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Abstract

The selection of appropriate test cases is an important issue for conformance testing of protocol

implementations as well as in software engineering. A number of methods are known for the selection of a

test suite based on the specification of the implementation under test, assumed to be given in the form of a

finite state machine. This paper presents a new method which provides a logical link between several of

the known methods. Called "partial W method", it has general applicability, full fault detection power, and

yields shorter test suites than the W method. The second part of the paper discusses various other issues

which have an impact on the selection of a suitable test suite. This includes the consideration of interaction

parameters, various test architectures for protocol testing, and the fact that many specifications do not

satisfy the assumptions made by most test selection methods, such as complete definition, a correctly

implemented reset function, a limited number of states in the implementation, and determinism.

1. Introduction

Methods for the development of test cases have received much attention recently in relation with

conformance testing of communication protocols [Rayn 87, Sari 89]. The test cases are intended to

determine whether a given protocol implementation satisfies all properties required by the protocol

specification. The purpose of a test selection method is to come up with a set of test cases, usually called

"test suite", which has the following (conflicting) properties:

(a) The test suite should be relatively short, that is, the number of test cases should be small, and each test

case should be fast and easily executable in relation with the implementation under test (IUT).

(b) The test suite should cover, as much as possible, all faults which any implementation may contain.
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Existing test selection methods differ in the kind of compromise which is reached between these two

conflicting objectives, and in the amount of formalism which is used to define the method. In the case that

a formal specification of the protocol is available, the test selection and fault analysis can be based on this

specification [Sari 89, Boch 89m]. It is important to note that many of the here discussed issues also arise

in the more general context of software and hardware testing. Most of the aspects discussed in the paper

apply in this general framework.

Many test selection methods have been developed for the case that the specification of the system to be

tested is given in the form of a finite state machine (FSM). The best known methods are called Transition

tour [Nait 81], W-method [Chow 78], Distinguishing Sequence method [Gone 70], and Unique-Input-

Output (UIO) method [SaDa 88]. The W-method and the Distinguishing Sequence (DS) method were

originally developed in the context of software and hardware, respectively.

The test suites derived by each of the above methods will detect any output error of the implementation,

that is, if the implementation follows the FSM specification except for the output produced for certain state

transitions, the error will be detected during the execution of the test suite. However, transfer errors, that

is, errors in the next state reached by a transition, will not always be found. Nevertheless, the W-method

and Distinguishing Sequence method will find all such errors provided that the number of states of the

implementation remains within a certain bound.The discussion of the fault coverage of the test methods is

therefore based on the fault model of FSM "output" and "transfer" faults.

The DS method uses a two-phase approach, where the tests of the first phase check that each state defined

by the specification also exists in the implementation, and the tests of the second phase check all remaining

transitions defined by the specification for correct output and transfer in the implementation. This two

phase approach is also used by Vuong's UIOv method [Vuon 89], the SW method ("Single transition

checking method using W set") [Sato 89a] and by the partial W method (Wp) described in Section 3.

One aspect of checking a transition is to verify that it reaches the specified next state. It is therefore

necessary to identify the next state reached by a given transition. In the case of the UIO and DS methods,

the reached state is identified by the output obtained in response to a single sequence of inputs, that is, a

single sequence allows to discriminate the expected next state from all other states of the specification. This

simplifies the testing procedure. In the case of the other methods, certain states require the separate

application of several input sequences. This necessitates a return to the tested state after the application of

each sequence, except the last one. For this purpose, the W-method assumes that a reset operation has

been correctly implemented which allows a safe return to the initial state of the implementation. This

approach is also used for the partial W method described in Section 3.

The purpose of this paper is two-fold. First, the so-called Partial W method is introduced in Section 3. It is
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a variation of the W method and provides shorter test sequences than the latter. As explained in Section 4,

this method is also a binding element which allows the formal comparison of various test selection

methods. In fact, the DS and UIOv methods can be considered special cases of the partial W method,

while its relation with the traditional W-method, the SW method, the Transition tour, and the UIO method

is also straightforward.

The second purpose of the paper is to provide a discussion of various other issues which have a strong

impact on usability, effectiveness and fault coverage of test suites. This includes empirical considerations

of test coverage, the handling of interaction parameters, architectural considerations for protocol

conformance testing, and the standardization of testing methods and test suites [Rayn 87, OSI C]. These

issues must be considered in relation with the selection of a testing method. Whereas most of these issues

have not been addressed in many papers on FSM-based test case selection methods, Section 5 of this

paper tries to put these methods into an overall perspective.

2. Definitions

The purpose of this section is to introduce some notations and concepts related to finite state machines

(FSM) which are used in the following sections of this paper.

A deterministic FSM M can be represented by a quintuple  (X, E, Y, T, O) where :

X : Set of inputs, written x in the following,

E : Set of states Mi, including a special state Mo called the initial state,

Y : Set of outputs, written y in the following, including the null output (-),

T : Transition function , X x E --> E,

O : Output function,  X x E --> Y.

We use the notation ÒMi -x/y-> MjÓ to indicate that the FSM M in state Mi responds with an output y and

makes the transition to the state Mj when the input x is applied. An input (or output) sequence p (or o) is a

suite of inputs x (outputs y), which may be the empty sequence (´). We use ÒMi -p-> MjÓ to indicate that

the FSM M is originally in state Mi and goes to state Mj when an input sequence p is applied. In this

notation, only the reached state Mj is relevant, the output sequence is ignored. However, the notation Mi|p

is used to represent the output sequence given as response by M in state Mi, when the input sequence p is

applied.

M is completely specified, if from each state of M there exists a transition for each input symbol in X. The

machine M is strongly connected, if for each pair of states (Mi, Mj), there exists an input sequence which

takes M from  Mi to Mj.

The concatenation of two sets V1 and V2 of input sequences is a set of input sequences defined as follows:
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V1.V2 =def {v1.v2 | v1∈V1, v2∈V2}, where v1.v2 stands also for the concatenation of the two sequences

v1 and v2. Let Vn denote n-times concatenation of V (Vn = V.Vn-1). The notation X[k] is used to define

the set     {ε} ∪ X ∪ X 2 ∪ É ∪ Xk, where k denotes a non-negative integer.

Let S and I be two FSMs. (Note: In the following sections S usually represents a protocol specification

and I an implementation). We write Si and So for the state i and the initial state of S, respectively.

Similarly,  Ik and Io represent the state k and the initial state of I, respectively. The following notations

and definitions used for the definition and the proof of the W-method [Chow 78], will also be used in the

definition of the partial W (Wp) method.

Definition 1:

Given a set V of input sequences, two states Si and Ik are V-equivalent (written as ÒSi ≈V IkÓ), if S in Si

and I in Ik respond with  identical output sequences to each input sequence in V.

Definition 2:

Two states Si and Ik are equivalent (written as ÒSi ≈ IkÓ), if they are V-equivalent for any set V.

Definition 3:

Two FSMs S and I are equivalent  if their initial states So and Io are equivalent.

An FSM M is minimal if the number of states in M is less than or equal to the number of states for any

machine M' which is equivalent to M.

Definition 4:

Let Q be a set of input sequences. Q is a state cover set of S if for each state Si of S, there is an input

sequence pi∈Q such that So-pi->Si. For the initial state So, we have So -´->So. The empty input

sequence (´) belongs to Q. (Note: In many cases, one uses a state cover set that is closed under the

operation of "selecting a prefix").

Definition 5:

Let P be a set of input sequences. P is a transition cover set of S if for each transition Si-x/y->Sj, there are

sequences p and p.x in P such that So-p->Si and So -p.x->Sj.

The empty sequence (´) is a member of P. By definition, each transition cover set P contains a subset

which is also a state cover set. The set of all partial paths in the testing tree of S, as defined in [Chow 78],

is a transition cover set. A procedure for the construction of this set is also given there.
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3. The partial W method

In the following we consider the problem of test case selection where the specification of the

implementation under test (IUT) is given in the form of a FSM called S. It is also assumed that the IUT

can be modelled by a FSM which is called I.

3.1. Review of the W method

For the understanding of the Wp-method, a brief review of the original W-method as described in [Chow

78], is necessary. The W-method involves the selection of two sets of input sequences: The W-set  and the

P-set. The latter represents a transition cover set of S, defined in the previous section. The former

represents a characterization set of S. The set W consists of input sequences that can distinguish between

the behaviors of every pair of states in S.

The method makes some assumptions about the specification S and the IUT I. The specification S should

be minimal. This is a necessary (and sufficient) condition for the existence of a characterization set W. In

order to guarantee the error detection power of the W-method, S and I are assumed to be be completely

specified and deterministic. All states in S and I are assumed to be reachable from the initial one. The

existence of a reset operation is assumed in S. This operation is also assumed to be correctly implemented

in I. The same input set is also assumed for both machines. It is assumed that the number of states in I is

bounded by an integer m, which may be larger than the number n of states in S.

The W-method provides a set of test sequences formed by the concatenation of P and the distinguishing set

Z (i. e. P.Z), where Ζ = ({´} ∪ X ∪ X 2 ∪É ∪ Xm-n ).W = X[m-n].W. The use of the set Z instead of

the characterization set W is due to the bound of the number of states in the IUT I, which may be larger

than the number of states n in the specification. In the case that m=n, one obtains Z=W and the set of test

sequences consists of the concatenation of the sets P and W (i.e. P.W). Each test sequence starts with the

initial state, after the application of the reset operation. In this case, to identify a reached state Ik after a

transition, all the sequences contained in W are applied to I, separately. The length of the test suite

composed by the concatenation of these test sequences is "proportional" to the cardinal of W.

The set of test sequences P.Z detects any output or transfer error in the IUT, as long as the number of

states in this implementation is not larger than m. The proof of  the error detection power of the W-method

is given in [Chow 78].

3.2. Definition of the partial W method (Wp-method)
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The assumptions about S and I made for this method are similar to those made for the W-method. In the

following we assume that, the number of states in I is bounded by an integer m, which is equal to the

number n of states in S (m = n). The more general case of m > n is discussed in Section 3.4.

The main advantage of the Wp-method, over the W-method, is to reduce the length of the test suite.

Instead of using the set W to check each reached state Si,  only a subset of this set can be used in certain

cases. This subset Wi  depends on the reached state Si, and is called an identification set for Si.

Definition: A set of input sequences Wi, is an identification set of state Si if and only if for each state Sj in

S (with  i ≠ j),  there exists an input sequence p of Wi  such that  Si|p  ≠  Sj|p and no subset of Wi has this

property.

The union of identification sets Wi for all states Si is a characterization set .

The Wp-method consists of two phases which have the following purposes:

Phase 1: This phase checks that all the states defined by the specification are identifiable in the

implementation, and also checks, for each state Ik, that it can be identified by the smaller set

Wk. At the same time, the transitions leading from the initial state to these states are checked for

correct output and state transfer.

Phase 2: This phase checks the implementation for all the transitions defined by the specification, which

were not checked during the first phase.

More precisely, the Wp-method proceeds as follows. A transition cover set P is determined which includes

a state cover set Q. For each state Si of S, an identification set Wi is determined and W is defined as a set

of input sequences including at least all sequences of all the Wi (i. e. it could be constructed as the union of

the Wi). The set of sets Wi is called W . It is to be noted that different test sequences are obtained

depending on the choices made for the sets P, Q and Wi.

The test sequences of Phase 1 consist of the concatenation of Q with W (i.e. Q.W). Each state Si of the

specification is checked in the implementation with the W set. If the test is successful, we have S ≈Q.W I,

and the number of states in the implementation I is equal to the number of states in the specification S.

Since the Wi are subsets of W, this phase also verifies that a set Wi is suitable to identify the state Ii in the

implementation.

The test sequences of Phases 2 consist of the sequences of P that are not contained in Q, concatenated with
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the corresponding Wi, written R ⊗ W, where R = P - Q. More precisely,

R ⊗ W  = {p}.Wj,∪
p ∈ R

where Wj is the identification set of Sj in W, and Sj is reached by p, i.e.So -p-> Sj.

During this phase, the remaining transitions are checked.  Instead of using the W set for identifying the

final state of the transitions, only the subset Wj is used.

If the implementation I passes the tests of both phases, it is equivalent to the specification S. A proof of

this assertion is given in Appendix.

3.3. An example for the case m=n

Let S be the FSM shown in Figure 1, with X = {a, b, c} and  Y = {e, f}. We assume in addition the

existence of a reset transition with no output (r/-) leading to the initial state So for every state of S.

S1

S2

S0

b/f

a/e

a/f

c/f

b/f
c/ec/e

b/e

a/f

Figure 1: Specification S

The specification has the following characterization set : W = { a, b}. In fact we have:

For state So : a/e, b/f

For state S1 : a/f, b/f

For state S2 : a/f, b/e

From the above, we get the following identification sets:

Wo = {a}, distinguishes the state So from all other states,

W1 = {a, b}, all the sequences in W are needed to identify the state S1,

W2 = {b}, distinguishes the state S2 from all other states,

 W ={{a}, {a, b}, {b}}.
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Q = {´, b, c } is a state cover set for S.

P = {´, a, b,  b.c, b.a, b.b, c, c.a, c.c, c.b } is a transition cover set for S, which includes Q.

R = P - Q ={ a,  b.c, b.a, b.b, c.a, c.c, c.b }.

Based on these sets, the Wp-method yields the following test sequences:

Phase 1:  The test sequences for this phase are:

Q.W = {a, b, b.a, b.b, c.a, c.b}

Phase 2 : The test sequences for this phase are:

R ⊗W = {a.a, a.b, b.c.a, b.c.b, b.a.a, b.b.b, c.a.b, c.c.a, c.c.b, c.b.a }

Table 1: Test sequences generated with WWWW ={{a}, {a, b}, {b}}

We note that, for the same sets P and W, the W-method generates the following additional test sequences

(with respect to those in Table 1) : b.a.b, b.b.a, c.a.a, c.b.b.

Let us consider the faulty implementation I shown in  Figure 2. It contains a transfer fault  I2 -a/f-> I1 (fat

arrow) instead of I2 -a/f-> I2 as defined in the specification. The application of the test sequences of the

first phase (note that each sequence is prefixed by the reset operation "r"), leads to the following output

sequences:  e,  f,  f.f,  f.f,  e.f,  e.e.

These sequences of output are the expected ones (according to the specification S). No faults have been

detected during this phase.

I0

b/f

a/e

a/f

c/e

b/e

I1

I2

b/f
c/e

a/f

c/f

Figure 2: An implementation I

For the second phase, the application of the test sequences leads to the following sequences of outputs :

e.f,  e.f,  f.f.f,  f.f.f,  f.f.e,  f.f.e,  e.f.f,  e.e.f,  e.e.f,  e.e.e.

The output printed in bold is different from the one expected according to the specification. Therefore, the

fault in the implementation I is detected by this test sequence.
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We note that another identification set W1Õ= {c} can be chosen for state S1 since the following holds:

For state So: c/e.

For state S1: c/f.

For state S2: c/e.

Using this identification set instead of the one above, we get  WÕ ={{a}, {c}, {b}}, and may choose as

new W set the value WÕ = {a, b, c}. With the sets P and Q remaining the same, these  sets result in the

following test sequences:

Phase 1:  The test sequences for this phase are:

Q.WÕ = {a, b, c, b.a, b.b, b.c, c.a, c.b, c.c}

Phase 2 : The test sequences for this phase are:

R ⊗WÕ = {a.c, b.c.c, b.a.a, b.b.b, c.a.b, c.c.c, c.b.a }

Table 2: Test sequences generated with WWWW’’’’ ={{a}, {c}, {b}}

We note that the number of test sequences for Phase 1 is larger than that for Phase 1 in Table 1, while the

number of test sequences for Phase 2 is smaller than that for Phase 2 in Table 1. The issue of minimizing

the total test sequence by selecting appropriate sets P, Q and Wi is not addressed in this paper. We also

note that the obtained test suites can be further optimized. In the case of Table 1 and Table 2, for instance,

the tests of Phase 1 are included in the tests of Phase 2 (e.g. a is included in a.c). Therefore, only the tests

of  Phase 2 need to be executed.

3.4. Wp-method for implementations with additional states

The generalization of the Wp-method is described in this section for the case where the bound m, for the

number of states of the implementation, may be larger than the number n of states of the specification

(m>n). The W method handles this general case by using the set Z = X[m-n].W instead of W.  The set Z

includes W as a subset. The test suite becomes P.X[m-n].W instead of P.W. The key idea in this

extension is that Z can distinguish every pair of states in the implementation I [Chow 78].  The set Z is

used for checking the reached state after each transition to be tested.

In the Wp-method, we adopt the two-phase approach described in Section 3.2. For the general case of

m>n, Phase 1 uses the set Z instead of W (like the W method). In Phase 2, a subset of Z is used

depending on the state reached by the transition to be tested. If the transition reaches state Si in the

specification, we apply the set Zi (instead of Wi) for checking the reached state in the implementation,

where Zi = {p1.p2 | p1∈X[m-n], p2∈Wj, Si-p1->Sj }.

Since Z={p1.p2 | p1∈X[m-n], p2∈W} and Wj ⊆ W, it is clear that Zi is a subset of Z.
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More precisely, the Wp-method described in Section 3.2 can be extended to the general case of m>n as

follows.

The test sequences of Phase 1 consist of the concatenation of Q with Z (i.e. Q.Z=Q.X[m-n].W ). Each

state Si of the specification is checked in the implementation with the set Z. If  the implementation merges

two of states of the specification, this error will be detected by the simple set Q.W for n = m, which is

included in the general case. If such merging does not occur then the input sequences in Q will take the

implementation I to n different states. Since the number of states in I is bounded by m, the number of

states that are not visited by applying Q is (m-n) at most. Then the test sequences Q.X[m-n] will visit all

states in I. Therefore the test sequences Q.X[m-n] followed by W means that it will  visit all states in I and

check if the reached state is W-equivalent to the corresponding state in S. In other words the success of

Phase 1 verifies that W-equivalence partitions I into exactly n classes and that Wi is suitable to identify the

class with respect to W in the implementation.

The test sequences of Phase 2 consist of the concatenation of R with a subset Zi depending on the reached

state. If we follow the definition of partial concatenation ⊗ introduced in Section 3.2, these sequences can

be written as R.X[m-n] ⊗  W. More precisely,

R .X[m-n] ⊗ W  = {p1} . ( {p2}.Wj ∪
p2∈X[m-n]

 )∪
p1 ∈ R

where Wj is the identification set of Sj in W, Sj is reached by p2 from Si (i.e. Si -p2->Sj ), and Si is

reached by p1 from So (i.e. So -p1-> Si).

( Note that {p2}.Wj ∪
p2∈X[m-n]

  = Zi ).

During this phase the remaining transitions are checked. Instead of using the complete Z set, only the

subset  Zi is used to check the state Si reached by a sequence of R. In other words, the corresponding Wj

is used to check the state Sj which is reached by a sequence of R.X[m-n].  It is important to note that , in

Phase 1, each Wi is checked to identify the class in the implementation with respect to W-equivalence.

Therefore, Wi-equivalence is sufficient for checking W-equivalence as long as the corresponding Wi is

used.

If the implementation I passes the tests of both phases, it is equivalent to the specification S. The proof is

given in the Appendix. As described above, the Wp-method for the general case of m>n is extended in a

natural way and it can detect any output and transfer faults as long as the number of states remains within

the bound m.
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3.5. An example for the case m>n

We consider again the specification S of Figure 1. Figure 3 shows a faulty implementation I which

contains an extra state I3. It is obvious that I3 is W-equivalent to Io for W={a,b}. But I3 is not equivalent

to Io. In fact, a.W distinguishes I3 from Io. The extra state I3 has the same outputs as Io for all inputs, but

differs in the next states.

c/f

a/f

I1

I2

Io

b/f

a/e

a/f

b/f
c/ec/e

b/e

I3

a/e

b/f

c/e

Figure 3 : An implementation I

If we take m=3 and apply the Wp-method, we will get the test sequences shown in Table 1 or 2. It is easy

to see that the test suite will not detect any fault in the implementation; the faulty implementation passes the

test. The W method with W={a,b} does not detect the fault either. Since I3 is W-equivalent to Io, the

characterization set W can not distinguish I3 from Io.

Now let us take m=4 and the values for P, Q, Wi, and W as Table 1. Then the Wp-method yields test

sequences shown in Table 3. The application of the test sequences of the first phase, leads to the expected

outputs according to the specification S. No faults are detected during this phase. It is noted that the

application of the sequences contained in {c.b}.W visits the extra state I3 in the implementation and checks

the outputs for W.

For the second phase, the application of the test sequences R ⊗W leads to the expected outputs according

to the specification S. No faults are detected up to this point. The application of the test sequences

R.X⊗W, however, yields outputs different from the expected ones. For instance, the implementation

produces the output sequence e.e.e.e in response to the inputs r.c.b.a.a. The output printed in bold is

different from the one expected according to the specification. Therefore, the fault is detected by this test

sequence. As shown in this example, the Wp-method can detect  faults including extra states if the bound

m is chosen properly.
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Phase 1:  The test sequences for this phase are:

Q.W = W ∪ {b}.W ∪ {c}.W

         = {a, b, b.a, b.b, c.a, c.b}    (same as in Table 1)

Q.X.W = {a}.W ∪ {b}.W ∪ {c}.W ∪ {b.a}.W ∪ {b.b}.W ∪
{b.c}.W ∪ {c.a}.W ∪ {c.b}.W  ∪ {c.c}.W

           = {a.a, a.b, b.a, b.b, c.a, c.b, b.a.a, b.a.b, b.b.a, b.b.b,

                   b.c.a, b.c.b, c.a.a, c.a.b, c.b.a, c.b.b, c.c.a, c.c.b}

Phase 2 : The test sequences for this phase are:

R ⊗W = {a}.W1 ∪ {b.c}.W1 ∪ {b.a}.W0 ∪ {b.b}.W2 ∪ {c.a}.W2 ∪
{c.c}.W1 ∪ {c.b}.W0

           = {a.a, a.b, b.c.a, b.c.b, b.a.a, b.b.b, c.a.b, c.c.a, c.c.b, c.b.a }

                ( same as in Table 1)

R.X⊗W = {a.a}.W0 ∪ {a.b}.W2 ∪ {a.c}.W1 ∪
                  {b.c.a}.W0 ∪ {b.c.b}.W2 ∪ {b.c.c}.W1 ∪
                  {b.a.a}.W1 ∪ {b.a.b}.W1 ∪ {b.a.c}.W2 ∪
        {b.b.a}.W2 ∪ {b.b.b}.W0 ∪ {b.b.c}.W1 ∪
         {c.a.a}.W2 ∪ {c.a.b}.W0 ∪ {c.a.c}.W1 ∪
             {c.c.a}.W0 ∪ {c.c.b}.W2 ∪ {c.c.c}.W1 ∪
              {c.b.a}.W1 ∪ {c.b.b}.W1 ∪ {c.b.c}.W2

                = {a.a.a, a.b.b, a.c.a, a.c.b,

           b.c.a.a, b.c.b.b, b.c.c.a, b.c.c.b,

             b.a.a.a, b.a.a.b, b.a.b.a, b.a.b.b, b.a.c.b,

              b.b.a.b, b.b.b.a, b.b.c.a, b.b.c.b,

   c.a.a.b, c.a.b.a, c.a.c.a, c.a.c.b,

        c.c.a.a, c.c.b.b, c.c.c.a, c.c.c.b,

         c.b.a.a, c.b.a.b, c.b.b.a, c.b.b.b, c.b.c.b }

Table 3: Test sequences generated with WWWW ={{a}, {a, b}, {b}} and m=4

We note that the obtained test suites can be optimized by removing the test sequences which are included in

other test sequences. In the case of Table 3, for example, the tests of Phase 1 are included in the tests of

Phase 2. Furthermore, the test sequences R ⊗W is included in the test sequences R.X⊗W . Therefore,

only the tests R.X⊗W of Phase 2 need to be executed. The length of test suite varies depending on the

choice of the set P, Q, Wi, and W. The issue of minimizing the total test sequences, however, is not

addressed in this paper.
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4. Comparison of various test selection methods

4.1. Classification of methods by generality

As discussed in Section 3, the W method described by Chow [Chow 78] and the Wp-method defined in

Section 3.2 are applicable to any FSM specification satisfying the usual assumptions of minimality,

complete specification, and reachability of all states from the initial one. All output and transfer faults of a

tested implementation will be detected by the derived test suite, provided that the number of states of the

implementation is smaller than a given bound m, which may be larger than the number n of states of the

specification. Also the correct implementation of a reset function is assumed. However, in contrast to the

testing methods not using this function, it is not necessary for the specification to be strongly connected.

It is clear that the Wp method yields a smaller test suite than the W method. During the first phase, n

transitions will be checked using the same approach as the W method, however, in the second phase, the

remaining transitions will be checked using the smaller sets Wi or Zi instead of the set W or Z. Clearly, the

smaller the sets Wi or Zi, and the shorter the length of the sequences in the Wi or Zi, the shorter will be the

resulting total test suite. In the following we consider Wp-method particularly for the case m=n to make

comparison with other methods.

If the set Wi for a given state Si contains only a single sequence, this sequence is called a unique

input/output (UIO) sequence. For those specifications where a UIO sequence exists for each state, the

situation becomes particularly simple. In this situation, the test selection methods called UIO [SaDa 88]

and UIOv [Vuon 89] apply and the Wp method becomes equivalent to the UIOv method. The Wp method

would use the union of all UIO sequences as the W set. In Phase 1 therefore, the method checks each state

with all UIO sequences. This corresponds to Vuong's (Uv) and (~Uv) phases. Phase 2 of the Wp method

corresponds directly to the Transition testing (Tt) phase of the UIOv method. It is noted that the UIOv

method can be also extended to the case m >n in the same way as the Wp-method.

For certain specifications, the situation can be simplified even further. If the same sequence can serve as

UIO sequence for all states of the specification, it is called a distinguishing sequence (DS). The so-called

DS test selection method [Gone 70] can be used in this situation. The Wp method becomes particularly

simple as well. W and all Wi consist of a single sequence, the DS. This sequence is appended to all

sequences in the transition cover set P (thus covering Phase 1 and Phase 2). We note that the Wp method

uses resets, while the original DS method [Gone 70] does not require such a function.

We can therefore conclude that the Wp test selection method is a generalization of the UIOv method, and

that in the case where a distinguishing sequence exists, the Wp and UIOv methods reduce to a method

which is closely related to the DS method, although the latter does not require the reset function. Among
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these methods, the W and Wp methods are the only ones of general applicability, in the sense that a

characterization set W and identification sets Wi always exist for any minimal FSM specification.

However, the UIO and DS sequences do not always exist, even for the FSM specifications satisfying the

assumptions of minimality, complete specification, and strong connection.

4.2. Partial target state identification

The test methods discussed above systematically identify the target state of each transition which allows

the detection of all transfer faults. Certain test selection methods do not systematically identify the target

states of the tested transitions. This leads to shorter test suites, but also has the effect that no guarantee can

be given that transfer faults of the implementation will be detected. Any output error of the tested

transitions will, however, be detected (except for the ST method mentioned below).

The extreme example is the transition tour (TT) method [Nait 81] which executes all transitions of the

specification at least once, but does not make any effort to identify the target states.

The UIO method [SaDa 88] applies the UIO sequence to the target state of each transition, however, there

is no guarantee that the UIO sequences have the identification power in the case of a faulty implementation

[Vuon 89]. This is the reason why the Wp method uses the complete W set during Phase 1, and not only

the corresponding Wi, as in Phase 2.

A test selection method with even lower fault detection power than the TT method is a "modified T

method" [Sato 89b], in the following called state tour (ST) method. This method covers all states (but not

necessarily all transitions) and does not identify the states reached.

4.3. Use of the reset function

Up to this point, we have mainly discussed test selection methods which assume the presence of a

correctly implemented reset function, which brings the implementation, as well as the specification, back

into the initial state. This reset is performed at the beginning of each test sequence included in the test suite.

Certain test selection methods make no use of a reset function, but simply concatenate the different test

sequences, sometimes by inserting so-called transfer sequences if the final state of the preceding test

sequence is different from the initial state of the subsequent one. (Note that, in principle, it is not necessary

to start all tests in the initial state). For instance, the transition tour simply tries to concatenate all transitions

into a single sequence (tour). The UIO method has also been used without resets which allows certain

optimizations [Aho 88, Shen 89].
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The W and Wp methods require the reset because during Phase 1 each tested state must be reached several

times for applying the different sequences in W. The reset function and the determinicy of the

implementation insure that each time the same input sequence is applied, the same state of the

implementation is reached. Only in the case that the W set contains only a single element, the reset function

is not really required. However, if the W set contains a single sequence, this sequence is a DS. These

considerations make the existence of the DS method [Gone 70] without reset plausible. In fact, Phase 1 of

the Wp method corresponds to first phase of the DS methods, called "state identification" phase, and

Phase 2 corresponds to the second "transition checking" phase of the DS method.

The SW method [Sato 89a] also consists of these two phases. Since this method uses a W set to identify

the states, it is necessary, in  general, to return several times to the same state for identification. Instead of

using resets, the SW method uses transfer sequences for this purpose. No proof is given that all transfer

faults will be detected by this method. If the SW method actually detects all errors, it is clear that the same

would be true for the Wp method used without resets. The first phase could be identical to the first phase

of the SW method, while the second phase of the Wp method without reset would be shorter since the Wi

would be used instead of the complete W set.

5. Issues related to test selection

5.1. Test suite length and coverage

For the practical application of the test selection methods the following questions are of prime importance:

(a) What is the length of the resulting test suite? - Or more precisely, what is the cost of executing the test

suite? where the cost may involve more factors than simply the number of inputs in the test suite.

(b) What is the fault coverage, that is, what is the confidence that any possible fault of the implementation

is detected by the execution of the test suite?

It is clear that, in general, the elimination of a test from a test suite reduces its coverage, and, inversely, the

addition of a test will increase the coverage if a suitable test was selected.

The nature of the different test methods, as discussed in Section 4, implies certain relations between the

length of the resulting test suite, as shown in Figure 4. The figure also shows the relation for the

theoretical fault coverage, based on a model of output and transfer faults and the assumption of a limited

number of states in the implementation, as discussed above. The coverage is complete for the W, SW (as

far as we know, the proof of this claim is not given), Wp, UIOv, and DS methods, any output fault is also

detected by the UIO and TT methods, while the ST method does not even check all transitions. The W and

Wp method guarantees complete coverage even for the case where the number of states of implementation
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may be larger than that of the specification by fixed bound. Formulas for the upper bound for the length of

test suites are given in [Sari 84].
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Notes:
(1) Applicable if UIO sequence exists for each state,
(2) Applicable if a distinguishing sequence exists,
(3)  Can be used without reset,
(4) Is always used without reset.

Figure 4: Test suite length and coverage relation between various methods

Since the above theoretical coverage measures are based on certain assumptions, as discussed below, it is

useful to obtain some empirical results about the practical fault coverage of these different test selection

methods. The experiments described in [Sidh 89] confirm the coverage relations of Figure 4 also for

partially defined specifications.

As shown in the example of Section 3.3, the initially obtained test suite can often be optimized [Sidh 89],

since certain tests are included in others and need not be executed. In the case of the Wp method, as

mentioned in Section 3, the length of the test suite depends on the sets P, Q, and Wi on which the test

selection is based. The example of Section 3.3 is interesting in this respect. It shows that a smaller Wi may

give rise to a larger W, thus increasing the tests of Phase 1, but decreasing those of Phase 2.

For those methods that do not use the reset function, further optimization can be performed by

concatenating the individual tests of the suite in such an order as to minimize the required transfer

sequences (see for instance [Aho 88, Shen 89]). Empirical comparisons of test suite lengths are also given

in [Sari 82, Sari 84, Sidh 89].

5.2. Justification of theoretical assumptions

The proof of error detection of the test selection methods is based on certain assumptions, which are not

necessarily satisfied in practice. The most important assumptions are the following.
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5.2.1. Limited number of states in the implementation

For the detection of transfer errors, it is usually assumed that the number of states of the implementation is

not larger than the number n of states of the specification. In the case of the W-method and Wp-method,

this bound can be increased by a small integer, however, introducing at the same time an exponential

growth of the length of the test sequence. Therefore the limit remains for most practical applications equal

to n. In the case of black box testing, there is no guarantee that the effective number of states of the

implementation is smaller or equal to n. In this case, it can be argued that the theoretical error detection

power of the test methods is of very limited value.

5.2.2. Resets

The test methods using resets assume that a reset is performed correctly by the IUT after (or before) each

test case. No prescription for testing the correct implementation of the reset function is provided. Although

a computer system usually has a reset function in the form of a cold start, this procedure is rarely used

between individual test cases. Often, the protocol entity under test (within the system under test) is not

even reset, but in order to facilitate the testing procedure, the communication connection used during the

last test case is simply eliminated by the execution of the "disconnect" function. This function, however, is

usually part of the protocol to be tested, and its correct implementation should not be assumed.

An argument against the use of the reset function is as follows: Given that many errors may only be

exhibited in relation with additional states of the implementation which may only be reached after relatively

long input sequences (as discussed in 5.2.1 above), the use of resets will prevent the encounter of many of

these errors, since the length of the input sequences (between consecutive resets) is not long enough to

reach the erroneous implementation states. It can therefore be argued that the UIO method (without resets)

is better than, say, the UIOv method, although the former does not provide the error detection guarantee

provided by the latter.

5.2.3. Incompleteness and special input/output interactions

The UIO, UIOv and DS methods require the existence of the UIO or D sequences, respectively. They are

therefore not applicable in all cases. The (partial) W method is always applicable, however, the size of the

W set has a strong impact on the length of the test suite. These problems increase in the case of a

specification with an incomplete definition of the behavior. It is quite common to encounter FSM

specifications which include "don't care" entries for certain inputs in certain states. In the case of

communication protocols, for instance, the behavior of the protocol entity in response to invalid inputs

from the user is usually not defined. In the case of such specifications, even the existence of a W set is not

guaranteed any more [Sari 82]. Some authors propose to complete an incompletely defined specification,
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for instance, by introducing error transitions.

All these problems can be avoided if the specification includes a so-called "read-state" interaction which

provides as output an identification of the state of the tested system. This single interaction represents a DS

(and can therefore also be used as universal UIO sequence).

The test suite can be further shortened if the specification contains so-called "set-state" interactions (one for

each state of the specification) which can be applied in any state and have the effect of transferring the

tested system into the state indicated by the interaction. A single interaction of this kind can be used as

transfer sequence into a new state.

5.3. Architectural issues

For the above sections of this paper, it was implicitly assumed that all interactions of the IUT are directly

visible to the tester. However, this is not always true in the case of protocol testing, as shown in Figure 5

which shows the distributed test architecture [Rayn 87, OSI C] for OSI conformance testing. In this

architecture, the upper and lower testers see only the interactions taking place on the upper and lower

interface of the protocol entity, respectively.

The synchronization between the upper and lower testers is in general a problem. If certain conditions are

satisfied by the test cases [Sari 84], the synchronization can be maintained simply through the interactions

with the protocol entity. Such test cases are called self-synchronizing. If a separate communication channel

is available between the upper and lower testers, the synchronization problem can be partly solved by a test

coordination protocol [Zeng 86]. The problem disappears if the testing is limited to the observation of the

lower interaction point, which is the case for the so-called remote testing architecture [OSI C].

As explained in [Sari 84], special precautions can be taken during the test case development, using any one

of the methods discussed in Section 4, in order to obtain self-synchronizing test cases. However, a

specification may contain a transition for which no self-synchronizing test exists. A similar problem is the

testing of situations where two inputs from the upper and lower interface collide in the protocol entity. The

delays in the implemented interfaces, and in particular the communication delay for accessing the lower

interface in the distributed architecture of Figure 5, make it difficult to synchronize the two inputs.
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Procedures 
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Figure 5: The distributed test architecture

In the area of OSI conformance testing, there is a tendency of specifying so-called generic test cases which

are formulated independently of the testing architecture. They must later be adapted to a particular

architecture. The issues discussed above are of capital importance in this context.

5.4. Considerations of interaction parameters

The methods discussed above are based on a model of pure FSM's. Often this specification model is

extended by the consideration of parameters of the input and output interactions. Each parameter of an

interaction is of a particular data type, and may assume values consistent with this data type. Since not all

parameter values can be tested, a fault model based on data flow has been proposed [Sari 87, Ural 87]

similar to what is used in software testing.

An example is shown in Figure 6, which shows the specification of Figure 1 enhanced with a local

variable Y and parameters x for the input interactions b and c, and the output interactions e and f. The

transitions t1 and t5 are associated with the assignment of the input parameter to the variable; they are

called defining transitions. The transitions t2 and t7 use the variable by assigning its value to the output

parameter; they are called usage transitions. For the other transitions, it is assumed that the input and

output parameters have no significance.
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So S1

S2

t9: b/f

t8: a/e

t7: a/f  

t6: c/f

t5: b/f

t4: c/e 

t3: a/f

t1: c/e

t2: b/e

e.x:=Y

f.x:=Y

Y:=c.x Y:=b.x

Figure 6: Specification S including data flow

A simple fault model assumes a fault in one of the defining or usage transitions. In order to detect such a

fault, it is necessary to execute first a defining transition and then a usage transition, possibly connected

through some transfer sequence. The whole sequence is called a data flow path (DFP) [Ural 87]. In the

case of the example above, we identify the following four DFP's:

  defining transition  usage transition  DFP        input sequence

     t1                    t2           t1.t2        c.b

     t1                    t7           t1.t4.t7     c.c.a

     t5                    t2           t5.t2        b.b

     t5                    t7           t5.t4.t7     b.c.a

Table 4: Data flow paths corresponding to Figure 6

In order to test each defining and each usage transition, it is sufficient to check either the first and last DFP

of Table 4, or the second and third. A more powerful test method would check all DFP's. To check a

given DFP, this DFP is usually executed several times with different values for the relevant input

parameter(s) (see also [Rayn 87]).

In order to execute the DFP's, these sequences must be embedded into one or several test sequences,

possibly separated by resets. In the case of our example, for instance, the first and second DFP can be

found directly in Table 1 (input sequences c.b and c.c.a, respectively). The third and fourth DFP require a

so-called preambule, since they do not start in the initial state. The input sequence b.b.b (with the

preambule b) corresponds to the third DFP, however, no test sequence in Table 1 is suitable for the fourth

DFP. An additional test sequence should be added, for instance b.b.c.a.
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The above discussion shows that the optimization of a test suite including parameter tests is a complex

task. The total length of the test suite is not the only criteria. Other criteria are the functional decomposition

of the test suite [Sari 87], and the separation of FSM and parameter tests. It is often assumed that the FSM

test sequences provide a good basis for testing the data flow aspects. However, the above example shows

that additional test sequence may have to be added. It is also shown in [Amal 89] that the FSM subtours

generated for FSM testing (see e.g. [Sari 87]) are not necessarily optimal for the testing of data flow

aspects.

5.5. The case of non-deterministic implementations and/or specifications

So far we have assumed that the specification on which the selection of the test suite is based, and the

implementation under test are deterministic machines. In this subsection, we briefly discuss the

implications of non-determinicy.

In the case that the implementation is non-deterministic, it is impossible to have any guarantee for error

detection. Consider, for example, that the implementation of Figure 2 contains an additional transition

from state I1 to state Io under input c. The state I1 of the implementation would have a non-deterministic

behavior for input c, since two transitions would be possible. For any given test suite, there is no

guarantee that this additional transition will be detected, since the implementation may choose not to

execute it during the test.

In the case that the specification is non-deterministic, the tests are not necessarily repeatable, that is, for a

given sequence of input, there may be different resulting output sequences depending on the internal

choices of the specification/implementation.

In this case, it is also not possible to assure a complete coverage of all parts of the

specification/implementation. For example, Figure 7 shows a specification which is non-deterministic in

state S1 under input b. Depending whether the state S2 or S3 is reached, two different behaviors are

possible. Although the test output will indicate which behavior was tested, it is not possible to force the

testing of state S3 after the behavior of state S2 was already tested; the implementation may always choose

to enter state S2. In OSI conformance testing [OSI C], the verdict "inconclusive" is used to indicate that

the implementation under test has chosen some allowed behavior which, however, does not correspond to

what is to be checked by the test case in question.
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Figure 7: Non-deterministic specification

Systematic test case selection methods for non-deterministic specifications are not yet well developed.

Some interesting approaches have been developed in relation with the LOTOS specification language

[Weze 89].

5.6. The practice of OSI protocol conformance testing

While the test selection methods discussed in this paper usually result in a more or less lengthy test

sequence which covers all aspects of the FSM specification, the test suites developed for OSI conformance

testing usually consist of a more or less large number of separate test cases. Each test case verifies a

particular aspect of the protocol specification, called the test purpose. In many cases, the test purpose is as

simple as the verification of a single FSM transition. Using the terminology of this paper, such an OSI test

case would consist of a transfer sequence leading the IUT from the initial state into the starting state of the

transition to be tested, followed by the input triggering the transition in question, and possibly terminated

by the UIO sequence of the final state of the transition. This may be followed by a reset to the initial state.

A test selection tool for the generation of such transition test cases is described in [Burg 89] .

A problem related to OSI conformance testing is the validation of the (often voluminous) specifications of

standardized test cases for a given protocol. An automatic validation of these test cases and their verdicts

for different responses from the IUT can be obtained by referring to a formal specification of the protocol

[Boch 89j].

In addition, it would be useful to have a test selection tool which inputs a given set of (standardized) test

cases, determines the fault coverage of the set, and possibly generates additional tests to cover those

aspects of the specification which were not originally covered.
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Many OSI protocols allow for a large number of implementation options. Therefore the tests executed

during OSI conformance testing must be adapted to the options realized by the implementation. The

(standardized) suite of OSI test cases for a given protocol usually contains separate test cases for each of

the possible options. For the testing of each protocol implementation, the selection, from the test suite, of

test cases to be executed is based on the so-called "protocol implementation conformance statement"

(PICS) which states the supported options. For certain protocols this selection process, called "test

selection" in the OSI context, is very complex and justifies its automation.

6. Conclusion

A unified view of various test selection methods for finite state machines is presented in this paper, based

on a new method called "partial W" (Wp) method. As discussed in Section 4, this method provides a

logical link between several FSM test methods described in the literature. It has the general applicability

and fault detection power of the W method, but yields shorter test suites. In the case that the specification

allows for unique input/output (UIO) sequences, it reduces to Vuong's UIOv method. Finally, in the case

that a distinguishing sequence (DS) exists, it resembles the DS method, although the latter uses no resets.

These methods detect all transition output and transfer faults in an implementation, however, their

applicability and fault detection power relies on a number of assumptions which are not always satisfied.

Other methods, such as a UIO method without resets or the transition tour method, yield shorter test

suites, but provide no guarantee for detecting all transfer errors.

It is in practice difficult to decide which of these methods is the most interesting to use. In fact, many other

issues have an impact on the selection of a test suite. As discussed in Section 5, this includes the problem

of synchronization between different points of observation in the case of protocol testing, the

consideration of interaction parameters, and sometimes non-determinism. The use of different test

methods during the different phases of the implementation development cycle can be envisioned [Sato

89b].

In the case of OSI conformance testing of protocol implementations, there are additional practical issues

related to the adaptation of the test cases to the test architecture, the adaptation of the test suite to the

implementation characteristics and implemented options, and the validation of the verdicts included in the

lengthy descriptions of standardized test cases. In this context, various tools have been developed for

developing test cases and test suites, for executing protocol conformance tests, and for analysing the

results observed during the execution of test cases. It would also be useful to have tools which could

analyse a test suite and determine its fault coverage. Such a tool should also allow the selection of

additional test cases for checking particular aspects of the specified behavior. Finally, such a tool should

also provide some diagnostic testing facility which would locate any detected error and pinpoint the fault in
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the tested implementation. Further research is required in this area.
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Appendix

In this appendix, we will prove that the partial W-method (Wp-method) has the same power of fault

detection as the W-method. In the following, S and I represent two FSMs. S usually represents a protocol

specification and I an implementation.

S is assumed to be minimal and having n states. W is a characterization set of S. S and I are assumed to be

deterministic, completely specified. The reachability of all states from initial one is assumed in S and I. S

and I have the same input set X. It is  assumed that the number of states in I is bounded by an integer m.

Z is a distinguishing set X[m-n].W where X[k] =  {ε} ∪ X ∪ X 2 ∪ É ∪ Xk    (k >= 0).

Definition A.0

An isomorphism from S to I is a function f which maps states in S to states in I, such that: a) f is one-to-

one and onto, b) if Si-x/y-Sj is in S, then f(Si)-x/y->f(Sj) is in I.

Given a set V of input sequences, a relation V-equivalence (see Section 2) is said to be an isomorphism

from S to I (written as S isomV I), if it is a graph of a function which is an isomorphism from S to I. If f

is a function, its graph is a relation ≈V, such that Ik ≈V Si if and only if Ik=f(Si).

The following two lemmas are given in [Chow 78]. The first lemma implies that equivalence between



2 7
FSMs can be verified by an isomorphism with respect to V-equivalence. The second gives the necessary

and sufficient condition for a Z-equivalence to be an isomorphism.

Lemma A.1 [Chow 78]

S is equivalent to I  (S ≈ I)

⇔
V-equivalence is an isomorphism from S to I for some V. ( S isomV I )

Lemma A.2 [Chow 78]

Z-equivalence is an isomorphism from S to I. ( S isomZ I )

⇔
(1) for every state Si of S, there is a state Ik of I such that Ik is Z-equivalent to Si. In particular, Io is Z-

equivalent to So.

(2) if Si-x/y->Sj, then there are states Ik and Il of I such that Ik, Il are Z-equivalent to Si and Sj,

respectively, and Ik-x/y->Il.

It is noted that in [Chow 78], I is also assumed to be minimal. In our model, however, we do not assume

the minimality for I. In case I is not minimal, we can reduce I into I' which is minimal and equivalent to I

and has m' states. Since m' ≤ m holds we can still use m as the bound. Therefore the whole proof in this

appendix can be applied to I' which is equivalent to I.

The next lemma states that for any state in I there exists a state in S which is W-equivalent  if the condition

(1) of Lemma A.2 holds. In other words, W-equivalence partitions I into exactly n classes in the same

way as S.

Lemma A.3

For every Si in S, there exists Ik in I such that Ik is Z-equivalent to Si.

⇒
For every Il in I, there exists Sj in S such that Sj is W-equivalent to Il.

[proof]

Let IS be the set of states of I such that IS = { Ik | ∃Si, Si ≈Z Ik }. S has n states and Z distinguishes

every state in S because W is included in Z. Therefore, IS includes at least n states of I, and particularly a

state Io such that So ≈Z Io. Let Il be any state in I. If Il ∈ IS then Il is Z-equivalent to a certain state in S. It

means Il is W-equivalent to a certain state in S because W⊆Z. Now assume Il ∉ IS. Since IS includes at

least n states, and there is at most m states in the implementation, the number of states which are not

included in IS is at most m-n. Since all states in I are reachable from the initial one (i. e. Io), there exists a

minimal sequence (among other sequences)  λ such that  Io-λ->Il. First, assume that  the length of λ is

less or equal to (m-n). Since S is completely specified, it follows that there exists in S, a state Sl, reachable
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by λ from So (i. e. So -λ-> Sl). Since Io ≈Z So (and particularly Io ≈{λ}.W So), it follows Il ≈W Sl.

Now, if the length of λ is bigger than m-n, then there is at least (m-n+1) states between Io and Il (Note: λ
is minimal). Since there is at most m-n states in I which are not in IS, it follows that there exists, at least, a

state Ik ∈ IS such that Io -λ1-> Ik and Ik -λ2-> Il with  λ1 and λ2 minimal,  λ = λ1.λ2 and the length of

λ2 is less or equal  to m-n. Since Ik ∈ IS, there exists Sk in S such that  Ik ≈Z Sk. S is completely

specified, then there exists a state Sl such that  Sk -λ2-> Sl. As in the first case, we have Ik ≈Z Sk,  Ik

-λ2-> Il, Sk -{λ2}-> Sl, and the length of  is less or equal to m-n, it follows that  Ik ≈{λ2}.W Sk, and

finally Il =W Sl.

[end of proof]

The next lemma states that if the condition (1) of Lemma A.2 holds, then Zi-equivalence is sufficient for

Z-equivalence where Zi is defined as follows.

Zi =def {p1.p2| p1∈X[m-n], p2∈Wj, Si -p1->Sj, Wj is an identification set of Sj}

Lemma A.4

Suppose that for every state Si of S, there is a state Ik of I such that Ik is Z-equivalent to Si. Then it

follows that Ik of I is Z-equivalent to Si of S if and only if Ik is Zi-equivalent to Si, that is,

Ik ≈Z Si ⇔ Ik ≈Zi Si

[proof]

(⇒)

Ζ = X[m-n].W = {p1.p2| p1∈X[m-n], p2∈W }

Zi = {p1.p2| p1∈X[m-n], p2∈Wj, Si-p1->Sj }

Since Wj ⊆ W, it follows that Zi ⊆ Z.

(⇐)

Let Il and Sj be the states reached by applying an input sequence λ to Ik and Si respectively, where

λ∈X[m-n], that is, Ik-λ->Il and Si -λ->Sj. From the definition of Zi, Ik ≈Zi Si  means that Il ≈Wj Sj.

Now we want to prove that for any λ∈X[m-n], Il ≈W Sj holds. Assume that Il ≈W Sj does not hold.

From Lemma A.3, there exists a state Sj' that is W-equivalent to Il. Since Il ≈Wj Sj, it follows that Sj ≈Wj
Sj'. But this contradicts the definition of Wj. Therefore Il ≈W Sj must hold. [end of proof]

By using lemma A.4, we can rewrite Lemma A.2 as follows.

Lemma A.5
Z-equivalence is an isomorphism from S to I. ( S isomZ I )

⇔
(1) for every state Si of S, there is a state Ik of I such that Ik is Z-equivalent to Si. In particular, Io is Z-

equivalent to So.
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(2') if Si-x/y->Sj, then there are states Ik and Il of I such that Ik is Zi-equivalent to Si and Il is Zj-

equivalent to Sj, and Ik-x/y->Il.

In the following, Q is a state cover set of S, and R is a  set (P - Q) where P is a transition cover set of S. In

the next lemma, it is proved that the conditions (1) and (2') of Lemma A.5 can be satisfied by testing the

Q.Z and (R.X[m-n] ⊗  W) equivalence between S and I, where W  is the set of sets Wi. The set of

sequences (R.X[m-n] ⊗  W) is defined as follows:

R .X[m-n] ⊗ W  = {p1} . ( {p2}.Wj ∪
p2∈X[m-n]

 )∪
p1 ∈ R

where Wj is the identification set of Sj in W, Sj is reached by p2 from Si (i.e. Si -p2->Sj ), and Si is

reached by p1 from So (i.e. So -p1-> Si).

( Note that {p2}.Wj ∪
p2∈X[m-n]

  = Zi ).

Lemma A.6

The conditions (1) and (2') of Lemma A.5 are true if and only if S and I are Q.Z-equivalent  and

(R.X[m-n] ⊗  W)-equivalent.

[proof]

(⇒)

From Lemma A.5 and A.1, it follows that I ≈ S. Therefore, I and S are V-equivalent for any set V.

(⇐)

a) S is Q.Z-equivalent to I implies condition (1): From the definition of a state cover set Q, for every state

Si of S, there exists pi in Q such that So-pi->Si. Since I is completely specified and has the same input set

as S, there exists a state Ik in I which is reached by applying pi to Io. Since Io is Q.Z-equivalent to So, Ik

is Z-equivalent to Si. By taking ε∈Q, we have So ≈Z Io in particular. Therefore, condition (1) is satisfied.

b) S is Q.Z-equivalent and (R.X[m-n] ⊗  W)-equivalent to I implies condition (2'): From the definition of

a transition cover set P = Q ∪ R, for each transition Si-x/y->Sj, there are sequences pi and pi.x in (Q ∪ R)

such that So-pi->Si and So-pi.x->Sj. Since I is completely specified and has the same input set as S, there

exists Ik and Il in I which are reached by applying pi and pi.x to Io, respectively.

In case pi∈Q, since Io ≈{pi}.Z So, Ik is Z-equivalent to Si. It means that Ik is Zi-equivalent to Si. In case

pi∈R, since Io ≈{pi}.Zi So, Ik is Zi-equivalent to Si. Therefore Ik is Zi-equivalent to Si in both cases. The

same discussion also holds for pi.x, and Il is Zj-equivalent to Sj.

Since Io-pi->Ik and Io-pi.x->Il and I is deterministic, it follows that Ik-x->Il. Furthermore, the output is

equal to the output y produced by Si in response to input x. Therefore Ik-x/y->Il holds. [end of proof]

Finally, lemmas A.1, A.5, and A.6 directly lead to the following theorem.
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Theorem A.7

S is equivalent to I ( i.e. S ≈ I)

⇔
S and I are Q.Z-equivalent  and (R.X[m-n] ⊗  W)-equivalent ( i.e. I ≈Q.Z S  ∧  I ≈R.X[m-n]⊗W S)

The test sequence sets Q.Z  and (R.X[m-n] ⊗ W) correspond to the Phases 1 and 2, respectively. If both

Phases 1 and 2 are successful, the Theorem A.7 guarantees that I is equivalent to S. This means the Wp-

method can detect any output and transfer fault as long as the number of states in I is not larger than m.

As shown above, the Wp-method is based on the notion of V-equivalence. It means we need to apply

different  sequences of V to the same state in I. A means for returning to the same state is the reset

operation followed by the corresponding transfer sequence. Therefore the reset operation is assumed to be

correctly implemented in the implementation.


