 4. 10 and 4. 14 imply :

3 Tn which accepts Projv(Trce) and is a sequence of transitions of A' <=>

3 7/2 which accepts Tree and is a sequence of transitions of Extw(Al) (1)

(1) and Def. 4.10 imply : Prqjv(Trce) e £At «• Trcee £EXIW(A') (2)

Def. 3.4 implies : Tree e Exl^L^i) <=> (Projv(Trce) e £At ) (3)

(2) and (3) imply : Tree e £Extw(At) <=> Trcee Extw(£A t). i.e.,

Proof of Theorem 4.2.

Let AJ=(Qi,Vi,Ti,'M,5i,qio), for i=l,2,

Def. 4. 15 implies: A'^A^ ExtV2(A\)^At2 , i.e., £A'10A<3 = £ExiV2(AI1)^At2 (1)

Theorem 4. 1 implies : £^1 V2(Ai)* A'2 = ^Exi v2(Ai) n^A'2 (2)

(1) and (2) imply : £^^2 =

Proof of Property 4.3.

Let A\=(Qi,Vi,Ti,^,5i,qio), for i=l,2.

Hypothesis : A2 (and then L\\} respects the finiteness property (FP). (1)

Theorem 4.2 implies : £A'10AI2 = (^Exiv2(Ai) n£A'2 ) and then £A'10A<2 c £A>2 (2)

(1) and (2) imply : C^^2 (and then A\®A{2) respects the FP.
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Proof of Theorem 4.3.

Def. 4.16 implies : A\ A2 = ExtviuV2(Ati)xExtV2uvi(At2), i.e., ̂ A'llA^^xtviuvrfA'i^Extviuv^) 0)

Theorem 4.1 implies : £ExtVK,v2(A'i)*ExtviuV2(A2) = ^ExtviuV2(Ai)n^Extviuv2(A:!) (2)

(1) and (2) imply : LA\\^2=L ExtVioV2(Al,)n£ExtviuV2(Al2) •

Proof of Property 4.4.

Let Trc be a timed trace accepted by A\ A2 where A1, and A2 are two TA respecting the FP

Theorem 4.3 implies : Trc is accepted by both ExtviuV2(A\ and Extv2uvi(A2) (1)
(1) and Lemma 4.1 imply : Trc belongs to both ExtviuvzC-^A'j) ^d Extyi uvzC-^A-j) (2)

Def. 3.4 and (2) imply : Proj vi (Trc) € £A'i and ProjvaCTrc) e£At2 (3)

Since A\d A2 respect the FP, then (3) implies : both Proj vi (Trc) and Proj V2 (Trc) respect FP (4)
(4) implies : The number of events of Vi which occur in Trc during one uct is finite and bounded

by a constant Mel (Def. 3.1). (5)
The number of events of V2 which occur in Trc during one uct is finite and bounded

by a constant Mc2. (6)
(5) and (6) imply : The number of events of ViuV2 which occur in Trc during one uct is finite

and bounded by a constant Me < Me 1 + Mc2.

Therefore, A\BA2 respects finiteness property. •

Proofs of Lemmes 5.1.
Let A1 =(Q,V,T,V, 5,q0)) be a TA, and let Aul = UntimeA(Al).

S.l.a. A state of Aut is defined by (q, ts, cs), where :

qe Q, ts=(ti,..., tNt)e'rc(0;Mti+l)x...x(0;MtNt+l> and cs e C £ (0;Mci)x...x(0;McNc>

Therefore, Q« £ QxOxC, which implies that IQ"M< IQIxlTlxICI (1)
Nl

Since T'e <0;Mti+l)x...x(0;MtNt+l) , then ITI < fj (Mij+2) < (Mt+2)Nt (2)
1=1

Since C£ <0;Mci)x...x(0;McNc> , then IC^rf (Mci+D ^ (Mc+2)Nc (3)
i=l

(1), (2) and (3) imply : IQuM < IQI*(Mt+2)Nt*(Mc+l)Nc •

S.l.b. If q is a state of A land (q, ts, cs) is a state of A"1, then for every event executable in A1 from q,

there is at most one event (*tick) executable in Aut from (q, ts, cs).
Seeing that ts can have at most (Mt^)1^ different states, and that cs can have at most (Mc+l)Nc

different states, then the number of transitions of Au l not equal to tick is bounded by :

iSiHgKMH^NKMc+l)1*. (1)
From each state of A1*, there is at most one tick , the number of transitions tick is then bounded by :

l52l=IQI*(Mt+2)NU(Mc+l)Nc. (2)
(1) and (2) imply : the number of transitions in Au ( , is bounded by

l8il+l62l=(IQI+l5lKMt+2)^*(Mc+l)Nc. •

S.l.c.
- For a state qul=(q, ts, cs) of A" ', the calculation of (q, ts+1, 0) necessitates a time in

O(Nt*log2(Mt+l)+Nc*log2(Mc)), because log2(Mt+l) (resp. log2(Mc)) is the maximum number of bits
for coding the value of one timer (resp. one counter).
Therefore, the time for calculating all transitions tick in Aut is in :

O(IQi*l*{Nt*log2(Mt+l)+Nc*log2(Mc)})<0(IQI*(Mt+2)Nt*(Mc+l)Nc*{Nt*log2(Mt+l)+Nc*log2(Mc)})
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- Testing if an event a*tick is enabled from a state (q,ts,cs) of Aut necessitates at most a time in
O(k*(log2(Mt+l)+log2(Mc))) where k is the maximum length of the T_Conditions and the
F_Conditions.
Calculating (q',ts',cs') such that [(q, ts, cs);a;(q',ts',cs')]€5ut, i.e., resetting some timers and possibly

incrementing some counters, necessitates at most a time in O(Nt*log2(Mt+l)+Nc*log2(Mc)).

Therefore the time for calculating all transitions *tick in A u t i s i n :
O(l5il*{(Nt+k)*log2(Mt+l)+(Nc-fk)*log2(Mc)})<

O(l6l*(Mt+2)Nt*(Mc+l)Nc*{(Nt+k)*log2(Mt+l)+(Nc+k)*log2(Mc)})
- Indesirable states (i.e., deadlock states and states from which only a selfloop tick is excutable) are

removed from A"1. For that, we mat use a fixpoint method similar to the one used in the control theory
for computing controllable languages. The complexity of such a method is in :

O( IQUM2)=O( IQI2*(Mt+2)2xNt*(Mc+l)2xNc ).

therefore, the total complexity is in : O( IQI2*(Mt+2)2xNl*(Mc+l)2xNc ). •

Proofs of Properties 5.1.
S.l.a. LetTRC= ajtt2 ... otj ...be an untimed trace accepted by UntimeA(A\xAl2).

Def. 3.6 and 5.1 imply : There exists a timed trace Trc accepted by A^xAj, i.e., Trc e ^A'IXA^ •

such that : TRC = Untim.eT(1vc) (1)

(1) and Theorem 4.1 imply : Trc e Lf^\r\L^2 , and then Trc e L&\^ Trc e £A< (2)
(1), (2), and Def. 3.6 imply :

TRC e UntimeL(LA\)= £AJ" and TRC e UntiimL(LA'2)=L^ , i.e., TRC € £Aj" ^£A2U| (3)

Since A"' and A.* are FSMs, then : £A;» n£Aj' C ^A^xA^ (4)
We have not the equality, because £AJ" and £A£' contain only infinite traces, while

xA^' may contain finite traces, if AJ *A2 contains deadlocks.1 "2

(3) and (4) imply : TRC e LA?*^ , i.e., TRC is accepted by A^'xA^

Therefore: UntimeA(A\xAl2) < A^xA* •

5.1.b. Def. 4.15 and Property 5.La imply :

Let Exi\n(UntiineA(A\)} obtained by adding selfloops of events o fV2-Vl , to each state of

UntimeA(A\). Therefore : Untim£A(Ex\.\n(A\) < Exiv2(UntimeA(A\)") and (2)

Exlv2(UntimeA (A1,)) xUntimeA (A2) = UntimeA(A\~)xUntimeA(A2) (3)

(2) implies : Untim.eA(Extv2(A\y)xUntimeA(Al2) < Exlv2(U n time A (A\J)x UntimeA^) (4)

(1) and (4) imply : UntimeA(A\®A2) <Exlv2(UntimeA(A\})^UntimeA(At2) (5)

(3) and (5) imply : UntimeA(A\®Al2) < UntimeA(A\)':<UntimeA(Al2) •

S.l.c. Let V=VluV2

Def. 4.16 and Property S.l.a imply :

By definition of Extv(UntimeA (Ap) : (see proof of Property 5.1 .b)
t/nft'mM(Extv(Ap) < Exiv(UntimeA(A^) and (2)

Ext\(UntimeA(A\yxExtv(UntimeA(At->')) - UntiineA(A\)xUntimeA(A^} C*,}
/*^\ i - ^2.' \^/(2) implies :
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) (4)

(1) and (4) imply : UntimeA(A\\A\) < Exiv(UmimeA(A\))^Extv(UntimeA(Al2)) (5)

(3) and (5) imply : UntimeA(A\lA^) <UntiimA(A\)xUntiineA (A2) •

5.1.d. Let £A<, and £A'2 be such that £A< c£A<2 (1)
Def. 5.1 implies: ^UniimeA(A\)=UntimeL(LA^ and ^UntirneA(Al2)=UntimeL(^ (2)
Def. 3.6 and (2) imply : A/«//VnM(A'1)={TRC 1 3 Trc € LA\h TRC=UntimeT(Jrc) } (3)

^UntimeA(^=^TRC ' 3 Trc e £A2 wilh TRC=t/m/m*r(Trc) } (4)
Let then TRC e LumimeA (A\ :

(3) implies that there exists Trc € £A<, such that TRC=t//7ft'mer(Trc) (5)

(1) and (5) imply : Trc 6 £AZ and TRC=(//7mne7(Trc) (6)

(4) and (6) imply : TRC € LUntimeA(&) - and therefore

S.l.e. Let's prove informally that : (Trc € £A<2) => ( £/m/m<?7(Proj Vi (Trc))=Projvi (UntimeT(Trc)) )
Def. 3.5 and Trc e £A'2 imply :

Trc and UntimeT(Trc) rmodel a same behaviour over alphabet V2 (1)
Proj Vi (Trc) and UntimeT(Proj Vi (Trc) model a same behaviour over alphabet V t (2)

Def. 3.3 and (1) imply : Projvi(Trc) and Projvi(t/m//77^r(Trc)) model a same behaviour over
alphabet Vj (3)

(2) and (3) imply : [//irimeT(Projvi(Trc) and Projvi(t/n«'m«7"(Trc)) model a same behaviour over

alphabet Vj , and then UntimeT(?m^] (Trc) =Projvi (UntimeT(Trc)). •

Proof of Property 6.1.

LetPl=(Au t<Bu t)

P3 = ( (TRC € £Aut) => (TRC 6 £But ) )

P4 = ( (7iweT(TRC) e 77meL(£Aut) ) => (TimeT(TRQ e TimeL(L^\A) ) )

P5 =

P6 =

P7 =
By definition : PI «> P2 <=> P3

Def. 3.6 implies : P3 «• P4

By definition : P4 <=> P5

Def. 6.5 implies : P5 « P6

By definition : P6 <=> P7

Therefore : PI «> P7.
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Proof of Lemma 6.1.
Let All=f/nftm€A(Al)=(Qut,Vu{ tick },5ut,q0) be an untimed automaton, and
Since Aut has IQutl states, then each of these states can be identifed by log2(IQull) bits.
Since there are IVI events, then each event of V can be identified by log2(IVI) bits.
Let's compute the following functions :
a:Qi*-*Qut , where: ( [qi.r/c/r, q2] e 5U| andqi*q2) => (q2=oc(qi))

([qi,tick, q t ] e 6ul) => ( a(q!)="not defined")

([qi , r idk ,q 2 ]<E 6ul) => (06^!)=" not defined")
Therefore 1 bit is necessary for the value "not defined", and log2(IQutl) bits are used to define each state.

a(q) are initialized to "not defined" for all states of Qut : the complexity is in O(IQuM*log2(IQutl))

oc(q) are computed by going through all transitions of 6ut : the complexity is in O(lS"M*log2(IQutl))

Therefore, the computation of a is in : 0((IQut|+l6uM)*log2(IQutl))

Let R"1 be the set of states q such that cc(q) is not defined.
The complexity for computing Rut is in O(IQui|*(log2(IQull))

p:Q"t-» Ru t , where:

(Q2=P(qi)) <=> ( q i e Rut =>q2=q i )
(q ' i« Rut => 3r0,r2, ...,rk+1e Qut, with : r0=qi,rk+1=q2, a(ri)=ri+1, for i=l ..... k)

The computation of P (when a is already computed) is in : O(1Q"tl2*log2(IQull))

y:Q"t -» {0,1} where: (y(q 2 )=l) <=>(3 qi such that : q2=o(qi))

y(q) are initialized to 0 for all states of Qut : the complexity is in O(IQu|l*log2(IQutl))

y(q) are computed by going through all transitions of 8ul : the complexity is in O(l5utl*log2(IQutl))

Therefore the computation of y is in : O((IQu|l+l5L«l)*log2(IQutl))

|i : QutxV -» Qut , where : ( [q i , a,q2] e 5U' ) => ( q2=(a.(q i ,a) )

( [qi ,a ,q 2 ]<2 5ul) => (|i(qt,a)=" not defined")

|i(q,a) are initialized to "not defined" for all states of Qul and all events of V:
the complexity is in O(IQ»t|*IVI*log2(IQull*IVI))

|l(q,o) are computed by going through all transitions of 5ut: the complexity is in
O(15ut|*log2(IQutl*IVI))

Since iSuM^IQutMVI (Aut is deteiTninistic), the computat ion of (a is in : O(IQut|*IV|*log2(IQutl*IVI))

Step /: Defining states of
Let So, S\ ..., Sn-i be the sets of states of Aut which are closed under tick, and where n=IRutl.
So is the set which contains the initial state qo of Q"1 .

Formally, two any states q i and q2 of a same .5; are such that (5(q i )=P(q 2).
Computation of the sets Si , for i=l ..... IR u t l :

- Each S{ contains initially one state -noted n- of R1*, and let then the function v, such that v(

The complexity to initialize all Si and to compute v is in O(lQut|*log2(IQull)).
- Each Si must contain all states of Qut such that v(P(q))=v5j .

The complexity to compute all the Si is in O(IQutl*log2(IQull)).
All states of a same S\e then associated to a same state -identified by rj- of AT.

page 42



Step 2: Relabeling the states of A"1

For each Si : (associating an initial nj-uplet)

- let q jj, for j=l ..... nj , be the states of Si such that y(q)=0, where n; is the number of states.
- to each state qy, we associate the n,-uplet (tj , ..., tnj) with tj = 0, and tk = X, if k * j;

- to all other states of ^ , we associate the initial nj-uplet (X ..... X);
Computing n, and the states qy is in O(l5il*log2(IQutl))
Associating an initial nj-uplet to one state of $ is in O(nj*log2(IQutl))=0(IJjl*log2(IQull))
Therefore, associating an initial ni-uplet to all states of state of ^i is in O(l5il2*log2(IQull)).
The complexity for all sets Ji is then in O(IQuM2*log2(IQutl)).

For each Si : (associating an n,-uplet)
- Let e and f be two different states of S\, respectively associated to the nj-uplets (ti,...,tnj) and

(ui,...,unj). If f is reached from e after a tick then : Uj=tj+l if tj # X, forj=l ..... n, .
The biggest length of a sequence of ticks in Si is smaller than or equal to Ijjl.
The number of sequences in S\s is smaller than or equal to IJjI.
Incrementing one component of an nj-uplet is in O(log2(IQutl)).
Therefore, associating an nj-uplet to all states of state of Si is in O(L5'jl2*log2(IQutl)).

Each state of Si is then relabeled by (rj,t) where t is an nj-uplet;
The complexity for all sets Si is then in O(IQull2*log2(IQutl)).

Step 3 Computing transitions of A 1P

A<P=(Q,V,S'P,T,l,ro,to,io)
Q is the set of rj (Step 1);
V is such that V\j[tick } is the alphabet of Aut;

The initial state of Aut is {r0,t), where t=(t i ..... tno)-

io is the smaller index such that tj0 * X, and to=tj(1 ;
Computations of TQ, io and t0 are in O(IQuM*log2(IQutO)

1 = {1,2 ..... sup(n;)}c {1,2,..., IQU|I}, where sup(nj) is the biggest nj , fori=l , . . . , IRutl, (Steps 1 and 2)

Computations of! and J are in O(IQut|*log2(IQutl)).

Computation of 5T :

- Initially, a transition [(rj,tl);<r,(rj,t2)] in Au implies a transition [rj;a;rj];

For all the transitions of Au t , the complexity is in 0(l5^l*log2(IQutl2*IVI)).

- To all transitions of 5T, an initial transformation function A is associated, such that A(i,t)="not defined"

foranyiel and teT. The complexity is in 0(l5ut|*|Qutl2*log2(IQutl2)).

- By going through all transitions of 5"1 , the transfonnation functions of transitions are computed.
The complexity is in O(l5uM*|Q"M2*log2(IQu<l2))..

If we add and simplify all the complexity, we obtain a total complexity in
O( IQu ll*IVI*log2(IQutI*IVI) + ISUM*IQ"'|2 *log2(IQutl) )
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Proof of Theorem 7.1.
After the first step of <Der_Seq_(Prot, the operator Transf respects the ordering and the timing

requirements between events of SS1. In fact, £TSS< G Extvui(£ssO and Projv(£TSSt)=£sst.
where I contains internal events i(q).
After the second and third steps of (Der_5^_<Proi, some transitions i(q), without any timing requirements,

are replaced by transitions (s|(q), True, {ty}) and (rj(q), Ejj(tjj), 0),
which contain timing constraints. Therefore, we deduce tha t :

Projv(£MtxlSsOcPrqjv(£TSS')=£sSt (1)
(1) and Property S.l.d imply LforimeL(Projv(£MedSsO) Q £sS"t (2)
Def. 7.3 implies PrSSul=Proj v(MedSSul)= Proj v( UntimeA (MedSS1)) (3)
(3) is equivalent to -^PrSS"' =Pro}V(UntimeL(£^i&^^J) (4)
(4) and Property 5.l.e imply £prSSut = UntimeL(ProjvC-QviedSSO) (5)

(2) and (5) imply £prSSut C £sS"t, i.e., PrSSut < SSut .
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APPENDIX B : Example of Protocol Synthesis

Entries of the procedure (Der_Seq_(Prot :

(A,; t<2;{ t ) ; c

^ (82; t<2; {1} ;

Desired Service SS1

(Fig. 3.b)

(s{;True; (tij};True)

(rj;(tij>0)A(tu<2);0;True)

Supremal behaviour of the medium SupMed\;,

with i, j =1,2 and i*j (Fig. 4)

Step 1

Step 2

(Ai; t<2 ;{ t} ;

id) (82; t < 2 ; { t } ;

TSSl=7ra/u/'(SSt).

(A| ; t<2 ; (t) ; c<l) ̂ ^ (s?(2);True; (t,,2): (rK2): (t1.2>0)A(t, ̂ 2); 0; True)

(rf(l): (ti.>0)A(t,jS2); 0; True) "(sl(l);True; (tw);

MedSSl

(B2; t<2; (t) ; c<l)

Step 3 : MedSS1 = MedSSg because there is no transition e.

Step 4

StepS

MedSSut =UntimeA(MedSSl).
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Step 6:

PS?1

Step 7 :

ReqMed?,2(2)

id.15)

PS,ut

Step 8 :
tick _ ̂  tick

PS i after Step 8

rjO.ll)

ReqMed1ti2(2) after Step 8

PS|l after Step 8

ReqMed^, ( 1 ) after Step 8

Step 9 : PS^TempOPS"1), PSj>=7e/wp(PS5t), ReqMecfP2(2)=7emp(ReqMedljti2(2)),

and ReqMecr^O^TemXReqMed^O)) are on Section 7.3.

Step 10 : Results on Section 7.3.
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