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Abstract 

Systematic test sequence generation for communication 
protocols in conformance testing has been an active 
research area during the last &c&. Methods were developed 
to produce optimized test sequences for detecting faults in 
an implementation under test (IUT). However, the 
application of these methods gives only limited 
information about the locations of detected faults. 
Therefore, we propose a complementary step which 
localizes the faulty transition in a deterministic finite state 
machine (FSM) once the fault has been detected. A 
diagnostic algorithm will generate, if necessary, additional 
diagnostic test cases which depend on the observed 
symptom and which permit the location of the detected 
fault. The algorithm guarantees the diagnostic of any single 
(output or transfer) fault in an FSM. An application 
example, explaining the functioning of the algorithm, is 
provided in the paper. 

1. Introduction 

A protocol implementation has to be checked as to 
whether it conforms to its protocol specification or not. 
This activity is called protocol conformance testing. A lot 
of research work has been directed towards such tests [ 161. 
In particular, a protocol specification can be viewed as 
consisting of two portions: a control portion and a data 
portion, which may be addressed separately in the context 
of conformance testing. The testing of the data portion, 
which is concerned with checking the parameters of input 
and output primitives and local variables, has been 
investigated by a number of researchers using some forms 
of static data flow analysis [15, 21, 233. 

In this paper, we are concerned with the control aspects. 
We assume that this aspect is modeled by finite state 
machines. Various test selection methods have been 
described for this aspect [2, 8, 11, 12, 14, 193. These 
methods are intended to determine whether a given protocol 
implementation satisfies all properties required by the 
protocol specification. The purpose of a test selection 
method is to come up with a set of test cases, usually 
called "test suite", which has the following (conflicting) 
properties: 

(a) The test suite should be relatively short, that is, the 
number of test cases should be small, and each test case 
should be fast and easily executable in relation with the 
implementation under test. 

(b) The test suite should cover, as much as possible, all 
faults which any implementation may contain. 

Existing test selection methods differ in the kind of 
compromise which is reached between these two conflicting 
objectives, and in the amount of formalism which is used 
to define them. 

The remainder of the paper is organized as follows. In 
Section 2, we introduce the diagnostic problem, in general, 
and discuss the main steps required by any diagnostic 
process. In Section 3, the test selection methods are studied 
in respect to their capability of solving diagnostic and fault 
localization problems, which have not been addressed by 
the above references. Test suites, generated by one of these 
methods, are used by our diagnostic algorithm which is 
presented and discussed in Section 4. An application 
example is introduced in Section 5 .  Finally in Section 6, 
concluding remarks and future research points are included. 

2. The diagnostic problem 

In distributed systems and the communication protocol 
area, very little work has been done for diagnostic and fault 
localization problems [22]. At the same time, diagnostic is 
a well documented subject in other areas such as Artificial 
Intelligence (AI) [3, 53, complex mechanical systems and 
medicine [17]. Therefore, most of the concepts and terms 
used in this paper are imported from those domains. 

2.1 Methodology for test result analysis and 
diagnostics 

In general, diagnostics can be classified into two classes. 
The first class is called "Experimental diagnostic". It is 
mainly used in medicine [17] and similar domains. 
Experimental diagnostic is not covered in our paper. Our 
main interest is related to the second class of diagnostic 
called "Diagnostic based on a model'' [9]. The main idea of 
this type of diagnostic is that it is necessary to know how 
the system or the machine under test is supposed to work 
correctly in order to be able to know why it is not working 
correctly. Different reasoning systems based on models 
were developed for this approach. The most important ones 
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are the following: HT (Hardware Troubleshooting) [3], 
DART (Diagnosis Assistance Reference Tool) [5], and 
GDE (General Diagnostic Engine) [9, 201. A brief survey 
on these systems can be found in [7]. 

Often the specification of a model-based system is 
structured in a hierarchical manner. The system is Seen as a 
set of components connected to each other in a specific 
way. The structure (organization) of a system can be 
defmed as a relationship (Le, physical connection, procedure 
call, ...) between the different components of the system. A 
component is seen as one of many smaller sub-systems 
in a larger system. The behavior of the larger system is, 
therefore, described in terms of its components behaviors. 
Each component can itself described at a more detailed 
level, possibly in terms of sub-components, and so on. 
Depending on the need, we might have several different 
descriptions of the Same component, one in terms of the 
composition of sub-components, and another which 
describes the behavior of the component in terms of its 
interactions with the environment. 

In structured model-based diagnostics, we assume the 
availability of the real system (i.e, implementation) which 
can be observed, and its model (i.e, specification) from 
which predictions can be made about its behavior [9, 131. 
Both systems and their corresponding models are assumed 
to have the same components and the same structure. 
Observations of inputs and outputs show how the 
system is behaving, while expectations tell us how it is 
supposed to behave. The differences between expectations 
and observations, which are called "symptoms", hint the 
existence of one or several differences between the model 
and its system. The process of comparing observations and 
expectations is called "test result analysis". In order to 
explain the observed symptoms, a diagnostic process 
should be initiated. It consists mainly of performing the 
following two tasks: the generation of candidates and the 
discrimination between candidates [91. 

Task 1: Generation of candidates: This process 
uses the identified symptoms and the model to deduce some 
diagnostic candidates. Each diagnostic candidate is 
defined to be the minimal difference, between the model and 
its system, capable of explaining all symptoms. It indicates 
the failure of one or several components in the system. A 
good candidate generator should be complete, non redundant 
and optimal. It is complete if it generates all candidates 
which explain all identified symptoms. It is non redundant 
when it does not generate the same candidate more than 
once. Finally, it is optimal if it generates only minimal 
candidates and no super-sets of them. 

Task 2: Discrimination between candidates: 
Once the step of candidate generation terminates, we often 
end up with a huge number of diagnostic candidates. To 
reduce their number, two main techniques are used. The 
fmst one consists of the selection of some additional new 
tests called "distinguishing tests" [5]. The second 
technique consists of introducing new observation points in 
the implementation under investigation and executing the 
same tests again. 

2.2 Fault models 

We recall that in general, the diagnostic process is a very 
complicated task, specially for diagnosing complicated 
systems. This complexity makes the achievement of the 
candidate generation and discrimination tasks harder. In 
order to solve this problem, the use of fault models is 
necessary (see for instance [l]). Given the hierarchical 
system description, corresponding fault models may be 
established using the different levels of abstraction. Some 
of these fault models give all possible failures of each 
component in the system. They help to ease the diagnostic 
procedure, specially by reducing the number of the different 
cases which have to be considered, and hence, in reducing 
the number of diagnoses to be generated. It is important to 
note that different fault models may be used during both 
tasks of the diagnostic process. In the simplest case and for 
high level abstractions, the following fault model, based on 
the system decomposition into components and 
connections, may apply during the candidate generation 
phase. Each component may either be faulty or operating 
correctly [9]. On the other hand, and for lower level 
abstractions (i.e. gates or transitions levels), different uses 
of precise and more concrete fault models, are recorded in 
different areas such as the diagnostics of hardware circuits 
(i.e, stack at 0/1 fault models) [203. These fault models 
may be used during the phase of discrimination 
candidates. In the protocol area and more precis 
FSMs, another simple fault model, based ontran 
output faults of state transitions, can be used for 
protocol entities modelled by FSMs [2,7,22]. 

2.3 A general diagnostic method 

In the following method, we only consider the diagnostic 
of structured systems which are assumed to be composition 
of different components. These components will be tested 
for their correctness during the diagnostic process. We 
assume that the behavior of these systems is described in 
terms of inputs and outputs. We also assume that the 
application of a sequence of inputs to tbe system will 
imply the involvement of a specific set of co 
the system and the generation of a specific 
outputs. 

The diagnostic method 
Given a structured system to be di 

the purpose of the following method is to present 
steps required by any diagnostic prmss. Th 
not include any specific techniques at 
and a more specific algorithm for 
modelled by deterministic FSMs is dis 

Step 1: Generation of expected 
We assume that a test suite "TS" is 

been obtained by one of the existing tes 
The test suite consists of a number of te 
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sequences of input spbols. We write TS = { tcl, ..., E,}, 
where each tq is a q t  case. 

....ii,mi, 
the corresponding sequence of expected outputs is written as 
oi = oi,~oi,2 .... o i , ~  , where oij  is expected after input 

If a test case tci consists of mi inputs 

iij. 

Step 2: Generation of observed outputs 
Application of the test suite to the IUT. For each test 

case tci, a corresponding observed output sequence is 
written as: 6i = 6i,18i,2 .... 6i,mi 

Step 3: Generation of symptoms 
Compare observed outputs with expected ones and 

identify all symptoms. Any difference (Oi,j f 6i,j) 
represents a symptom. The faulty output corresponding to 
a symptom is called a symptom output. 

Step 4: Generation of conflict sets 
For each symptom (oi,, # Bi,,), determine its 

corresponding conflict set. A conflict set for a given 
symptom is defined to be the set of components which are 
supposed to be involved in the generation 

of the symptom output; therefore, at least one of these 
components must be faulty. 

Step 5: Generation of diagnostic candidates 
Diagnostic candidates are components which are 

suspected to be faulty. Therefore, each one of them should 
have a non empty intersection with each conflict set. It also 
has to be consistent with all observations. A diagnostic 
candidate with more than one component corresponds to 
multiple faults in the IUT. 

Step 6: Additional diagnostic tests 
In this step, additional diagnostic tests or different points 

of observation might be needed in order to reduce the 
number of diagnostic candidates, if possible to a single 
diagnosis. In such a case, specific techniques might be 
applied in order to achieve such a goal (for more details, see 
for instance Section 4). 

3. The finite state machine model 

A deterministic FSM M can be represented by a 
quintuple (S, I, Y, T, 0) where : 
S : Set of states of M. It includes an initial state so 
I : Set of input symbols 
Y : Set of output symbols. It includes the null output (-), 
T : Next-state function, S x I --> S, 
0 : Output function, S x I --> Y. 

A graphic representation of a deterministic FSM, called 
"State transition diagram", is given in Figure 1. 

3.1 Principles of an FSM fault model 

The FSM fault model is based on errors and faults made 
on labeled transitions or states of the machine. These 
definitions are also essential for the FSM-based test 
selection methods discussed in the following sections. 

Figure 1: A state transition diagram of an FSM 

Definition 1: Output fault: We say that a 
transition has an output fault if, for the corresponding state 
and received input, the implementation provides an output 
different from the one specified by the output function. 

An implementation has a single output fault if, one 
and only one of its transitions has an output fault. 

Definition 2: Transfer fault: We say that a 
transition has a transfer fault if, for the corresponding state 
and received input, the implementation enters a different 
state than specified by the Next-state function. 

An implementation has a single transfer fault if, 
one and only one of its transitions has a transfer fault. 

3.2 Test selection methods for FSMs 

Many test selection methods have been developed for 
FSMs. The most important ones are the following: 

(a) The transition tour method called "T-method" [12] 
detects any set of output faults in the absence of transfer 
faults. 

(b) The Distinguishing Sequence method called "DS- 
method" [8] and the UIOv-method [23] detect any set of 
output and transfer faults, assuming that the number of 
states of the implementation is the same as for the 
specification. 

(c) The W [2] and the Wp [4] methods detect in 
addition transfer faults with additional states, if the 
number of additional states is limited. However, the test 
suite length (and cost) increases in general exponentially 
when the number of expected additional states is increases. 

Various test suite optimization techniques have been 
described based on UIO sequences [18] which try to reduce 
the cost of the test suite by keeping its fault coverage 
invariant. The invariance of the fault coverage is not shown 
in all these cases. However, the fault diagnostic process 
might become more complicated. This is might be caused 
by the possible loss of information about some parts of the 
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machine once its corresponding small test cases, included in 
larger ones, get eliminated by the optimization process. 

3 3  Fault diagnosis for FSMs 

In this section, we first give a brief overview of a 
recently proposed approach for diagnosing FSMs, and then 
a discussion on the diagnostic power of the above test 
selection methods. 

3.3.1 A general diagnostic method for FSMs: 
Vuong presented a diagnostic method [22], which is based 
on the test sequence generation "Constraint Satisfaction 
Problem (CSP)" approach [lo]. In such a method, it is 
assumed that an observed inputloutput sequence for the 
implementation to be diagnosed, is given. That sequence 
can be used as the initial sequence for the CSP method. 
Different FSMs might result from the resolution of the 
CSP. Each solution represents a possible FSM model for 
the given IUT. If none of these FSMs is equivalent to the 
FSM specification, the observed sequence indicates that the 
given IUT failed the test and that some of its transitions are 
faulty. To distinguish the real implementation from the set 
of solutions, additional tests are required. 

The described method has some major disadvantages 
concerning the high complexity of resolving the CSP 
problem which is known in general, to be NP-complete. 
The other problem is the growing space of diagnostic 
candidates which might be generated by the CSP approach. 
The number of solutions could grow exponentially with the 
number of states in the given FSM and hence the number 
of additional tests will also grow fast. 

3.3.2 Diagnostic power of test selection 
methods: Following the discussion of Section 3.2 on the 
different test selection methods and their fault detection 
power, the question comes to mind: what is the 
diagnostic and fault isolation power of these methods? 

Concerning the W- and DS- methods in the case of 
single faults, both methods have the full power of 
diagnosing and localizing the fault. If there is a transfer 
fault, the test sequences are able to tell to which state the 
faulty transition has transferred. For the case of the UIO- 
and the W p  methods, however, the generated test sequences 
do not guarantee the localization of transfer faults because 
no conclusion about the reached state can be made. 
Therefore, a diagnostic process is in general needed if test 
suites are generated by the UIO-, Wp-, or T- methods. In 
such a case, distinguishing diagnostic tests may be required 
in order to reduce the number of the generated diagnostic 
candidates. We note that a test sequence with better fault 
coverage (i.e. an U10 test suite rather than a T test suite) 
might need less additional diagnostic tests for the diagnostic 
process. 

4. Diagnostics for sequential machines 

In this section, we adapt the general diagnostic method 

(in Section 2.3) to the specific case where implementations 
and their models are represented by deterministic FSMs. In 
such a context, transitions (which may be faulty) of an 
FSM to be diagnosed, can be seen as the components of the 
general structured system described in Section 2.1. 

The adapted version of the diagnostic methad consists of 
diagnosing (with respect to its specification FSM) an IUT 
FSM for possible faulty transitions. We assume the 
following fault model: " the IUT may have an output or 
transfer fault in at most one of its transitions". Its purpose 
is the identification of the faulty transition and the type of 
its fault (i.e. output or transfer). This work is mainly 
executed within the Step 5 and the Step 6 of the algorithm. 
In particular, Step 5 might end up with different diagnostic 
candidates. In such a case and in Step 6, additional 
diagnostic tests should be selected in order to be able to 
isolate the faulty transition and more precisely to know to 
which state (in case of transfer fault) that transition has 
transferred. 
Definition: The transition Ti j  of the specification 
where the symptom (oij # 6ij) has been observed, is 
called a symptom transition. If we have the same 
symptom transition for all symptoms, that transition is 
called the unique symptom transition (ust). The 
observed output generated by the ust, is called the unique 
symptom output (uso). 

The diagnostic algorithm 
Given a FSM specification and the FSM 

implementation (to be diagnosed), the following algorithm 
develops the general steps of diagnostic method of Section 
2.3. It also includes some techniques for the conkputations 
needed in each step. 

Step 1 to 3: (generation of expected outputs, generation 
of observed outputs and generation of symptoms): These 
steps are as described in Section 2.3. 

Step 4: Generation of conflict sets 
For each symptom, a corresponding conflict set is 

formed which consists of all transitions executed in 
FSM specification when the corresponding test case is 
applied. No transitions, executed after the observation of 
the symptom under consideration, will be included in the 
conflict set. 

In order to continue the diagnostic process, 
approaches might be used depending on whether 
fault hypothesis is made. In the following, we 
assumption that the IUT has a single fault, either o 
transfer. 

Step SA: Generation of the initial tentative 
candidate set 

The initial tentative candidate set "ITC" 
by the intersection of all conflict sets. Eac 
ITC represents a tentative candidate ban 
output or transfer fault) which may expl 
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Step 5B: The FTC set and the ending state set 
If there is a unique symptom transition "ust", it will be 

contained in the ITC. In that case, we split the ITC set into 
the set "ustset" which will initially contain the ust and 
the final tentative candidates set "FTC" which will 
contain the rest of transitions in ITC. Otherwise, the full 
ITC set forms the FTC set. If applicable, we first process 
the ust as explained below. A separate processing will be 
done for each transition in the FTC set. 

The ust is processed as follows. All test cases in the 
initially given test suite "TS" are scanned for transitions 
that are equal to the ust. If for all found transitions their 
corresponding observed outputs is equal to the uso, which 
means the ust explains all observations, then the ust is 
considered a diagnostic candidate. 

? r d u r e  ust-processing (ust) 

Forall I,,, E t h  DO 
Forall t h  E TS DO 

IF (Tm,, = ust) THEN 
IF o uso) THEN 

ustset = 0; exit [the ust is not a 
diagnostic candidate} 

(1 =1, 2, ..., im where n +im is the 
length of the test case t h }  

ELSE IF Om,n+l o 6m,n+l THEN 

ustset = 0; exit 
ENDForall 

ENDFomll 

For each transition Tk in FTC, we compute the set of 
all states called "EndStatesk", to which the transition 
might transfer. For each transition, we consider all states in 
the machine, with the exception of the expected NextState 
of Tk, one at a time. For each state s under consideration, s 
will be included in "Endstatesk", if under the assumption 
that s is the NextState of Tk, the expected and observed 
outputs are equal for all succeeding transitions in all test 
CaseS. 

3 d u r e  findendingstates (FTC); 
Forall Tk in FTC Do { Tk is the k-th transition in FTC} 

(EndStateSk is the set of all 
states to which the tranSitiOnTk might transfer} 

Endstatesk := 0 

Forall state s E S and s f NeXtState(Tk) Do 
flag := true 
Forall t h  E TS Do 

Forall Im,n E t h  Do 
IF vm,n=Tk)" 
IF (O(S, Im,n+l) 0 Gm,n+l) THEN 

[l =1, 2, ..., im where n +im is the 
length of the test case tcm} 

flag := false; exit 
ENDForall 

Step 5C: Identification of diagnostic candidates 
and generation of diagnostics 

In this step we remove all correct (i.e. transitions with 
empty ending state sets) transitions from the final tentative 
candidate set FTC. All transitions in the resulting "DCtr" 
set (if not empty) are diagnostic candidates with transfer 
faults. For each transition Tk in the DCtr and for each state 
Sik in the Endstatesk, a diagnostic, stating that Tk might 
transfer to state Sik, is generated. An extra diagnostic, 
stating that the ust might have an output fault, is also 
generated, if the ustset is not empty. 

Step 6: Additional diagnostic tests 
Depending on the result of the previous step, different 

possibilities might be present. 
Case 1: The ustset contains the ust transition and DCtr 

is empty. In such a case, the ust is the faulty transition 
with an output fault and no further diagnostic tests are 

Case 2: The ustset is empty and the DCtr is a 
singleton with a corresponding singleton ending state set. 
In such a case, the transition in DCtr has a transfer fault to 
the state in the ending state set. No further tests are 

Case 3: The ustset is empty and the DCtr is a 
singleton with a corresponding ending state set with more 
than one element, or the DCtr has more than one element. 
Therefore, each element in DCtr might be the faulty 
transition with a transfer fault. In such a case, we should 
process the elements of DCtr to derive further tests with the 
purpose of identifying the faulty transition and the state to 
which it transfers. 

We propose the following approach and algorithm for 
the derivation of additional diagnostic tests. For each 
transition in the DCtr, the following step is executed: 

Given the transition under consideration Tk in the DCtr, 
additional test cases have to be selected and executed, in 
order to be able to know exactly to which state Tk 
transfers. These test cases should have the ability of 
distinguishing between the different states contained in the 
corresponding ending state set "EndStateSk " and possibly 
the correct ending state of the transition. Therefore, an 
"limited characterization set" wk [2] has to be 
computed for the states in Endstatesk and the correct state. 
It is formed by sequences of inputs such that if applied to 
the machine in one of the states in Endstatesk, the 
produced outputs will be different from the outputs obtained 
if the same input sequences was applied to any other state 
of Endstatesk or the correct state. Each additional test case 

required 

required. 
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is a concatenation of an input sequence, called transfer 
sequence, required to take the machine from its initial state 
to the starting state of Tk, the input for Tk and a sequence 
of inputs from the wk. 

In order to avoid any ambiguities, the transfer sequence 
and the limited characterization set should be chosen in 
such a manner that they do not involve any transition in 
DCtr. 

The construction of the additional tests is progressive 
because if the fault is located, the rest of these additional 
tests need not be generated, since we work under the single 
fault hypothesis. If some of the generated tests are already 
included in the initially given test suite, this will be taken 
into consideration for the analysis of the obtained outputs, 
but they need not be applied again to the IUT. If the 
application of these additional tests generates the expected 
outputs, the transition is declared correct and is removed 
from the DCtr. When a faulty transition is found, the 
observed outputs identify the wrong transfer of the 
transition. 

Case 4: The ustset contains the ust transition and 
DCtr is not empty. In such a case, we first check the ust 
transition by generating for it additional test cases in a 
similar way as in Case 3. If the application of these test 
cases generates the expected output, then ust is declared 
correct (no output fault) and the search for a faulty 
transition with a transfer fault has to be done as in Case 3. 

The above cases are covered by the following algorithm: 

F (ustset = [ ust} AND DCtr = 0) 
WEN Print "The ust transition has an output fault" 
XSEIFustset =0 ANDDCtr= { T i  } AND 

EndStatesl = {si} 
THEN Print "Ti is the faulty transition with transfer 

ELSE IF ustset = 0 AND DCtr = { T i  , ..., Td } 
fault to si'' 

THEN Findtransferfault (DCtr) 
ELSE IF ustset = {ust) AND DCtr = { T i  , ..., Td } 
THEN select test cases for the ust; 
apply these tests to the IUT; 
IF (observed output o expected output) 

THEN Print "The ust has an output fault and 
all other transitions are correct" 
ELSE Findtransferfault (DCtr) 

Rocedure Findtransferfault (DCtr) 
flag := false; k := 1; 
REPEAT {Tk is a transition in DCtr} 

select diagnostic tests for Tk ; 
apply these tests to the implementation; 
IF (observed output c> expected output) 
THEN flag := me; 
Print "Tk has a transfer fault. Its ending state is 

deduced f'rom the analysis of the observed outputs. 
All other transitions are correct" 

ELSE Print "Tk is correct" 
k : = k + l  

UNTIL (flag = true) 

5. An application example 

Given the FSM specification of Figure 1, we execute 
the steps of the proposed diagnostic algorithm as 

follows: 

Step 1: Generation of expected outputs 
Suppose that the initial test suite is given as follows: 
TS = (rab, rbca, rcab, rcca} 
The expected outputs for these tests are: { -ef, -fff, -efe, - 

ef) 

Step 2: Generation of observed outputs 
The application of the given TS to the IUT of Figure 2 

generates the observed output sequences included in the 
following table. 

Input rbca rcab ma 
Transition tit5 t2t@4 t3t7tg t3t9t4 
Exp. output -ef -efe eef 

-eff eef 

Table 1: Test cases and their outputs 

t6: C/f LL. U I 1  

t9: c/ 
\D: c/e / /E: b/f t7:h&y t8: b/t 

Figure 2: An implementation I 

Step 3: Generation of symptoms 
A difference between observed and expected 

detected during the application of test case tc3. 
we have a single symptom "Symp3 = (03,3 f 63,3) 
the symptom transition t8. 
Step 4: Generation of conflict sets 

The conflict set for the given symptom is "C 
t7, tg)", namely, the transitions of test case tc3 
the symptom. 

249 



Step 5A: Generation of the initial tentative 
candidates set 

Because there is only one conflict set, the resulting 
initial tentative candidate set ITC is equal to the conflict set 
Conf3. Each transition in ITC is a tentative candidate. 

Step 5B: The FTC set and the ending state sets 
The unique symptom transition t8 is included in ITC. 

Therefore, ITC is split into ustset and the final tentative 
candidate set FTC as follows: 

UsWt = (t8) FTC := (t3, t7] 
The computation of the ending state sets for the 

EndStates[t3] = ( ) 
transitions in FK leads to: 

EndStates[t7] = (so, SI] 

Step 5C: Identification of diagnostic candidates 
and generation of diagnostics 

The transitions with empty ending state sets are correct, 
therefore they are removed from the final tentative candidate 
set FTC. The resulting set DCtr is the one containing the 
diagnostic candidates with transfer faults. We obtain: 

Usbet = (t8) Dctr= (t7). 
With the use of the ustset and the ending state sets 

generated for transitions in DCtr by Step 5B, the following 
diagnostics are generated: 

D1: t7 might transfer to state so instead of s2. 
D2: t7 might transfer to state s1 instead of s2. 
D3: t8 might have an output fault off instead of e. 

Step 6: Additional diagnostic tests 
We determine the faulty transition by completing the 

initial test suite with additional diagnostic tests. In order to 
discriminate between the two diagnostic candidates t7 and 
t8, additional diagnostic tests have to be selected. 

At this stage, we know for sure that all transitions, with 
the exception of t7 and t8, are correct. In order to check 
whether t8 has an output fault or not, we just have to use a 
path which takes the machine to the starting state of t8, 
then we execute it. For this example, a possible additional 
test case is "rcb". The execution of this test case generates 
"-eel' as output. This result confirms that t8 is not faulty 
and therefore, t7 has a transfer fault. 

Consequently, another diagnostic test is required in order 
to distinguish between the two diagnoses of t7 (D1 and 
D2). We don't know whether the faulty transition t7 
transfers to state so or to state S I .  A possible transfer 
sequence which will take the machine to the starting state 
s2 of t7 is "rc". A possible sequence which will distinguish 
between states so and s1 is the input "a". If in so, the 
machine produces "e" as output for the input "a", and "f" 
for the same input if it was in state SI .  Hence, the resulting 
additional test case is '"a" where the first "a" input 
represents the input of the transition t7. If after the 
application of "rcaa" the observed output is "-efe", t7 

transfers to state so as shown in Figure 4, otherwise, it 
would transfer to state S I ,  as assumed by the second 
diagnosis. 

6. Concluding discussion 

6.1 The diagnostic algorithm and test selection 
methods 

It is important to note that the proposed algorithm 
depends closely on its first step, where different test 
selection methods might be used for generating the initial 
test suite. In the following, we discuss this dependance in 
more details. 

For a poor test selection method, such as the T method, 
it is not even guaranteed that a fault is detected. If the fault 
is not detected, no diagnostics will be generated and Steps 4 
to 6 of the algorithm will simply not apply . However, if a 
symptom is identified, the diagnostic process may generate 
a larger number of diagnostic candidates and therefore 
correspondingly, an even larger number of diagnostics, 
because the initially applied tests were not very thorough. 
In order to distinguish between these diagnostics, a large 
number of additional diagnostic tests will be needed. We 
conclude that the less complete an initial test suite is used, 
the more complex is the task of diagnosing the location of 
a detected fault. 

For a better initial test suite, such as generated by the 
UIOv- or Wp- methods, faults are guaranteed to be detected, 
but they are not necessarily localized. In such a case, the 
diagnostic algorithm might end up with several diagnostics 
at the end of Step 5 and additional tests might be generated 
by Step 6. It is interesting to use the UIOv- or the Wp- 
methods since their corresponding test suites are shorter 
than those generated by the W-method. It is important to 
mention that, even after complementing the test suites 
generated by the UIOv- or the Wp- methods with the 
additional diagnostic tests, the resulting test suites will, in 
general, remain shorter than those generated by the W- 
method. 

In the case of the W- or DS- methods finally, the 
computation required by the steps of the algorithm will be 
simplified considerably. The generated test suites can detect 
and localize any single (output or transfer) fault in the 
implementation. At the end of Step 5 of the algorithm, 
only a single diagnostic candidate will remain and hence 
there will be no need for additional diagnostic tests. 

6.2 Complexity of the Algorithm 

A detailed study about the complexity of the proposed 
diagnostic algorithm is given in [6]; in this subsection, we 
only give the result of this study. The overall complexity 
of the algorithm is found to be of 0(nLsLc3) where n, 
Ls, Lc are variables representing the number of states in the 
specification, the number of test cases in the initially given 
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test suite, and the number of inputs in the longest test case, 
respectively. 

It is important to note that the two variables Ls and Lc 
are interrelated, if one of them is reduced the other one will 
be increased. Hence, it is possible to reduce the execution 
time of the proposed algorithm by reducing as much as 
possible Lo since in general, Ls will only register minor 
increases. For example, suppose we use the transition tour 
method to select an initial test suite consisting of a single 
test case of length 50 (i.e. Lx = 1, Lc = 50). It may be 
possible to reduce dramatically the execution time of the 
diagnostic algorithm by just selecting several small test 
cases corresponding to sub-tours of the whole sequence, for 
instance 15 sub-tours not longer than 5 (i.e. Ls = 15, Lc = 
5) .  From the practical point of view and as indicated in 
[14], for most of the known protocols Lc I 5 .  

6.3 Presence of multiple faults 

As explained above, the proposed algorithm is designed 
for diagnosing single faults. In general, the initial test 
suites which might be used by the algorithm, will not 
necessarily guarantee the detection of all faults and hence 
the algorithm will not ensure their diagnosis. In the 
presence of multiple faults, and if detected, the diagnostic 
algorithm needs to be modified in order to accommodate the 
change in the fault model assumption. In particular in Step 
5, the generation of the diagnostic candidates will be more 
complicated, since they might be formed by more than one 
transition. As a consequence, Step 6 should also be 
modified. It is not obvious how to select additional tests 
which will have the ability of distinguishing between sets 
of transitions and their corresponding diagnostics. 
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