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Abstract 

In this paper, we propose a generalized diagnostic 
algorithm for the case where more than one fault (output 
a d o r  transfer) may be present in the transitions of a 
system represented by a deterministic finite state machine 
(FSM). If existing faults are detected, this algorithm 
permits the generation of a minimal set of diagnoses, each 
of which is formed by a set of transitions (with specific 
types of faults) suspected of being faulty. The occurrence 
in an implementation, of all the faults of a given 
diagnosis, allows the explanation of all observed 
implementation outputs. The algorithm guarantees the 
correct alagnosis of certain conjigurations of faults (output 
a d o r  transfer) in an implementation, which are 
characterized by a certain type of independence of the 
different faults. We also propose an approach for selecting 
additional test cases, which allows the reduction of the 
number of possible diagnoses. A simple example is used 
to demonstrate the different steps of the algorithm 

1. Introduction 

Systematic test sequence generation for communication 
protocols in conformance testing has been an active 
research area during the last decade. Methods were 
developed to produce optimized test sequences for detecting 
faults in an implementation under test OUT). Most of 
these methods are based on deterministic finite state 
machine (FSM) models [4,7, 10,9, 11, 13, 143. They are 
intended to determine whether a given protocol 
implementation satisfies all properties required by the 
protocol specification. However, the application of these 
methods gives only limited information about the 
locations of detected faults. In general, in the 
communication protocol area, very little work has been 
done for the diagnostic and the fault localization problems 
[6, 163. However, diagnostics is a well documented subject 
in other areas, such as artificial intelligence, in complex 
mechanical systems and medicine. Therefore, most of the 
concepts and terms used in this paper are imported from 
those domains. 

In model-based diagnostics 18, 121, we assume the 
availability of the real system (e.g., implementation) 
which can be observed, and its model (e.g., specification) 

from which predictions can be made about its behavior. It 
is necessary to know how the system or the machine under 
test is supposed to work in order to be able to know why it 
is not working correctly. 

Often the specification of a model-based system is 
described in a structured manner. Therefore, a system is 
seen as a set of components connected to each other in a 
specific way. The structure (organization) of a system 
can be defined as a relationship (e.g., physical connection, 
procedure call, ...) between the different components of the 
system. A component is seen as one of many smaller 
sub-systems in the larger system. The behavior of the 
larger system is, therefore, described in terms of its 
component behavior$. A possible way of describing a 
component behavior, is through the use of input symbols, 
which can be applied to the component, and outputs, 
which might be generated by the same component. 
Observations of inputs and outputs show how the 
system to be diagnosed is behaving, while expectations, 
derived from its model, tell us how it is supposed to 
behave. The differences between expectations and 
observations, which are called "symptoms", hint the 
existence of one or several differences between the model 
and its system. In order to explain the observed symptoms, 
a diagnostic process should be initiated. It consists mainly 
of performing the following two tasks: the generation of 
candidates of faults and the discrimination between 
candidates [8]. 

Task 1: Generation of candidates: This process 
uses the identifkd symptoms and the model to deduce some 
diagnostic candidates. Each diagnostic candidate is 
defmed to be the minimal difference, between the model 
and its system, capable of explaining all symptoms. It 
indicates the failure of one or several components in the 
system. 

Task 2: Discrimination between candidates: 
Once the step of candidate generation terminates, we often 
end up with a huge number of diagnostic candidates. To 
reduce their number, two main techniques are used. The 
first one consists of the selection of some additional new 
tests called "distinguishing tests". The second 
technique consists of introducing new observation points 
in the implementation under investigation and executing 
the same tests again. 

In [6], we introduced a single fault (output or transfer) 
diagnostic algorithm for systems represented by FSMs. 
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With respect to the above described general model, 
tmsitions in an FSM ~IE considered as components, while 
states have the function of connecting these components. 
In this paper, we generalize the algorithm of [61 to the case 
where system implementations are allowed to have 
multiple faults; several transitions might have output 
andor transfer faults. If the occurred faults ~IE detected by 
one or several test cam, which may have been generated 
by one of the existing test selection methods, the new 
algorithm will have the ability to generate a minimal set 
of diagnoses, each of which is formed by a set of 
transitions (with specific types of faults) suspected of 
being faulty. We also propose approach for selecting 
additional test cases, which allows the reduction of the 
number of possible diagnoses. 

The remainder of the paper is organized as follows. 
In Section 2, the deteaministic finite state machine (FSM) 
model and a corresponding fault model are introduced. A 
brief description of some test selection methods and a 
discussion on their fault localization power are also 
presented. Section 3 presents an approach for the multiple 
fault diagnostics of system implementations represented by 
FSMs. In Section 4, an application example explaining 
the steps of the proposed diagnostic approach is provided. 
Section 5 presents ,an approach for the selection of 
additional test cases in order to reduce the number of 

2.1 The FSM fault model 

The FSM fault model [2] is based on faults made on 
labeled transitions. Some of these faults, which are 
essential for the diagnostic approach discussed in Section 
3, are define4l as follows: 

Definition 1: Output fault: We say that a 
transition has an output fault if, for the corresponding state 
and received input, the implementation provides an output 
different from the one specified by the output function. 

An implementation has a single output fault if one 
and only one of its transitions has an output fault. 

Definition 2: Transfer fault: We say that a 
transition has a transfer fault if, for the comsponding state 
and received input, the implementation enters a different 
state than specified by the Next-state function. 
An implementation has a single transfer fault if 

one and only one of its transitions has a transfer fault. 
Definition 3: Additional (missing) transition 

fault: An implementation has an additional (missing) 
transition, if for a pair of present state and input, one more 
(one less) transition (with respect to the specification) is 
dehed. 

An implementation has multiple faults if and only if 
some of its transitions have one or several faults defined 
above. 

possible diagnoses. An estimation of the complexity of the 
diagnostic approach is given in Section 6. Finally, Section 
7 contains a concluding discussion and points for future 
research. 

2. Finite state machines 

A deterministic finite state machine (FSM) M 

S is the set of states of M. It includes an initial state so, 
can be represented by a quintuple (S, I, Y, T, 0) where : 

I is the set of input symbols, 
Y is the set of output symbols. It includes the null 

T is the next-state function, S x I --> S, 
0 is the output function, S x I --> Y. 
The notation s-a/b->s' is used to represent a 

transition. For each state in the machine, a reset 
transition is used to take the machine to its initial state. 
It takes the symbol r as input and generates the symbol e 
as output. 

Finally and in order to deal with null outputs (e.g., e), 
we assume that the output e is observed during a test by 
the application of an input and the non-observation of any 
output during a predetermined lapse of time. After deducing 
that a null output has occurred, the next input is allowed to 

A graphic representation of a deterministic FSM example, 
in the form of a state transition diagram, is given in 
Figure 1. 

output (e), 

be applied. 

I I 

Figure 1: A state transition diagram of an FSM 

For our diagnostic approach presented in the following 
section, we assume the following fault model: the 
implementation under test (IUT) may have 
output faults and/or transfer faults in its 
transitions. 

This fault model covers single (output or transfer) faults 
and multiple (output andor transfer) faults which might 
occur in the transitions of the machine. In addition, certain 
cases of missing transition faults may also be explained by 
a combination of transfer and output faults as explained in 
the following. A missing transition leads to an 
incompletely specified implementations. Different 
implementation assumptions may apply in this case, such 
as the following: 

(a) Blocking: The input is blocked in the input queue, 
as defined for Estelle [3]. This case can not be modeled in 
general by a faulty uansition. 

(b) The input is dropped, as defined for SDL [ll. This 
case can be modeled by a multiple fault, where the faulty 
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transition has the empty output and leads back to the same 
State. 

(c) Some error indication: In this case, the fault is 
detected by the e m r  indication. This case can be modeled 
by a multiple fault, where the faulty output has the error 
output and leads back to the same state. 

2.2 Test selection methods for FSMs 

Many test selection methods have been developed for 
FSMs [7,4, 10, 13,9, 141. The most important ones are 
the following: 

T-method: The T-method [lo] generates a test suite 
consisting of a single test sequence known as a 
"transition tour". For a given FSM, a transition tour is 
an input sequence which takes the FSM from its initial 
state, traverses every transition at least once, and returns to 
its initial state. It has the power of detecting all output 
faults (in the absence of transfer faults), but there is no 
guarantee of detecting any transfer fault. 

D S - m e t h o d :  In the DS-method [7], a 
distinguishing sequence (DS) is used for state 
identification. An input sequence is said to be a 
distinguishing sequence for a FSM, if the output sequence 
produced by the FSM is different for each different starting 
state. The DS-method uses a two-phase approach. The tests 
of the fiist phase check that each state defined by the 
specification also exists in the implementation. The tests 
of the second phase check all transitions defined by the 
specification and not tested during the first phase, for 
correct output and transfer in the implementation. Under 
the assumption that the number of states of the 
implementation is not larger than that of the specification, 
the DS-method guarantees the detection of all output and 
transfer faults. Its only disadvantage is that it is not always 
applicable because not all FSMs possess a DS. 

UIO-method: The UIO-method [13] uses a set of 
unique input/output (UIO) sequences for state 
identification. An UIO sequence for a state s is an I/O 
behavior not exhibited by any other state in the FSM. The 
UIO-method generates test sequences which check whether 
each transition has the correct Next-state and the correct 
output. To check for the correctness of the Next-state 
reached by the machine after the execution of the transition 
under consideration, the corresponding U10 sequence is 
applied. In general test sequences generated by the UIO- 
method are shorter than those produced by the DS-method. 

Vuong claimed that the UIO-method may leave certain 
transfer faults undetected [15]. He also proposed a modified 
version, called UIOv-method, which contains a procedure 
for verifying the uniqueness of the UIO sequences, thus 
detecting faults which were otherwise undetectable due to 
non-unique UIO sequences. The test sequences generated by 
the UIOv-method guarantee the detection of all output and 
transfer faults. 

W-method: The W-method [4] involves the selection 
of two sets of input sequences: The W-set and the P-set. 
The latter represents a transition cover set of the 

specification. Tbe former represents a characterization 
set of the specification. The set W consists of input 
sequences that can distinguish between the behaviors of 
every pair of states in the specification. 

The W-method provides a set of test sequences 
consisting of the concatenation of the sets P and W (i.e. 
P.W). Each test sequence starts with the initial state, aftea 
the application of the reset operation. In this case, to 
identify a reached state Ik to which a transition transfers, 
all the sequences contained in the W-set are applied to the 
implementation, separately. In general, test suites generated 
by the W-method are longer than those produced by other 
test selection methods. 

Provided that the number of states in the implementation 
remains within a certain bound, the W-method has the full 
power of detecting all output and aansfer faults. 

Wp-method: The Wp-method [5] is a modified version 
of the W-method. The only difference between the two 
methods is that instead of using the complete set W to 
check each reached state Si, only a subset of this set is used 
in its second phase. This subset Wi is called an 
identification set for state Si. If the reached state is the 
intended one, the result obtained from tbe application of Wi 
will confm its correctness. On the other hand, if the 
implementation reaches a faulty state, the result obtained 
from the application of Wi will be different and hence, 
indicate the detection of a fault. In such a case, the analysis 
of the obtained result will in general not have the full 
power of identifying the reached state. While the Wp- 
method has the same fault detection power as the W- 
method, its main advantage is the length reduction of the 
generated test suite. 

23 Diagnostic power of test selection methods 

Following the discussion of Section 2.2 on the different 
test selection methods and their fault detection power, the 
question comes to mind: What is the diagnostic and fault 
isolation power of these methods'? 

While a test suite generated by the W-method provides 
enough information to diagnose a single fault, it cannot 
localize the faults in an IUT, in general, as shown in 
Figure 2. This figure shows two faulty implementations, 
which generate the same output sequences in response to 
the test sequence, TS, generated by the W method (see 
Example 1). This failure can be explained by the fact that 
W is no longer a characterization set for I2 and state s2 is 
no longer reachable in 11. We see that test sequences 
generated by existing test selection methods do not, in 
general, guarantee the localization of multiple faults. It can 
be expected that less exhaustive test selection methods, 
such as the UIO, Wp or transition tour methods have even 
less power of fault location. Therefore, in order to localize 
implementation faults, additional diagnostic tests are 
needed. It is important to note that a test sequence with a 
better fault coverage (i.e. a W test suite rather than a T test 
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suite) might need less additional diagnostic tests for the 

Example 1: Given the specification of Figure 1, a 
possible charactexhation set for the W-method is: 
W =  (a,b}. 
Using the above W and applying the W-method, we 

generate the following test suite: 
TS = (aa, ab, bca, bcb, baa, bbb, cab, cca, ccb, cba, 

bab, bba, caa, cbb) 
outputs of S = (ef, ef, fff, fff, ffe, ffe, efe, eef, 

eef, eee, fff, fff, eff, eef} 
The application of TS, to the faulty implementations I1 

and I2 shown in Figures 2a and 2b, respedively, generates 
in both cases the same sequences of outputs listed below: 

outputs of I1 and I2 = (ef, ef, fff, fff, ffe, fff, eef, 
me, eef, eff, fff, H, eef, eff}. 

processofdiscriminatonbehveencaQdi~diagnoses. 

Figure 2: Two faulty implementations non- 
distinguishable by W 

3. The diagnostic approach 

3.1 Preliminary definitions 

= 0i,l,0i,2,...,Oi,mi , where output Oij is expected after 
input ii,,. f i ~  represents the j-th transioon executed in test 
case tq according to the specification S .  

Any difference, between an expected output o as 
defined by the specification, and the corresponding 
observed output 6, represents a symptom. 

A minimal set of faults, which has the capability of 
explaining all observed outputs, is called a diagnosis. 
The corresponding set of transitions, where these faults 
occur, is called a diagnostic candidate. 

Definition: A fault f of an implementation M in a 
transition t of S is said to be directly reacbed by a 
test case tc, if the execution of tc, as defined by the 
specification S, leads to the transition t, there is no 
transfer fault in M on the path rhat leads from the initial 
state to t, and the subsequent path of the test case contains 
a symptom. 

Example: If the machine in Figure 3 represents the 
specification, then all faults (fl, f2, f3, f4, f5, f6, f7) in 
the implementation of Figure 4, are directly reachable. On 
the contrary, the fault f3 in the implementation of Figure 
5,  is not directly reachable. . 

Figure 3: The specification S 

We assume in the following that a specification S is 
given, as well as an implementation M with output andor 
transfer faults, as described in Section 2.1. 

A test suite, TS, is defined as a set of test cases, 
where each test case is a sequence of input symbols. We 
write TS = { El; ...; U$. where each tci is a test case. If 
a test case consists of mi inpup ii,l,ii,2 ,..., ii,mi, the 
corresponding sequence of expected outputs is written as Oi 

Figure 4 An implementation I1 

3.2 The diagnostic algorithm 

The diagnostic algorithm described in the following is 
based on a certain assumpIion about the faults contained in 
the implementation under test (IUT) and the test suite TS 
used to detect the presence of faults. As explained below, 
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the algorithm ensures correct and complete diagnosis if the 
following assumption is satisfied. 

Figure 5 An implementation I2 

Assumption: For each fault in the implementation, 
there is a test case in the applied test suite which reaches 

Note: This implies that there is at least one symptom, 
generated by the application of the test suite, which 
corresponds to each fault of the implementation. In the 
case of an output fault, the symptom occurs immediately 
(therefore the corresponding transition has been called 
"symptom transition" [6]). In the case of a transfer fault, 
the symptom occurs after the transition containing the 
fault, and may be due to the wrong transfer of the fault in 
question or to other faults which may be present in the 
implementation. In any case, we say that the fault has 
been"deteded". 

that fault directly. 

3.2.1 Step 1: (Generation of expected and 
observed outputs) 

Application of the test suite, TS, to the specification 
and the IUT. For each test case tci, the expected output 
sequence is written as Oi = o i , ~  ,oi,2 ,..., Oi,mi , where 
output Oij is expected after input iij, while the observed 
output sequence is written as: 6i = 6i,196i,2 ,..., 6i,mi. 

3.2.2 Step 2: (Generation of symptoms) 

Compare each observed output sequence with its 
corresponding expected output sequence and identify all 
observed symptoms for all test cases. 

3.2.3 Step 3: (Construction of the set of 
tentative candidate sets) 

We construct in the following a set of tentative 
candidate sets, called STC. This set has the following 
properties: Each tentative candidate set Tc is a set of fault 
candidates, and a fault candidate is a transition name 
annotated by o or *, which corresponds to a output fault 
candidate or a transfer fault candidate, respectively. For 
example, the candidate t* is a transfer fault candidate, and 
represents the assumption that the transition t has a 

transfer fault. A tentative candidate (tl*, t2*, '10) 
represents the assumption that the transition t l  has an 
output and a transfer fault, that t2 has a transfer fault, and 
that all other transitions have (definitely) no faults. 

D e f i n i t i o n :  The actual set of faulty 
transitions of the implementation is the set of 
transitions of the implementation that contain faults, 
annotated by o andor *, as in the case of the tentative 
candidate sets. 

The following construction of STC ensures that the 
constucted STC will contain the actual set of faulty 
transitions. For each given test case tq, we construct a set 
of fault hypothesis SFHi as follows. Each fault 
hypothesis is a pair &C, C O ,  where FC is a set of fault 
candidates and CC is a set of cmect candidates, that is, 
fault candidates that are assumed not to be present. 

(a) If tci has no symptom, SFHi contains a single 
element of the form ( <( },(tilo} >}, which indicates that 
the first transition, ti, 1, executed by tci, does not have an 
output fault. 

(b) If there are m symptoms in tci, we consider the 
different symptoms in order and include in SFHi fault 
hypotheses which correspond to the assumption that the 
symptom considered corresponds to a fault that is directly 
reached by the test case tci. The following situations may 
occur for the j-th symptom. Because of the Assumption, 
the j-th symptom is only considered under the hypothesis 
that all earlier symptoms j' < j correspond to output 
faults. We have the following two hypotheses: 

(1) The j-th symptom corresponds to an output fault 
(ti,kjo), and there is no transfer fault on the execution path 
(ti,Jq,l),ti,Jq,1)+1 ,..., ti.kj-1) that leads to this symptom 
transition. In this case, the next symptom will also be 
considered (if it exists) since it corresponds to a directly 
reached fault. If there is no next symptom, then the fault 
hypothesis d, Y> iS added to SFHi, where x = (ti,klo, 

..., ti,&*} - x, and ti k- is the kj-th transition where the j- 
th symptom has been observed. 

(2) The j-th symptom corresponds to a transfer fault 
which is located in one of the transitions (ti,Jyji),ti,%- 
1)+1, ..., ti,k--l) from the symptom transition (output 
fault in ti,k(jl)o) of the previous symptom (or from the 
initial state, respectively) to the symptom in question in 
the transition ti,k-. In this case, the next symptom will 
not be considered, since it corresponds to a fault which is 
not directly reached by this test case, although it may be 
directly reached through another test case. For each 
transition ti,n , n = k(j-11, k(j- 1)+1, ..., kj-1, in the 
transition sub-sequence starting at ti,%-i) and ending at 
the transition ti,kj-l. the fault hypotheses d, Y> will be 

ti,k2O 9 ..., ti,kjo}s y = (ti,lO, fi,l*v ti.2'9 $,2*9 

J * J  

J 

J 



If for the test case tq, we have the following: 

The set STC of tentative candidate sets is formed by all 
possible unions of fault alternatives taken from all test 
cases. More formally, 

STC = {TC I TC = UFCi A TC n 
i=1,2, ... L 

( UCCi)=@, 

test cases}. 

i=1,2,...L 

where <FCi, CCi> E SFHi and Ls is the number of 

It is possible to reduce the set STC, by removing 
some of its elements, if some additional knowledge is 
available, such as : 
1) The maximum number of transitions which might be 

faulty in the IUT, or 
2) The maximum number of faults (transfer and output) 

which might be present in the IUT, 

3) The maximum number of output faults and the 
maximum number of transfer faults which might be 

As an example, if we know that the maximum number 
of faults in the IUT does not exceed N faults, then all 
elements in STC, having a cardinality which is strictly 
greater than N, can be removed. As the special case of 
single fault diagnostics, we may keep in STC only 
elements with cardinality one. In this case the algorithm 
describedherereducestotheone describedin[6l. 

present in the IUT. 

3.2.4 Step 4: (Generation of PossFaults sets, 
diagnostic candidates and diagnoses) 

A diagnostic candidate is a tentative candidate and 
an assignment of faults (specific output andor transfer to a 
specific state) to all its transitions which succeed to 
explain all observations. Note that a given tentative 
candidate may lead to several diagnostic candidates. All 
diagnostic candidates can be obtained by checking for each 
possible assignment of faults of all diagnostic candidates 
whether it explains all observations. The checking process 
can be done through the application of all test cases in TS, 
to the mutant machine, which corresponds to the 
diagnostic candidate in question. If the outputs obtained 
from the mutant are identical to the outputs observed from 
the IUT the diagnostic candidate is confirmed. To compute 
all possible faults for each tentative candidate, and hence, 
all corresponding diagnostic candidates, we proceed as 
follows: 

Suppose that the tentative candidate, "Candi", in STC 
is under consideration and has n1 transitions suspected of 
having transfer faults, and n2 transitions suspected of 
having output faults. We change in the specification 
machine the ending states of all Candi's n2 transitions 
suspected of having transfer faults. We also assign the 
remaining transitions in Can4 the corresponding symptom 
outputs. All remaining specification transitions are left 
unchanged. We apply the test cases in TS on the resulting 
machine (mutant). If the resulting outputs are equal to 
those of the IUT, then the specific set of faults, introduced 
in the elements of Can&, will be saved as an element in a 
set called: "PossFaults[Cand j]" . 

The above process is repeated until all combinations of 
faults (the different assignments of ending states to Candi's 
n2 elements suspected of having transfer faults, in addition 
to the new outputs assigned to the remaining elements of 
Candi) for Candi's elements are considered. If all 
combinations of faults for Candi's elements fail to produce 
the same outputs as those obtained from the IUT, then 
Canqs PossFaults set will be kept empty and the tentative 
candidate Candi will not be considered as a diagnostic 
candidate. 

We remove all tentative candidates with empty 
PossFaults sets from the tentative candidate set, STC. 
Each element in the corresponding PossFaults sets 

6d.4.6 
787 



represents a diagnostic candidate, simply called 
"diagnosis". It consists of the minimal set of faults 
(output andor transfer), which might be present in the 
given implementation and which have the ability of 
explaining all observed outputs. 

4. An application example 

t8*)9 (t7'. f7*, bo,tgo9 tg*}, (t7', t8'9 t8*, %*I, (t7', 
t4O,t8'9 t8*) 1 
Step 4: For each element in STC, all possible 
assignments of faults, having the ability of explaining all 
observed outputs, lead to the following possibilities: 

For example, the last possibility {t7-e>, tg-f->, t8->S1, 
t9->s2) corresponds to the following diagnosis: The IUT 
has t7 with an output fault of e, t8 with an output fault of 
f and a transfer fault to si ,  and with a transfer fault to 
s2. 
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tc. ## tcl tc2 tc3 tc4 

Inputs r, a, a r,a,b r,b,c,a r,b,c,b 
Specified transitions tr,tl,t4 tr,tl,t5 tr,t2,t6,t4 tr,t2,t6,t5 
Expected outputs - , e , f  - , e , f  - , f , f , f - , f , f , f  
Observed outputs - , e , f  - , e , f  - , f , f , f - , f , f , f  

tc5 

r ,b,a,a 
tr,Q,t4,tl 
- , f , f , e  
- , f , f , e  

Table 1: Test cases and their outputs 

tc. ## 

Inputs 
Specified transitions 
Expected outputs 
Observed outputs 

5. Additional tests for reducing the 
number of diagnoses 

tc6 tc7 tc8 tc9 tcl0 

r,b,b,b r ,c,a,b r,c,c,a r,c,c,b r ,c,b,a 
tr,t2,t5,t8 tr,t3,t7,t8 tr,t3,t9,t4 tr,t3,t9,t5 tr,t3,t8,tl 
- , f , f , e  - , e , f , e  - , e , e , f  - , e ,e , f  -,e,e,e 
- , f , f , f  -,e,e,f - , e , e , e  - , e , e , f  - ,e , f , f  

Recall that the main purpose of testing and diagnostics is 
the localization of implementation faults and their 
correction. Therefore, if the diagnostic process ends up 
with multiple diagnoses, additional tests are needed to help 
reducing the number of diagnoses, if possible, to a single 
diagnosis. In other words, additional tests should be 
selected and applied to the implementation until a set of 
faults in one of the diagnoses is confirmed and 
consequently, all remaining diagnoses could be removed. 

To distinguish between different diagnoses, we use an 
approach which can be based on a test method described by 
Gill [Gill 621. This method determines a test sequence 
which allows the distinction between any two given finite 
state machines. In our context, each diagnosis corresponds 
to a particular (faulty) implementation determined by the 
specification and the faults predicted by the diagnosis. 
Gill's test method can be used to distinguish between any 
pair of diagnoses (mutants) by a single test sequence 
derived by his method. 

Given a set of n diagnoses for a given implementation, 
Gill's method may be applied to distinguish between any 
two selected diagnoses, say Di and Dj. The application of 
the derived test sequence to the implementation will lead 
to one of the following situations: 
(1) The observed output is equal to the one expected for 
Di. 
(2) "be observed output is equal to the one expected for 
Dj . 
(3) The observed output is different from both of the 
outputs expected for Di and Dj . 

In cases (1) or (2), we know that Dj or Di, respectively, 
is a wrong diagnosis. In case (3), we know that both, Di 
and Dj are wrong diagnosis. We have therefore reduced the 
number of possible diagnoses and may continue until only 
one diagnosis remains. 

Gill's algorithm for the selection of a test sequence to 
distinguish between two given implementations can be 
described as follows: 

3ven two machines Mi and M2, generate a pruned tree 
breath first (nodes are labelled by pairs of states from Mi 
nd M2, respectively) 

Create the root node ng of a tree T, no = [sol, ~$1, 
where so1 and s$ are the initial states of M1 and M2$ 
respectively. 

for each non-closed node, nk = [Sil, sj21. in the current 
level of tbe tree do 

for each input symbol i do 

if (Ol(Si1, i) = a(Sj2,  i) ) then 
Create the new node, nl = [nextStatel(sil, i), 
nextsw(sj2, i)], in the next level of the tree 
Create a new branch labeled i/(Ol(Sil, i)) 
between nodes nk and nl 

if (nl = nm), where nm is an existing node in 
thetree then 

Close nl by marking it with an x (i 
will not be considered for further 

expansion). 
else 

Form a test case sequence, tc, by thc 
input part in the labels of the path, 

which starts in the root node and ends 
in node nk 

Concatenate the input i to the end of 
the test case tc. 
stop. 
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The number of different nodes in the constructed tree is 
bounded by O(n2), where n is the number of states in the 
specification machine. Since each node in the constructed 
tree is considered at most once (due to node closing) by all 
possible inputs, the number of leafs in such a tree is 
bounded by O(I.n2), where I is the number of input 
symbols accepted by the specifkation machine. Hence, the 
overall complexity of the selection of rbe additional tests 
to distinguish between the N diagnoses, is bounded by 
O(N.I.n2). Knowing that the number of diagnoses is 
bounded by O((LcS).nF), where Lc is the number of 
inputs in the longest test case, S is the estimated 
maximum number of test cases with symptoms, and F is 
the maximum number of transfer faults, the overall 
complexity is O(I.L.cS.nF+2). 

M1 

w t9de 
M2 

Figure 7: Machines corresponding to diagnoses Diagl 
and Diag2 

I i’ ‘i” I 

I I 

Figure 8: The test-tree for M1 and M2 

If Step 4 of the diagnostic approach produces N 
diagnoses, at most (N-I) additional diagnostic tests will 
be needed, in order to d u c e  the set of diagnoses to a 
single diagnosis. Since the initial states of the mutant 
machines are known, Corollary 4.1 in [Gill 621 guarantees 
that the length of each of the additional tests will be at 
most (2n - I ) ,  where n is the number of states in these 
machines. 
Example: Suppose that, we are given the specifkation S 
of Figure 1, the implementation I of Figure 6, and the 
following two diagnoses among the several diagnoses 
produced in Step 4 of the diagnostic approach 

r r a n s f d  to s1 

Diag2: ’Ibe IUT might have t7 generated e as output, t8 
transferred to s1 and generated f as output, and ~CJ transferred 

~ ~~ 

We generate the tree of Figure 8 for the machines M i  
and M2 (shown in Figure 7) corresponding to Diugl and 
Diug2, respectively. The corresponding constructed 
additional test is rcb. The application of this test case to 
the implementation I of Figure 2a generates the output -ef. 
Such a result eliminates the diagnose Diug2 from the list. 

6. Complexity approximation of the 
diagnostic approach 

The proposed diagnostic approach has four sequential 
steps. Therefore, the overall complexity of this approach is 
equal to the complexity of the most complex step. A close 
look at the different steps leads to the conclusion that Step 
4 has the highest complexity since during the process of 
diagnoses generation all n states in the machine have to be 
checked as to whether it might be the ending state for a 
transition suspected of having a transfer fault. Since in this 
step, we make use of tentative candidates detemined during 
Step 3, we also need to study the complexity of Step 3. 
To estimate the upper bound of the number of tentative 
candidate sets q we have to study the algorithm in Step 3, 
which uses Ls test cases. The maximum number of 
elements in a set of fault hypothesis for a given test case 
is Lc. Only the test cases with symptoms contribute to 
the construction of the set of tentative candidate sets. If the 
number of test cases with symptoms is S, then the 
maximum number of tentative candidate sets q, which is 
the number of all combination of elements in the S sets 
of fault hypothesis, is bounded by Les. 

In Step 4, each element in the set of tentative candidates 
contains several transitions some of which are suspected 
of having fransfer faults and the rest is suspected of having 
output faults. If F is the upper bound of the number of 
transfer faults (this number can never be larger than Ls, the 
number of test cases, because of the Assumption) in any of 
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the LCS tenrative candidates determined during step 3, the 
complexity of Step 4, in terms of possible number of 
diagnoses, will be O ( ( L e S ) . n F ) .  If Fand S are 
reasonably small, say 3 or 4, the complexity of the 
algorithm will remain manageable. Even when F and S 
become large, the complexity of our algorithm remains 
comparable with the complexity of other existing methods; 
for example, KO's metbod generates up to I&", diagnoses, 
where n and I are the number of states and the number of 
inputs, respectively. 

7. Conclusion 

In this paper, we generalized the diagnostic approach 
proposed in [6l to the case where system implementations, 
represented by FSMs, are allowed to have multiple faults. 
Such an approach is mainly motivated by the fact that even 
strong test selection methods (e.g., the W-method) do not 
have in general full fault localization power. If existing 
faults are detected, this algorithm permits the generation of 
a minimal set of diagnoses, each of which is formed by a 
set of transitions (with specific types of faults) suspected 
of being faulty. Tbe occurrence in an implementation, of 
all the faults of a given diagnosis, allows the explanation 
of all outputs observed during the test of the 
implementation. We also proposed two approaches for 
selecting additional test cases, which allow the reduction of 
the number of possible diagnoses. 

'he proposed diagnostic approach provides the guarantee 
of correct diagnosis only in those situations where each 
fault of the implementation is directly reachable by a test 
case in the given test suite. An interesting research project 
would be the extension of our work to the diagnostics of 
machines not respecting this assumption. Another 
challenging question, which needs to be solved, is to 
extend the diagnostic approach to systems modelled by 
extended FSMs. 
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