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Abstract

The object-oriented approach to the analysis and design of information processing systems enjoys
presently much popularity. For applications to distributed systems, certain specific requirements must be
met. The paper reviews object-oriented analysis and design methodologies (OOADM's) and other
specifications languages that have been proposed for the development and standardization of distributed
systems. After presenting, as an example, the description of the OSI directory system, various methods
and languages are discussed which were developed within the standardization community, such as ASN.1
and its extensions for the description of distributed systems management, the ODP methodology, and the
formal description techniques Estelle, LOTOS and SDL. A comparison of these different methods and
languages can only be performed through the consideration of their respective specification concepts. The
paper presents the results of a study which compares the concepts found in these different OOADM's and
specification languages. The possible future convergence of these different concepts into a more coherent
object-oriented framework is also discussed.
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1. Introduction

The development of distributed computer systems is a complex task. In addition to the complexity of the information
processing tasks, difficulties arise in connection with concurrency, resource contention, optimal distribution of functions
and compatibility between the different system components. In order to get a good understanding about the dynamic
behavior of a distributed system, often models of the system are constructed during the early phases of the development
process. They may take the form of formal specifications, simulation models or protytyping systems. This allows the
validation of the system design before the different parts of the system are implemented. Modelling techniques used for this
purpose include Petri nets and so-called Formal Description Techniques (see Section 4.3) which have been developed for
the specification of communication protocols and services [Boch 90g].

Recently, the object-oriented approach to the analysis and design of information processing systems has witnessed an
overwhelming popularity, as evidenced by the large number of articles and books that have been published. It is suggested
that the object-oriented approach has advantages over the traditional methodologies, such as structured analysis and design.
However, the object-oriented analysis and design methodology (DOADM) is still in its growing phase and continues to
evolve. There are already many popular OOADM's that have been widely circulated [Rumb 91], [Shla 88], [Wirf 90],
[Booc 92], [Coad 91], [Cole 93], but no single one has gained general acceptance. :

"Given this early state of the development of the OOADM, an organization that is planning for a transition to object-
oriented technology faces one critical question: which OOADM should be chosen? The answer to this question demands a
systematic comparison of the available OOADM's before any commitment can be made to one of them. Unfortunately, the
comparison of these methodologies is complicated by the fact that the currently popular OOADM'S are composed of
informal descriptions [Cham 92], and each methodology has its own set of definitions of concepts, techniques and
notations. A comparison of the methodologies is, therefore, subject to the perceptions and interpretations of the person who
performs the task." [Hong 93]. Several such comparisons of OOADM's have already been published [Goor 92], [Hong 93],
[Cham 92], [Mano 93].

The purpose of this paper is to give an introduction to the modelling of distributed systems using an object-oriented
approach and to discuss the various methods and formalisms that can be used for this purpose. While the OOADM's
mentioned above are useful for this purpose, other methods and languages have been specifically developed for this purpose
in the area of communications protocols.
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2. Object-oriented analysis and design

Much literature exists about the advantages of the object-oriented approach to system analysis, design and implementation
[Meye 88]. In general, we believe that the following characteristics of object-orientation are of particular importance:

to show the types of objects and their relationships,

Inheritance of properties: Classes of objects are organized into a class hierarchy, or an inheritance structure, which
describes how each object type is related to the other types through specialization or/and a generalization. This inheritance
Structure facilitates the reuse of specifications and code, which is an important notation in software engineering, The entity-
relationship diagrams can be extended to include the representation of inheritance,

Encapsulation: Every object normally offers a fixed set of services to be invoked by other objects. Services are modeled as
attributes or operations offered by objects. At a lower level of abstraction, a given object may be seen to be composed of
several component objects. This decomposition leads to a second type of hierarchy, called composition or aggregation
hierarchy, which can be represented by a "is-part-of" relationship. The operations of a composite object are defined such
that the object encapsulates all related operations on its internal components. Using (composite) objects as building blocks
for specifications allows hiding of certain aspects which are related to the implementation of the provided operations and
the internal structure of the object, as already advocated in [Parn 72].

steps, which can be iterated until a satisfactory design is obtained:. s mnn
imi i identification c ific aspects to ,an
1 step consists of the identification of the general problqm area, of the speci : :
gif)tﬁcp;:rpu:sl: ?)l;"ythe :xpected design; this step is an informal one, but it should le?d the designer to a separation of the
different aspects included in the application, and also to a precise definition of the intended purposes of the model to be
elaborated. 5336
iti i i i i identification of the key
in definition): The first step of the specification process consists of t-hq i it f
g‘)})msmtep éis(g{(:::;;-cale"ég ;II)p‘ﬁ)caﬁon domain; this step takes as input any information dgscrxbmg th_e fung:ﬂonalmes ttI:) be
provided, and should produce as a result a set of object types, so-called entities, togeth¢r with the relationships a.mongff e;nd.
: i iti ; i i location of the functions as operations offer
Function definition): ‘A subsequent step is concerned with the al ! 1 ; :
gcy) Snt:gt?]éctlsl lilcgelr:)tlilﬁcd in the p)revious step; certain functions may also uncover new objects which must be integrated into
the application domain. . . ‘
(d) Step 3 (Behaviors definition): The last step is concerned with the lcliefm:rl;lon of the bel;:trxc')lé);:s(i)rtl' gth:s (s)(t;éei:::d ty‘;;(l:tsl,1 L:ae;el
i i ssible sequences of operations calls as well as the necessary _
(t;le)tf:tli(());s' ((::?)r:g}z; t.:)ll‘:jejpcots can beqspecified as compositions, and the entire development process should be recursively

applied again to each such composition.

12



3. An example: The OSI directory system

The OSI directory system [CCITT Rec. X.500] is a collection of cooperating systems which provide information and
manage a distributed database, the co-called Directory Information Base (DIB). The information contained in the database
is used to facilitate the communication with and about objects in a distributed environment, such as Application Entities,
people, terminals, distribution lists etc.. Although the user of the directory is unaware of it, the DIB is distributed over many
sites called Directory Service Agents (DSA). The directory is accessed through user processes, called Directory User
Agents (DUA), as shown in Figure 1.

The service of the directory is provided through a set of operation calls, which are grouped into three service classes: The
Read class allows the interrogation of the information contained in a particular entry of the DIB, the Search class permits
the exploration of the DIB, and the Modify class permits the modification of the data in the DIB.

The DIB is logically structured in the form of a tree (Directory Information Tree, DIT). Each entry has a Relatively
Distinguished Name (RDN) which is unique among all its siblings. For every entry in the tree a unique name, called
Distinguished Name (DN) is defined as the concatenation of all the RDN encountered from the root of the DIT to the entry
in question. For example Figure 2 shows a DIT distributed over 3 DSA. The DN of the entry identified by a triangle is
C=VV O=DEF OU=K (where "C", "O" and "OU" stand for "country", "organization" and "organizational unit",
respectively).

We present in this section an example of an object-oriented specification of the directory system following the development
methodology mentioned above and using as specification language the language Mondel [Boch 901] which has been
developed for the description of reactive, distributed systems.

Concerning the preliminary phase of the development process, it is to be noted that a relatively detailed system design is
already given in the OSI standard X.500. The purpose of our effort was to study how easy this design could be represented
using the Mondel language and the object-oriented design methodology mentioned above. In this context we studied the
translation of certain formalized notations used in the OSI standard into Mondel and developed an executable Mondel
specification which could be used for the validation of the design or as a prototype. Further details can be found in [Boch
93f].

Access Point

The Directory

Figure 1: Subsystems in the OSI directory system [X.500]
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Figure 2: A hypothetical DIT [from X.518]

During Step 1 of domain definition, we identified the entities and relations shown in Figure 3, which uses an easily
readable graphic notation. A DSA is composed of a single connection handler (called BindHandler) and a DIBFragment,
and a varying number of Server objects. A new Server object is created for each connection which is established with the
DSA by a DUA or another DSA. Different specializations of server objects exist which provide the Read, Search, and
Modify operations, respectively. Similarly, a DUA consists of a single connection handler and a user connection end point
(UCEP) for each connection established with a DSA.

During domain definition, object attributes may be identified which represent specific characteristics of an object. An
example i$ the attribute maxServer of the type DSA which represents the maximum number of Server objects that can be
supported at any given time. Trying to bind to a DSA once its maximum is exceeded would result in an error condition.

During Step 2 of function definition, the following operations can be identified and associated with the objects shown in
Figure 3. The DUA and DSA BindHandlers accept the operations Bind and Unbind. The Bind operation invoked on a
DSA, to which a connection is to be established, includes as parameter the kind of service desired. It returns as result the
identification of a Server object which has been created by the destination DSA and which will provide the requested
service. The operation Unbind can be used to eliminate a remote Server object and the corresponding connection.

It is often useful to consider, during this development step, scenarios of possible interaction sequences that may occur
during system execution. Such scenarios do not define all possible cases, but high-light the typical situations that may
occur. In this context, it is important to consider the object instances that participate in these interaction scenarios. In the
more simple cases where each object type represents a single object instance, the extended entity-relationship diagram (such
as Figure 3) may be used to identify the object instances. In cases where it is important to distinguish the different object

instances that belong to the same type, an more detailed "instance diagram" may be use (for an example, see [Boch 93f]).

During Step 3 of behavior definition, we had to describe the behavior of the DUA and DSA connection handler and the
different specializations of the Server type. Each operation of the Server types is executed sequentially. The first phase of
the execution consist of finding a target object in the DIT from which the evaluation will proceed. This search for the target
object may traverse more than one DSA and is done by the so-called NameResolution operation. It may involve the
forwarding of the request to several remote DSA's in parallel. Once the target object is found we then move to the
evaluation phase. These actions are represented in the X.500 standard as shown in Figure 4. The corresponding
representation in Mondel is discussed in [Boch 93f].

The NameResolution procedure returns either a reference to some entry contained in the DIBFragment, if the target is found
locally, or a reference to another DSA, if the entry is not found locally. We therefore must introduce the concept of a DSA
reference which requires a more detailed representation of the DIBFragment object, including the structure of the DIT and
related information. This leads to a recursive application of the development steps in order to represent the DIBF ragment in
terms of the contained component objects, their operations and respective behavior, as explained below.
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Figure 3: Extended entity relationship diagram of the Directory System
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Figure 4: DSA behavior - internal view [from X.118]
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The DIT structure is represented by the Node entity type and a recursive relation Parent, as shown in Figure 5. The
DIBFragment of the DSA contains one or more so-called naming contexts which aqre subtrees of the DIT structure. For
example DSA?2 in Figure 2 has three naming contexts which are identified by their respective context prefixes C=WW,
C=VV and C=WW O=ABC OU-=I. A node of the subtree is either the root node, a data node or a specific subordinate
reference node. A data or root node is actual data in the DIB. A reference node contains what is called a subordinate
reference, which is a reference to a DSA which contains the naming context equivalent to the DN of the current node. In
Figure 2 each edge which leads from one DSA to another DSA represents a subordinate reference.

For the execution of the NameResolution procedure in the distributed context, we need to find the naming context whose
prefix most closely matches the DN of the entry we are looking for. This is done by the internal procedure
FindNamingContext shown in Figure 4. Similarly, the procedure FindCrossRef finds the closest match among the available
cross-references. Once we have found a matching naming context, we must then search the nodes of the subtree for an entry
which will satisfy the query or for a subordinate reference. This is done recursively by the operation NodeSearch associated
with each Node of the DIT.

Node
RDN DIBFragment
NodeSearch | 4—@ NameResqution—|
- N EndNamingConteFI
L | FindCrossRef |
ReferenceNode DataNode "
éubordinateRef ) Entry / f
X CrossRef NSSRef SuperiorRef
RO(\)tNode
(ContextPrefix )
L

Figure 5: Information held in a DSA

We conclude by noting that Figure 5 contains the information concerning Step 1 and Step 2 of the DIBFragment
refinement. The information concerning Step 3, the behavior of the operations introduced during Step 2, must also be
defined precisely. We have used for this purpose the Mondel specification language, as explained in more detail in [Boch
93f].

4. Specific methods and languages for analysis and design of distributed systems

In general, the object-oriented approach is well suited to be used for distributed systems since each object may be
considered as a separate "process" which communicates with another object when invoking an operation on the latter. If the
communication between objects is through messages or (remote) operation calls, a given system specification can be easily
transformed into a distributed design by allocating the various objects to different computers. The inter-object
communication can be supported over local or long-distance communications networks by existing communication
protocols for message passing or remote procedure calls.

We describe in the following certain specific approaches to the specification and design of distributed systems which seem
to be important ejther because they have been developed within the ISO and ITU standardization committees for the
description of distributed systems, or they provide a framework for the formality which is required if one wants to use
automated tools for the validation of the specifications and for implementation development (for further discussion of these
issues, see for instance' [Boch 90g]).
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4.1. OSI Application layer standards and system management

The ISO and ITU-T (formerly called CCITT) standardization committees that develop the communication protocol
standards for Open Systems Interconnection (OSI) have to deal with quite complex systems. In order to make the
descriptions of the standards more precise, they have developed certain formal (see Section 4.3) and semi-formal notations
which can be used for the description of the protocol standards.

ASN.1 is a semi-formal notation which allows the definition of data types, similar to the data type definitions available in
programming languages such as Pascal or ADA. The notation includes a number of predefined types such as integers, reals,
booleans, bit strings etc ... It also allows the definition of composed types, such as groups of elements (called SEQUENCE, .
corresponding to the Pascal RECORD), lists of elements of the same type (called SEQUENCE OF), a list of alternative
types (called CHOICE, corresponding to Pascal's variant records).

The notation is used mainly to define the parameters of protocol messages (so-called Protocol Data Units, PDU's) of OSI
Application layer protocols, but it could also be used for other purposes. ASN.1 is associated with so-called encoding rules
which define how the defined data structures must be coded when they are transmitted over a communications link. These
encoding rules are essential for the compatibility between the communicating systems.

Various extensions to ASN.1 have been developed within the OSI standardization community for describing such issues as
(a) ports through which connections can be established with other system components [X.407], (b) "Remote Operations”
which correspond to the well-known concept of remote procedure calls (see for instance [Tann 88]), and (c) a notation,
called GDMO, for describing classes of object with inheritance relations. A standard for a so-called "Remote Procedure
Call" is also under development.

Certain object-oriented concepts have been used for the development of the standards for distributed systems management
(see for instance [Stal 93]). In particular, the inheritance concept is exploited for the description of the different types of
(real) objects that must be managed within a distributed computer system. As an example, Figure 6 shows three object types
in the context of network management. The most abstract type definition is the Termination Point (including only two
attributes), the Digital Line is a specialization of Termination Point, including two additional attributes, and the T Digital
Line is even further specialized. i

Termination Point (TP) Digital Line TP

. NGiNgG, Naming,. : :
Namlng,. ; : -| ConnectivityPointers ConnectivityPointers
ConnectivityPointers LineCoding LineCoding

T1 Digital Line TP

BUildOut

Figure 6: Three types of managed objects: An example of inheritance
The properties of the managed objects concerning different functionalities of system management such as shown in Figure
6, are described using the GDMO notation. However, it is to be noted that this notation includes no formalism for the
definition of the behavior of these objects, only their attributes and offered operations are defined formally.

4.2. Open Distributed Processing (ODP)

"Advances in computer networking have allowed computer systems across the world to be interconnected. Despite this,
heterogeneity in interaction models prevents interworking between systems. Open Distributed Processing (ODP) describes
systems that support heterogeneous distributed processing both within and between organizations through the use of a
common interaction model. ISO and ITU-T (formerly CCITT) are developing a Basic Reference Model of ODP to provide
a coordinated framework for the standardization of ODP by creating an architecture which supports distribution,
internetworking, interoperability and portability." [Raym 93]

Part 3 of the Reference Model (the so-called "Prescriptive Model") defines five viewpoints for describing distributed
systems. Each viewpoint represents an abstraction and focuses on certain aspects of the specified system which may be of
particular interest from a particular poinrt of view. They can be characterized as follows:

Enterprise viewpoint: This viewpoint focusses on the purpose, scope and policies of the system by considpriqg such
concepts as agents, artifacts (passive objects), communities (classes of objects belonging together), roles (which include
permissions, prohibitions and obligations).

Information viewpoint: This viewpoint focusses on the semantics of information and information processing activities by
considering such concepts as schema, relations and integrity rules. There are three types of schema:
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(1) A static schema corresponds largely to the commoxily used entity-relationship diagrams used for the analysis of
information systems and is similar to the domain definition step of the development methodology mentioned in Section 2.

(2) An invariant schema defines contraints that must be satisfied at all times between the actions that are executed within
the system. They correspond to the integrity constraints of database systems.

(3) A dynamic schema specifies possible state changes of an object or a group of objects.

Computational viewpoint: This viewpoint focusses on the functional decomposition of the system into objects which are
candidates for distribution. In this view the interfaces between the different objects are defined. A distinction between
operational, transactional (a special type of operational interface), and stream interfaces is made. The latter type of interface
is concerned, for instance, with stream communication for continuous media, such as voice and video.

Engineering viewpoint: This viewpoint focusses on the infrastructure required to support distribution and introduces
concepts related to the allocation of resources, the communication and binding between objects, and object migration.

Technological viewpoint: This viewpoint focusses on the choice of technology to support the system, such as computer
hardware, networks, operating systems, and software modules.

Among these viewpoints, the Information, Computational and Engineering viewpoints are the most elaborated. Part 2 of the
Reference Model describes object-oriented concepts and notations to be used for the descriptions of distributed systems
according to these viewpoints.

In addition, the Reference Model on ODP describes a trader object which provides the so-called trading function. This
function allows a server object to advertize its service by exporting it to the trader, and allows a potential client to request a
required service from the trader. The trader will try to match the request with a service offer in the trader's database. If a
successful match has been found, the client may obtain the requested service by communicating directly with the identified
service provider.

It is interesting to note that many of the ODP concepts are taken up by the industrial consortia Object Management Group
(OMG). and Object Database Management Group (ODMG). The latter is an informal consortium of object-oriented
database management system vendors working on standards to allow portability of customer software across their products.
The group focuses on the definition of common database interfaces that database products should support.

4.3. Standardized Formal Description Techniques

Several so-called Formal Description Techniques (FDT's) have been developed within ISO and IUT-T for writing formal
specifications of OSI protocols and services. These languages are called Estelle [Budk 87], Lotos [Bolo 87] and SDL [Beli
89]. All three FDT's essentially contain three basic components:

(1) Facilities for describing the temporal ordering of interactions among "processes” (called "modules"” in Estelle).

(2) Facilities for describing the structure of a system as a composition of processes. Estelle uses the concept of "interaction
points” connected through "channels”. SDL also uses "channels",  and in addition the concepts of a "block”, which
represents a subdivision of a system, and a "route" which is used for describing the routing of messages within a block.
Lotos uses the concept of a "gate" which corresponds to the interconnection of interaction points of two or more processes.

(3) Facilities for describing data. Estelle uses elements of the Pascal programming language to describe data structures and
operations, including variables and procedures. SDL uses a similar notation, but also provides for the description of
abstract data types with operations the semantics of which can be defined through the specification of a set of axioms.
Lotos is a functional language (without assignable variables, but including process and interaction parameters) and uses
abstract data types.

In the following we discuss how the object-oriented concepts of object instance, encapsulation, class hierarchy and inter-
object communication are supported by these FDT's.

In Estelle or SDL, an object instance may be represented by a module instance or process, respectively. In Lotos, the
situation is less clear since Lotos processes have no identity, and they are also used to represent states or transitions (see for
instance [Boch 90c]). The same constructs of the FDT's also provide for encapsulation of the inner aspects of the "objects",
which only communicate with other "objects” through interactions. In addition, Lotos uses the concept of gates, which seem
to be natural candidates for representing such objects as service access points. However, there is no support for the concept
of classes for gates. Various ways to introduce the concept of objects into Lotos have been discussed in the literature [Cusa
90].

The existing FDT's do not support very well the description of class hierarchies through specialization. In Estelle, several
different behaviors (called "body") may be defined for a given type of module, but there is no explicit concept of
specialization. The situation is similar for SDL, although some form of specialization is available for abstract data types.
Lotos also provides such a facility, and in addition allows for the use of the so-called constraint-oriented specification style

18



[Viss 89] which allows the definition of specializations of behaviors by specifying additional constraints zbout the allowed
order of interactions.

It is to be noted that SDL has recently been extended to include a number of object-oriented featur:s i its 1992 version.
The extension includes operation calls, explicit inheritance for process types and certain aspects o: hehavior specialization
through the specification of additional transitions and states, and the use of unspecified "inner' yparis of procedures, as
already included in the Simula language since 1967.

Concerning the aspect of inter-object communication, there seems to be no generally agreed approach. While some school
of thought prefers the message passing paradigm (as used in Estelle and SDL), many object-orienied languages use a
(remote) procedure calling mechanism. The object-oriented language Mondel mentioned below also supports in addition
rendezvous communication similar to Lotos. It is to be noted that synchronous communication is preferable to message
passing for the development of system descriptions at a high-level of abstraction [Boch 90a). Th¢ main difficulty with
message passing is the possibility of message cross-over between two communicating objects. Communication is an
important consideration for the comparison of FDT's and other languages.

44, Other Object-Oriented Specification Languages

In the context of programming; languages, the definition of behaviors of operation (Step 3 of the development methodology
described in Section 2) is ofter. considered an implementation issue. But it is important to note that a complete specification
of a system component must include the definition of its behaviors. Besides the FDT's discussed above, there are a number
of other specification languages that provide facilities for the definition of behaviors. In the foliowing, we mention a few
such languages that are object-oriented.

The specification formalism called Traces [Hoff 88] emphasizes that the behavior of a module (or object) should be
described in terms of the externally visible interactions, more precisely, in terms of the yxssible sequences (traces) of
interactions and their input and result parameters. This approach is object-based since all interaciions considered within one
trace pertain to the same object instance. The formal notation for defining the behavior of an object is related to predicate
calculus. A methodology for systematically presenting the behavior definition of a module in the form of a readable
document including tables and predicates has also been proposed [Parn 89].

Another specification language based on predicate calculus is Z (for an introduction, see for instance [Spiv 92]). Recently,
certain extensions to Z have been defined which facilitate the description of object-oriented specifications [Carr 89].

Finally, we mention the object-oriented specification language Mondel [Boch 901] which uses high-level algorithmic
notation and assertions to describe object behavior. The language also supports certain zspects related to object-oriented
databases, such as the retrieval of object instances and transactions.

5. Common concepts for object-oriented modelling

5.1, Comparison of concepts in the IGLOO project

The IGLOO project is an ongoing research collaboration between the Centre de Recherche Informatique de Montréal
(CRIM), three universities (Université de Montréal, UQAM and Université de Sherbrooke), and six industries (BNR, CAE,
DEC, Machina Sapiens, Servacom, Teleglobe). The research activities of the 1G1.COO project are divided into four axis,
namely (1) object-oriented analysis and design methodologies, (2) implementaticn development tools, (3) software reuse,
and (4) applications in distributed systems management. The direct costs of iliis research are funded by the indastrial
participants and the Quebec Government through the so-called "Synergie" progrz:m

Whereas much research on object-oriented methods has been done in the past in: rclation with object-oriented programming
and in the context of sequential progamming languages, the objective of the IGL.(JQ project is to advance the state of the art
in the earlier stages of the software development cycle, specifically in require:nents analysis and specification development,
and to give special attention to the modelling of active object behaviors and oncarrency, aspects that are important to the
specification of reactive systems and real-time applications. The main results of the project are expected to be new methods
and approaches, and related prototype tools, for developing and validziing specifications, for developing prototype
implementations from formal specifications (including support from objec-oricnted databases and providing user-friendly
interfaces), for preparing, storing, and retrieving reusable components, ar:d {or building network management applications.
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In the context of this project, we first did a review of existing object-oriented analysis and design methodologies
(OOADMSs, see Introduction) as well as certain programming languages (such as Smalltalk, C++, Eiffel) and specification
languages for distributed systems [Dini 93a]. Then a study was performed to identify the common concepts that underlie the
different OOADM's and specification languages, and which allow the specification of those properties of module interfaces
that are required for supporting the reuse of module specifications and implementations [Boch 94b]. An overview of the
obtained results is shown in the enclosed table. (Note: The colomns refer to the following notations: 1 - Booch, 2 - Object
Charts, 3 - Rumbaugh, 4 - Shlaer-Mellor, 5 - Wirf-Brock, 6 - ODP methodology, 7 - ODMG, 8 - IUT Man-Machine-
Interface language, 9 - LarchC++, 10 - Mondel, 11- SDL, 12 - Z and object-oriented Z; 13 - Contracts). These results should
be helpful to facilitate the interworking between software components that have been developed using different
specification paradigms, for instance class libraries, object-oriented databases, network management applications using
standardized object views of the managed objects and others.

During a subsequent phase, it is intended to define the correspondence between the concepts and the notations used in
certain important design methods and specification languages in order to facilitate the integration of tools originally
developed for these different existing notations. For this purpose, it is necessary to provide precise definitions of the
relevant concepts and develop a formalization of their semantics.

5.2. Partial views

During different phases of the system development process, and for different purposes, various partial views of a complete
system specification may be considered. For instance, the 3-step methodology mentioned in Section 2 considers during the
first step a partial view containing only the object types and relationships, during the second step the names and syntactic
signatures of the operations are included, and during the third step the semantics of these operations (i.e. the object
behavior) is added. Another example is the partial behavior specification in the form of scenarios (using for instance the
notation of Message Sequence Charts standardized by ITU-T) during the analysis phase which must be completed during a
later phase in order to obtain a complete functional specification. We consider the following partial views:

(1) Object types: This includes the concepts: type name, informal meaning of the objects, object identity, object equality,
object state, immutable objects, and possibly active and parameterized object types (for further details, see [Boch 94b]).

(2) Relationship types: This view requires the definition of the object types and, in addition, includes the concepts:
relationship name, informal meaning of relationship, roles, and possibly relationship signature and multiplicities.

(3) Operations: This view requires the definition of the object types and, in addition, includes the concepts: operation
name, informal meaning of operation, parameters, returned results, presence or absence of side-effects, and possibly
operation signature, object signature, syntactic subtyping and explicit subtyping. ‘

(4) Object behavior: This view requires the definition of the operations and includes, in addition, the concept of "behavior”
which may be described using one of the following approaches:

(a) Simple state machine model: The behavior is defined in the form of a standard finite state machine, or in some extended
notation, such as for instance State Charts [Hare 87].

(b) Model with abstract variables/objects (extended state machine model): The "state” of the object is determined by the
values of several (abstract) variables. The state determines whether certain operations are possible or not. The simple state
machine model under (a) may be considered a special case where the object contains only a gingle "state” variable. The
model may be used for objects with "sequential” behavior (i.e. each operation may be executed in any state) as well as for
objects with sequencing constraints, such as expressed by the simple state machine model. There are two variants to this
style:

(b1) Algorithmic style (e.g. Mondel language)

(b2) Axiomatic style (e.g. Z)

Additional concepts for the object behavior are: non-determinism, semantic subtyping, parallelism within an object, refusal
semantics, and liveness.

(5) Inter-object behavior: This view requires the definition of the behavior of single objects and their relationships, and
includes the additional concepts: object interactions (e.g. message passing, remote operation calls, rendezvous interactions),
behavior relating to other objects, behavior supporting relations, data flow between different objects, and possibly object
creation and deletion, access to persistent objects, liveness and fairness, as well as object interfaces/ports.

5.3. Discussion of comparisons

As the summary of the table shows, the views of object types and operations are supported by practically all notations. The
situation is different for the other views. For instance, the view of relationship types seems to be best supported by the
Rumbaugh methodology.
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Concerning the object behavior view, it is either supported only informally, or through a specific style. Several analysis and
design methodologies support the state machine model. The algorithmic style is supported by Mondel and SDL, the
axiomatic style by Larch and Z. Contracts [Helm 90], a notation for the specification of inter-object behavior, use mainly
the axiomatic style, but their sequencing aspect is rather algorithmic.

Many methodologies use the State Charts approach for the description of object behavior. Some of them do not support
parallel state charts (with rendezvous coupling, or with state-conditional constraints). Most systems support embedded
(hierarchical) charts. Several of these systems use "extended state charts” including local abstract variables. One of the open
issues is how to formalize the description of the transitions (as far as updating the local state and interactions with other
objects is concerned). An algorithmic or axiomatic style may be used for this purpose.

While some languages only cover the behavior of single objects (e.g. Larch), different approaches to inter-object behavior
have been proposed. One particular issue in this context is the identification of the interacting object instances. This issue
can be addressed through different approaches, such as the following:

(a) Abstract variables "pointing" to other objects (like in object-oriented programming languages; e.g. SDL, Mondel)
(b) Interconnection of ports (e.g. Estelle channels, SDL channels and the the SDL "VIA" construct, Object-Time)
(c) Inter-object behavior based on relationships (e.g. so-called "calling relationships"; see also [Kurk 91])

It may be feasable to combine the best approaches for the different views, as supported by existing notations, in order to
obtain some kind of "super method" which supports all the different views in a coherent manner. This is the subject for
future research.

6. Conclusions

A large number of object-oriented analysis and design methodologies (OOADM's) have been proposed in the literature and
many specification languages support object-oriented specifications. Within the IGLOO project, we tried to identify the key
concepts underlying these methods and languages and to determine whether a common set of concepts can be identified
which is supported by most (if not by all) methodologies and languages.

It turns out that the concepts related to the meaning of an object and of operations are quite uniformly supported by the
different existing approaches. The concepts related to relationships are also relatively uniform, but are only supported by a
subset of the methodologies and not explicitly by the languages. The concepts related to the description of the behavior of
objects are less uniform and are not supported by all approaches. Different specification styles have been proposed for the
behavior of objects: state machines (e.g. State Charts) or model-based descriptions with variables using an algorithmic or
axiomatic approach. :

It can be expected that future developements will lead to a better integration of the different aspects of specifications, which
include (a) the traditional aspects of state machine, data flow graphs, and entity-relationship diagram defining the object
domain, and (b) the specific "object-oriented" aspects of encapsulation, specialization, and dynamic object creation and
deletion.

It is important to note that the OOADM's and their specification concepts should not be seen in isolation. These concepts
should be easily translatable into the concepts of object-oriented implementation languages, databases for the development
of implementations, and into formal specification languages for the validation of system specifications and designs. In fact,
only formal specifications allow the systematic validation of the system description through simulated execution of the
specification or through the use of verification tools that consider automatically all possible interaction scenarios
exhaustively [Pehr 90]. The concepts should also be closely related to the notations used for the standards of
communication protocols and other distributed systems in order to simplify the implementation of the latter.

As the OOADMs are still in the growing phase and continue to evolve, it can be expected that some convergence of the
concepts and notations used for the object-oriented description of distributed systems will occur in the coming years. Such
convergence is important to avoid a duplication of efforts. It will also stimulate the development of automated tools, not
only for the editing of nicely looking specification diagrams, but also for the validation of specifications and the
development of conforming implementations.
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