
Multiple Fault Diagnostics for Finite State Machines

Abderrazak Ghedamsi, Gregor v. Bochmann and Rachida Dssouli

Universit6 de Montdal, DIRO, C.P. 6128, Succ. A, Montdal, Canada, H3C 3J7.

Abstract

In this paper, we propose a generalized diagnostic
algorithm for the case where more than one fault (output
a d o r transfer) may be present in the transitions of a
system represented by a deterministic finite state machine
(FSM). If existing faults are detected, this algorithm
permits the generation of a minimal set of diagnoses, each
of which is formed by a set of transitions (with specific
types of faults) suspected of being faulty. The occurrence
in an implementation, of all the faults of a given
diagnosis, allows the explanation of all observed
implementation outputs. The algorithm guarantees the
correct alagnosis of certain conjigurations of faults (output
a d o r transfer) in an implementation, which are
characterized by a certain type of independence of the
different faults. We also propose an approach for selecting
additional test cases, which allows the reduction of the
number of possible diagnoses. A simple example is used
to demonstrate the different steps of the algorithm

1. Introduction

Systematic test sequence generation for communication
protocols in conformance testing has been an active
research area during the last decade. Methods were
developed to produce optimized test sequences for detecting
faults in an implementation under test OUT). Most of
these methods are based on deterministic finite state
machine (FSM) models [4,7, 10,9, 11, 13, 143. They are
intended to determine whether a given protocol
implementation satisfies all properties required by the
protocol specification. However, the application of these
methods gives only limited information about the
locations of detected faults. In general, in the
communication protocol area, very little work has been
done for the diagnostic and the fault localization problems
[6, 163. However, diagnostics is a well documented subject
in other areas, such as artificial intelligence, in complex
mechanical systems and medicine. Therefore, most of the
concepts and terms used in this paper are imported from
those domains.

In model-based diagnostics 18, 121, we assume the
availability of the real system (e.g., implementation)
which can be observed, and its model (e.g., specification)

from which predictions can be made about its behavior. It
is necessary to know how the system or the machine under
test is supposed to work in order to be able to know why it
is not working correctly.

Often the specification of a model-based system is
described in a structured manner. Therefore, a system is
seen as a set of components connected to each other in a
specific way. The structure (organization) of a system
can be defined as a relationship (e.g., physical connection,
procedure call, ...) between the different components of the
system. A component is seen as one of many smaller
sub-systems in the larger system. The behavior of the
larger system is, therefore, described in terms of its
component behavior$. A possible way of describing a
component behavior, is through the use of input symbols,
which can be applied to the component, and outputs,
which might be generated by the same component.
Observations of inputs and outputs show how the
system to be diagnosed is behaving, while expectations,
derived from its model, tell us how it is supposed to
behave. The differences between expectations and
observations, which are called "symptoms", hint the
existence of one or several differences between the model
and its system. In order to explain the observed symptoms,
a diagnostic process should be initiated. It consists mainly
of performing the following two tasks: the generation of
candidates of faults and the discrimination between
candidates [8].

Task 1: Generation of candidates: This process
uses the identifkd symptoms and the model to deduce some
diagnostic candidates. Each diagnostic candidate is
defmed to be the minimal difference, between the model
and its system, capable of explaining all symptoms. It
indicates the failure of one or several components in the
system.

Task 2: Discrimination between candidates:
Once the step of candidate generation terminates, we often
end up with a huge number of diagnostic candidates. To
reduce their number, two main techniques are used. The
first one consists of the selection of some additional new
tests called "distinguishing tests". The second
technique consists of introducing new observation points
in the implementation under investigation and executing
the same tests again.

In [6], we introduced a single fault (output or transfer)
diagnostic algorithm for systems represented by FSMs.

782
6d.4.1

0743-166W93 $03.00 0 1993 IEEE

With respect to the above described general model,
tmsitions in an FSM ~IE considered as components, while
states have the function of connecting these components.
In this paper, we generalize the algorithm of [61 to the case
where system implementations are allowed to have
multiple faults; several transitions might have output
andor transfer faults. If the occurred faults ~IE detected by
one or several test cam, which may have been generated
by one of the existing test selection methods, the new
algorithm will have the ability to generate a minimal set
of diagnoses, each of which is formed by a set of
transitions (with specific types of faults) suspected of
being faulty. We also propose approach for selecting
additional test cases, which allows the reduction of the
number of possible diagnoses.

The remainder of the paper is organized as follows.
In Section 2, the deteaministic finite state machine (FSM)
model and a corresponding fault model are introduced. A
brief description of some test selection methods and a
discussion on their fault localization power are also
presented. Section 3 presents an approach for the multiple
fault diagnostics of system implementations represented by
FSMs. In Section 4, an application example explaining
the steps of the proposed diagnostic approach is provided.
Section 5 presents ,an approach for the selection of
additional test cases in order to reduce the number of

2.1 The FSM fault model

The FSM fault model [2] is based on faults made on
labeled transitions. Some of these faults, which are
essential for the diagnostic approach discussed in Section
3, are define4l as follows:

Definition 1: Output fault: We say that a
transition has an output fault if, for the corresponding state
and received input, the implementation provides an output
different from the one specified by the output function.

An implementation has a single output fault if one
and only one of its transitions has an output fault.

Definition 2: Transfer fault: We say that a
transition has a transfer fault if, for the comsponding state
and received input, the implementation enters a different
state than specified by the Next-state function.
An implementation has a single transfer fault if

one and only one of its transitions has a transfer fault.
Definition 3: Additional (missing) transition

fault: An implementation has an additional (missing)
transition, if for a pair of present state and input, one more
(one less) transition (with respect to the specification) is
dehed.

An implementation has multiple faults if and only if
some of its transitions have one or several faults defined
above.

possible diagnoses. An estimation of the complexity of the
diagnostic approach is given in Section 6. Finally, Section
7 contains a concluding discussion and points for future
research.

2. Finite state machines

A deterministic finite state machine (FSM) M

S is the set of states of M. It includes an initial state so,
can be represented by a quintuple (S, I, Y, T, 0) where :

I is the set of input symbols,
Y is the set of output symbols. It includes the null

T is the next-state function, S x I --> S,
0 is the output function, S x I --> Y.
The notation s-a/b->s' is used to represent a

transition. For each state in the machine, a reset
transition is used to take the machine to its initial state.
It takes the symbol r as input and generates the symbol e
as output.

Finally and in order to deal with null outputs (e.g., e),
we assume that the output e is observed during a test by
the application of an input and the non-observation of any
output during a predetermined lapse of time. After deducing
that a null output has occurred, the next input is allowed to

A graphic representation of a deterministic FSM example,
in the form of a state transition diagram, is given in
Figure 1.

output (e),

be applied.

I I

Figure 1: A state transition diagram of an FSM

For our diagnostic approach presented in the following
section, we assume the following fault model: the
implementation under test (IUT) may have
output faults and/or transfer faults in its
transitions.

This fault model covers single (output or transfer) faults
and multiple (output andor transfer) faults which might
occur in the transitions of the machine. In addition, certain
cases of missing transition faults may also be explained by
a combination of transfer and output faults as explained in
the following. A missing transition leads to an
incompletely specified implementations. Different
implementation assumptions may apply in this case, such
as the following:

(a) Blocking: The input is blocked in the input queue,
as defined for Estelle [3]. This case can not be modeled in
general by a faulty uansition.

(b) The input is dropped, as defined for SDL [ll. This
case can be modeled by a multiple fault, where the faulty

64.4.2
783

transition has the empty output and leads back to the same
State.

(c) Some error indication: In this case, the fault is
detected by the e m r indication. This case can be modeled
by a multiple fault, where the faulty output has the error
output and leads back to the same state.

2.2 Test selection methods for FSMs

Many test selection methods have been developed for
FSMs [7,4, 10, 13,9, 141. The most important ones are
the following:

T-method: The T-method [lo] generates a test suite
consisting of a single test sequence known as a
"transition tour". For a given FSM, a transition tour is
an input sequence which takes the FSM from its initial
state, traverses every transition at least once, and returns to
its initial state. It has the power of detecting all output
faults (in the absence of transfer faults), but there is no
guarantee of detecting any transfer fault.

D S - m e t h o d : In the DS-method [7], a
distinguishing sequence (DS) is used for state
identification. An input sequence is said to be a
distinguishing sequence for a FSM, if the output sequence
produced by the FSM is different for each different starting
state. The DS-method uses a two-phase approach. The tests
of the fiist phase check that each state defined by the
specification also exists in the implementation. The tests
of the second phase check all transitions defined by the
specification and not tested during the first phase, for
correct output and transfer in the implementation. Under
the assumption that the number of states of the
implementation is not larger than that of the specification,
the DS-method guarantees the detection of all output and
transfer faults. Its only disadvantage is that it is not always
applicable because not all FSMs possess a DS.

UIO-method: The UIO-method [13] uses a set of
unique input/output (UIO) sequences for state
identification. An UIO sequence for a state s is an I/O
behavior not exhibited by any other state in the FSM. The
UIO-method generates test sequences which check whether
each transition has the correct Next-state and the correct
output. To check for the correctness of the Next-state
reached by the machine after the execution of the transition
under consideration, the corresponding U10 sequence is
applied. In general test sequences generated by the UIO-
method are shorter than those produced by the DS-method.

Vuong claimed that the UIO-method may leave certain
transfer faults undetected [15]. He also proposed a modified
version, called UIOv-method, which contains a procedure
for verifying the uniqueness of the UIO sequences, thus
detecting faults which were otherwise undetectable due to
non-unique UIO sequences. The test sequences generated by
the UIOv-method guarantee the detection of all output and
transfer faults.

W-method: The W-method [4] involves the selection
of two sets of input sequences: The W-set and the P-set.
The latter represents a transition cover set of the

specification. Tbe former represents a characterization
set of the specification. The set W consists of input
sequences that can distinguish between the behaviors of
every pair of states in the specification.

The W-method provides a set of test sequences
consisting of the concatenation of the sets P and W (i.e.
P.W). Each test sequence starts with the initial state, aftea
the application of the reset operation. In this case, to
identify a reached state Ik to which a transition transfers,
all the sequences contained in the W-set are applied to the
implementation, separately. In general, test suites generated
by the W-method are longer than those produced by other
test selection methods.

Provided that the number of states in the implementation
remains within a certain bound, the W-method has the full
power of detecting all output and aansfer faults.

Wp-method: The Wp-method [5] is a modified version
of the W-method. The only difference between the two
methods is that instead of using the complete set W to
check each reached state Si, only a subset of this set is used
in its second phase. This subset Wi is called an
identification set for state Si. If the reached state is the
intended one, the result obtained from tbe application of Wi
will confm its correctness. On the other hand, if the
implementation reaches a faulty state, the result obtained
from the application of Wi will be different and hence,
indicate the detection of a fault. In such a case, the analysis
of the obtained result will in general not have the full
power of identifying the reached state. While the Wp-
method has the same fault detection power as the W-
method, its main advantage is the length reduction of the
generated test suite.

23 Diagnostic power of test selection methods

Following the discussion of Section 2.2 on the different
test selection methods and their fault detection power, the
question comes to mind: What is the diagnostic and fault
isolation power of these methods'?

While a test suite generated by the W-method provides
enough information to diagnose a single fault, it cannot
localize the faults in an IUT, in general, as shown in
Figure 2. This figure shows two faulty implementations,
which generate the same output sequences in response to
the test sequence, TS, generated by the W method (see
Example 1). This failure can be explained by the fact that
W is no longer a characterization set for I2 and state s2 is
no longer reachable in 11. We see that test sequences
generated by existing test selection methods do not, in
general, guarantee the localization of multiple faults. It can
be expected that less exhaustive test selection methods,
such as the UIO, Wp or transition tour methods have even
less power of fault location. Therefore, in order to localize
implementation faults, additional diagnostic tests are
needed. It is important to note that a test sequence with a
better fault coverage (i.e. a W test suite rather than a T test

6d.4.3
784

suite) might need less additional diagnostic tests for the

Example 1: Given the specification of Figure 1, a
possible charactexhation set for the W-method is:
W = (a,b}.
Using the above W and applying the W-method, we

generate the following test suite:
TS = (aa, ab, bca, bcb, baa, bbb, cab, cca, ccb, cba,

bab, bba, caa, cbb)
outputs of S = (ef, ef, fff, fff, ffe, ffe, efe, eef,

eef, eee, fff, fff, eff, eef}
The application of TS, to the faulty implementations I1

and I2 shown in Figures 2a and 2b, respedively, generates
in both cases the same sequences of outputs listed below:

outputs of I1 and I2 = (ef, ef, fff, fff, ffe, fff, eef,
me, eef, eff, fff, H, eef, eff}.

processofdiscriminatonbehveencaQdi~diagnoses.

Figure 2: Two faulty implementations non-
distinguishable by W

3. The diagnostic approach

3.1 Preliminary definitions

= 0i,l,0i,2,...,Oi,mi , where output Oij is expected after
input ii,,. f i ~ represents the j-th transioon executed in test
case tq according to the specification S .

Any difference, between an expected output o as
defined by the specification, and the corresponding
observed output 6, represents a symptom.

A minimal set of faults, which has the capability of
explaining all observed outputs, is called a diagnosis.
The corresponding set of transitions, where these faults
occur, is called a diagnostic candidate.

Definition: A fault f of an implementation M in a
transition t of S is said to be directly reacbed by a
test case tc, if the execution of tc, as defined by the
specification S, leads to the transition t, there is no
transfer fault in M on the path rhat leads from the initial
state to t, and the subsequent path of the test case contains
a symptom.

Example: If the machine in Figure 3 represents the
specification, then all faults (fl, f2, f3, f4, f5, f6, f7) in
the implementation of Figure 4, are directly reachable. On
the contrary, the fault f3 in the implementation of Figure
5, is not directly reachable. .

Figure 3: The specification S

We assume in the following that a specification S is
given, as well as an implementation M with output andor
transfer faults, as described in Section 2.1.

A test suite, TS, is defined as a set of test cases,
where each test case is a sequence of input symbols. We
write TS = { El; ...; U$. where each tci is a test case. If
a test case consists of mi inpup ii,l,ii,2 ,..., ii,mi, the
corresponding sequence of expected outputs is written as Oi

Figure 4 An implementation I1

3.2 The diagnostic algorithm

The diagnostic algorithm described in the following is
based on a certain assumpIion about the faults contained in
the implementation under test (IUT) and the test suite TS
used to detect the presence of faults. As explained below,

64.4.4

the algorithm ensures correct and complete diagnosis if the
following assumption is satisfied.

Figure 5 An implementation I2

Assumption: For each fault in the implementation,
there is a test case in the applied test suite which reaches

Note: This implies that there is at least one symptom,
generated by the application of the test suite, which
corresponds to each fault of the implementation. In the
case of an output fault, the symptom occurs immediately
(therefore the corresponding transition has been called
"symptom transition" [6]). In the case of a transfer fault,
the symptom occurs after the transition containing the
fault, and may be due to the wrong transfer of the fault in
question or to other faults which may be present in the
implementation. In any case, we say that the fault has
been"deteded".

that fault directly.

3.2.1 Step 1: (Generation of expected and
observed outputs)

Application of the test suite, TS, to the specification
and the IUT. For each test case tci, the expected output
sequence is written as Oi = o i , ~ ,oi,2 ,..., Oi,mi , where
output Oij is expected after input iij, while the observed
output sequence is written as: 6i = 6i,196i,2 ,..., 6i,mi.

3.2.2 Step 2: (Generation of symptoms)

Compare each observed output sequence with its
corresponding expected output sequence and identify all
observed symptoms for all test cases.

3.2.3 Step 3: (Construction of the set of
tentative candidate sets)

We construct in the following a set of tentative
candidate sets, called STC. This set has the following
properties: Each tentative candidate set Tc is a set of fault
candidates, and a fault candidate is a transition name
annotated by o or *, which corresponds to a output fault
candidate or a transfer fault candidate, respectively. For
example, the candidate t* is a transfer fault candidate, and
represents the assumption that the transition t has a

transfer fault. A tentative candidate (tl*, t2*, '10)
represents the assumption that the transition t l has an
output and a transfer fault, that t2 has a transfer fault, and
that all other transitions have (definitely) no faults.

D e f i n i t i o n : The actual set of faulty
transitions of the implementation is the set of
transitions of the implementation that contain faults,
annotated by o andor *, as in the case of the tentative
candidate sets.

The following construction of STC ensures that the
constucted STC will contain the actual set of faulty
transitions. For each given test case tq, we construct a set
of fault hypothesis SFHi as follows. Each fault
hypothesis is a pair &C, C O , where FC is a set of fault
candidates and CC is a set of cmect candidates, that is,
fault candidates that are assumed not to be present.

(a) If tci has no symptom, SFHi contains a single
element of the form (<(},(tilo} >}, which indicates that
the first transition, ti, 1, executed by tci, does not have an
output fault.

(b) If there are m symptoms in tci, we consider the
different symptoms in order and include in SFHi fault
hypotheses which correspond to the assumption that the
symptom considered corresponds to a fault that is directly
reached by the test case tci. The following situations may
occur for the j-th symptom. Because of the Assumption,
the j-th symptom is only considered under the hypothesis
that all earlier symptoms j' < j correspond to output
faults. We have the following two hypotheses:

(1) The j-th symptom corresponds to an output fault
(ti,kjo), and there is no transfer fault on the execution path
(ti,Jq,l),ti,Jq,1)+1 ,..., ti.kj-1) that leads to this symptom
transition. In this case, the next symptom will also be
considered (if it exists) since it corresponds to a directly
reached fault. If there is no next symptom, then the fault
hypothesis d, Y> iS added to SFHi, where x = (ti,klo,

..., ti,&*} - x, and ti k- is the kj-th transition where the j-
th symptom has been observed.

(2) The j-th symptom corresponds to a transfer fault
which is located in one of the transitions (ti,Jyji),ti,%-
1)+1, ..., ti,k--l) from the symptom transition (output
fault in ti,k(jl)o) of the previous symptom (or from the
initial state, respectively) to the symptom in question in
the transition ti,k-. In this case, the next symptom will
not be considered, since it corresponds to a fault which is
not directly reached by this test case, although it may be
directly reached through another test case. For each
transition ti,n , n = k(j-11, k(j- 1)+1, ..., kj-1, in the
transition sub-sequence starting at ti,%-i) and ending at
the transition ti,kj-l. the fault hypotheses d, Y> will be

ti,k2O 9 ..., ti,kjo}s y = (ti,lO, fi,l*v ti.2'9 $,2*9

J * J

J

J

If for the test case tq, we have the following:

The set STC of tentative candidate sets is formed by all
possible unions of fault alternatives taken from all test
cases. More formally,

STC = {TC I TC = UFCi A TC n
i=1,2, ... L

(UCCi)=@,

test cases}.

i=1,2,...L

where <FCi, CCi> E SFHi and Ls is the number of

It is possible to reduce the set STC, by removing
some of its elements, if some additional knowledge is
available, such as :
1) The maximum number of transitions which might be

faulty in the IUT, or
2) The maximum number of faults (transfer and output)

which might be present in the IUT,

3) The maximum number of output faults and the
maximum number of transfer faults which might be

As an example, if we know that the maximum number
of faults in the IUT does not exceed N faults, then all
elements in STC, having a cardinality which is strictly
greater than N, can be removed. As the special case of
single fault diagnostics, we may keep in STC only
elements with cardinality one. In this case the algorithm
describedherereducestotheone describedin[6l.

present in the IUT.

3.2.4 Step 4: (Generation of PossFaults sets,
diagnostic candidates and diagnoses)

A diagnostic candidate is a tentative candidate and
an assignment of faults (specific output andor transfer to a
specific state) to all its transitions which succeed to
explain all observations. Note that a given tentative
candidate may lead to several diagnostic candidates. All
diagnostic candidates can be obtained by checking for each
possible assignment of faults of all diagnostic candidates
whether it explains all observations. The checking process
can be done through the application of all test cases in TS,
to the mutant machine, which corresponds to the
diagnostic candidate in question. If the outputs obtained
from the mutant are identical to the outputs observed from
the IUT the diagnostic candidate is confirmed. To compute
all possible faults for each tentative candidate, and hence,
all corresponding diagnostic candidates, we proceed as
follows:

Suppose that the tentative candidate, "Candi", in STC
is under consideration and has n1 transitions suspected of
having transfer faults, and n2 transitions suspected of
having output faults. We change in the specification
machine the ending states of all Candi's n2 transitions
suspected of having transfer faults. We also assign the
remaining transitions in Can4 the corresponding symptom
outputs. All remaining specification transitions are left
unchanged. We apply the test cases in TS on the resulting
machine (mutant). If the resulting outputs are equal to
those of the IUT, then the specific set of faults, introduced
in the elements of Can&, will be saved as an element in a
set called: "PossFaults[Cand j]" .

The above process is repeated until all combinations of
faults (the different assignments of ending states to Candi's
n2 elements suspected of having transfer faults, in addition
to the new outputs assigned to the remaining elements of
Candi) for Candi's elements are considered. If all
combinations of faults for Candi's elements fail to produce
the same outputs as those obtained from the IUT, then
Canqs PossFaults set will be kept empty and the tentative
candidate Candi will not be considered as a diagnostic
candidate.

We remove all tentative candidates with empty
PossFaults sets from the tentative candidate set, STC.
Each element in the corresponding PossFaults sets

6d.4.6
787

represents a diagnostic candidate, simply called
"diagnosis". It consists of the minimal set of faults
(output andor transfer), which might be present in the
given implementation and which have the ability of
explaining all observed outputs.

4. An application example

t8*)9 (t7'. f7*, bo,tgo9 tg*}, (t7', t8'9 t8*, %*I, (t7',
t4O,t8'9 t8*) 1
Step 4: For each element in STC, all possible
assignments of faults, having the ability of explaining all
observed outputs, lead to the following possibilities:

For example, the last possibility {t7-e>, tg-f->, t8->S1,
t9->s2) corresponds to the following diagnosis: The IUT
has t7 with an output fault of e, t8 with an output fault of
f and a transfer fault to si , and with a transfer fault to
s2.

6d.4.7
788

tc. ## tcl tc2 tc3 tc4

Inputs r, a, a r,a,b r,b,c,a r,b,c,b
Specified transitions tr,tl,t4 tr,tl,t5 tr,t2,t6,t4 tr,t2,t6,t5
Expected outputs - , e , f - , e , f - , f , f , f - , f , f , f
Observed outputs - , e , f - , e , f - , f , f , f - , f , f , f

tc5

r ,b,a,a
tr,Q,t4,tl
- , f , f , e
- , f , f , e

Table 1: Test cases and their outputs

tc. ##

Inputs
Specified transitions
Expected outputs
Observed outputs

5. Additional tests for reducing the
number of diagnoses

tc6 tc7 tc8 tc9 tcl0

r,b,b,b r ,c,a,b r,c,c,a r,c,c,b r ,c,b,a
tr,t2,t5,t8 tr,t3,t7,t8 tr,t3,t9,t4 tr,t3,t9,t5 tr,t3,t8,tl
- , f , f , e - , e , f , e - , e , e , f - , e ,e , f -,e,e,e
- , f , f , f -,e,e,f - , e , e , e - , e , e , f - ,e , f , f

Recall that the main purpose of testing and diagnostics is
the localization of implementation faults and their
correction. Therefore, if the diagnostic process ends up
with multiple diagnoses, additional tests are needed to help
reducing the number of diagnoses, if possible, to a single
diagnosis. In other words, additional tests should be
selected and applied to the implementation until a set of
faults in one of the diagnoses is confirmed and
consequently, all remaining diagnoses could be removed.

To distinguish between different diagnoses, we use an
approach which can be based on a test method described by
Gill [Gill 621. This method determines a test sequence
which allows the distinction between any two given finite
state machines. In our context, each diagnosis corresponds
to a particular (faulty) implementation determined by the
specification and the faults predicted by the diagnosis.
Gill's test method can be used to distinguish between any
pair of diagnoses (mutants) by a single test sequence
derived by his method.

Given a set of n diagnoses for a given implementation,
Gill's method may be applied to distinguish between any
two selected diagnoses, say Di and Dj. The application of
the derived test sequence to the implementation will lead
to one of the following situations:
(1) The observed output is equal to the one expected for
Di.
(2) "be observed output is equal to the one expected for
Dj .
(3) The observed output is different from both of the
outputs expected for Di and Dj .

In cases (1) or (2), we know that Dj or Di, respectively,
is a wrong diagnosis. In case (3), we know that both, Di
and Dj are wrong diagnosis. We have therefore reduced the
number of possible diagnoses and may continue until only
one diagnosis remains.

Gill's algorithm for the selection of a test sequence to
distinguish between two given implementations can be
described as follows:

3ven two machines Mi and M2, generate a pruned tree
breath first (nodes are labelled by pairs of states from Mi
nd M2, respectively)

Create the root node ng of a tree T, no = [sol, ~$1,
where so1 and s$ are the initial states of M1 and M2$
respectively.

for each non-closed node, nk = [Sil, sj21. in the current
level of tbe tree do

for each input symbol i do

if (Ol(Si1, i) = a(Sj2, i)) then
Create the new node, nl = [nextStatel(sil, i),
nextsw(sj2, i)], in the next level of the tree
Create a new branch labeled i/(Ol(Sil, i))
between nodes nk and nl

if (nl = nm), where nm is an existing node in
thetree then

Close nl by marking it with an x (i
will not be considered for further

expansion).
else

Form a test case sequence, tc, by thc
input part in the labels of the path,

which starts in the root node and ends
in node nk

Concatenate the input i to the end of
the test case tc.
stop.

6d.4.8
789

The number of different nodes in the constructed tree is
bounded by O(n2), where n is the number of states in the
specification machine. Since each node in the constructed
tree is considered at most once (due to node closing) by all
possible inputs, the number of leafs in such a tree is
bounded by O(I.n2), where I is the number of input
symbols accepted by the specifkation machine. Hence, the
overall complexity of the selection of rbe additional tests
to distinguish between the N diagnoses, is bounded by
O(N.I.n2). Knowing that the number of diagnoses is
bounded by O((LcS).nF), where Lc is the number of
inputs in the longest test case, S is the estimated
maximum number of test cases with symptoms, and F is
the maximum number of transfer faults, the overall
complexity is O(I.L.cS.nF+2).

M1

w t9de
M2

Figure 7: Machines corresponding to diagnoses Diagl
and Diag2

I i’ ‘i” I

I I

Figure 8: The test-tree for M1 and M2

If Step 4 of the diagnostic approach produces N
diagnoses, at most (N-I) additional diagnostic tests will
be needed, in order to d u c e the set of diagnoses to a
single diagnosis. Since the initial states of the mutant
machines are known, Corollary 4.1 in [Gill 621 guarantees
that the length of each of the additional tests will be at
most (2n - I) , where n is the number of states in these
machines.
Example: Suppose that, we are given the specifkation S
of Figure 1, the implementation I of Figure 6, and the
following two diagnoses among the several diagnoses
produced in Step 4 of the diagnostic approach

r r a n s f d to s1

Diag2: ’Ibe IUT might have t7 generated e as output, t8
transferred to s1 and generated f as output, and ~CJ transferred

~ ~~

We generate the tree of Figure 8 for the machines M i
and M2 (shown in Figure 7) corresponding to Diugl and
Diug2, respectively. The corresponding constructed
additional test is rcb. The application of this test case to
the implementation I of Figure 2a generates the output -ef.
Such a result eliminates the diagnose Diug2 from the list.

6. Complexity approximation of the
diagnostic approach

The proposed diagnostic approach has four sequential
steps. Therefore, the overall complexity of this approach is
equal to the complexity of the most complex step. A close
look at the different steps leads to the conclusion that Step
4 has the highest complexity since during the process of
diagnoses generation all n states in the machine have to be
checked as to whether it might be the ending state for a
transition suspected of having a transfer fault. Since in this
step, we make use of tentative candidates detemined during
Step 3, we also need to study the complexity of Step 3.
To estimate the upper bound of the number of tentative
candidate sets q we have to study the algorithm in Step 3,
which uses Ls test cases. The maximum number of
elements in a set of fault hypothesis for a given test case
is Lc. Only the test cases with symptoms contribute to
the construction of the set of tentative candidate sets. If the
number of test cases with symptoms is S, then the
maximum number of tentative candidate sets q, which is
the number of all combination of elements in the S sets
of fault hypothesis, is bounded by Les.

In Step 4, each element in the set of tentative candidates
contains several transitions some of which are suspected
of having fransfer faults and the rest is suspected of having
output faults. If F is the upper bound of the number of
transfer faults (this number can never be larger than Ls, the
number of test cases, because of the Assumption) in any of

6d.4.9
790

the LCS tenrative candidates determined during step 3, the
complexity of Step 4, in terms of possible number of
diagnoses, will be O ((L e S) . n F) . If Fand S are
reasonably small, say 3 or 4, the complexity of the
algorithm will remain manageable. Even when F and S
become large, the complexity of our algorithm remains
comparable with the complexity of other existing methods;
for example, KO's metbod generates up to I&", diagnoses,
where n and I are the number of states and the number of
inputs, respectively.

7. Conclusion

In this paper, we generalized the diagnostic approach
proposed in [6l to the case where system implementations,
represented by FSMs, are allowed to have multiple faults.
Such an approach is mainly motivated by the fact that even
strong test selection methods (e.g., the W-method) do not
have in general full fault localization power. If existing
faults are detected, this algorithm permits the generation of
a minimal set of diagnoses, each of which is formed by a
set of transitions (with specific types of faults) suspected
of being faulty. Tbe occurrence in an implementation, of
all the faults of a given diagnosis, allows the explanation
of all outputs observed during the test of the
implementation. We also proposed two approaches for
selecting additional test cases, which allow the reduction of
the number of possible diagnoses.

'he proposed diagnostic approach provides the guarantee
of correct diagnosis only in those situations where each
fault of the implementation is directly reachable by a test
case in the given test suite. An interesting research project
would be the extension of our work to the diagnostics of
machines not respecting this assumption. Another
challenging question, which needs to be solved, is to
extend the diagnostic approach to systems modelled by
extended FSMs.

Acknowledgments: The authors would like to
thank A. Petrenko for discussions on the test methods
described in this paper. This work was supported by the
IDACOM-NSERC-CWARC Industrial Research Chair on
Communication Protocols.

References

F. Belina et al., "The CCITT specification and
description language SDL", Computer Networks and
ISDN Systems, Vol. 16, pp. 311-341, 1989.
G.v. Bochmann et al., "Fault models in testing", Invited
paper in 4-th IWPTS, Leidschendam, Holland, Oct.
1991.
S. Budkowski et al., "An introduction to Estelle: a
specification language for distributed systems",
Computer Networks and ISDN Systems, Vol. 14, No. 1,

T.S. Chow, "Testing Design Modelled by Finite-State
Machines", IEEE Trans. S.E. 4, 3, 1978.
S. Fujiwara et al., "Test selection based on finite state
models", IEEE Trans. on S.E., Vol. 17, No. 6, June 1991,

A. Ghedamsi and G.v. Bochmann, "Test result analysis
and diagnostics for finite state machines", Proceedings
of the 12-th IWPTS, Yokohama, Japan, June 9-12, 1992.
G. Goenenc, "A method for the design of fault detection
experiments", IEEE Trans. Computer, Vol. C-19, pp.
551-558, June 1970.
J. de Kleer et al., "Diagnosing multiple faults", Artificial
Intelligence 32(1), 1987, pp. 97-130.
R.E. Miller and G.M. Lundy. "Testing protocol
implementations based on a formal specification", 3rd
IWPTS, McLean, Virginia, Oct. 30 - Nov. 1, 1990.

pp. 3-23, 1987.

pp. 591-603.

[lo] S. Naito et al., "FaultDetection for Sequential Machines
by Transition-Tours", Proc. of FTCS (Fault Tolerant
Computing Systems), pp.238-243, 1981.

[l l] A. F. Petrenko, "Checking experiments with protocol
machines", Proc. of the 4-th IWPTS, Leidschendam,

[12] R. Reiter, "A theory of diagnosis from first principles",
Artificial Intelligence 32(1), 1987, pp. 57-96.

[13] K.K. Sabnani et al., "A protocol Testing Procedure",
Computer Networks and ISDN Systems, Vol. 15, No. 4,

[14] D. P. Sidhu and T.K. Leung, "Formals Methods for
Protocols Testing: A Detailed Study", IEEE Trans. on
S.E., vol. 15. No. 4 , April 1989.

[15] S. T. Vuong. W. W. L. Chan and M. R. Ito, "The UIOv-
Method for protocol test sequence generation", in the 2-
nd IWPTS, Berlin, Germany, Oct. 3-6, 1989.

[16] S.T. Vuong et al., "A novel approach to protocol test
sequence generation", IEEE Global telecomm.
conference and exhibition, San Diego, California, Dec.

Holland, 15 - 17 Oct. 1991, pp. III-21-III.31.

pp. 285-297, 1988.

2-5, 1990, vol. 3, 904.1.1 - 904.1.5.

6d.4.10
791

