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Abstract

This paper proposes a Place/Transition-net (P/T-net) semantics for a subset of Lotos. The

subset is such that finite structure nets can be obtained and it is therefore possible to apply

P/T-nets verification techniques since they require finite structures. Moreover, the restrictions

we put in order to obtain finite nets are in some sense "minimal" since we show that conversely

P/T-nets can be simulated in our Lotos subset.

Topics: Relationships between net theory and other approaches, Verification using nets.

1 Introduction

The goal of this work is to investigate techniques for the verification of discrete event systems

that contain dynamic creation and destruction of processes. We are mainly interested in the Lotos

language [Bolognesi, Brinksma 1987]. We consider a data typeless Lotos subset that essentially

comprises the choice, parallelism, sequential composition and disabling operators and process in-

stantiation. The subset is identified more precisely in Section 3 where we also demonstrate that

this language has the power of Turing machines. Consequently, no nontrivial property is decidable.

Our approach consists of reducing the power of the language by imposing easily verifiable

syntactical constraints on the language elements. We are more particularly interested in deriving a

Petri net, namely a Place/Transition-net (P/T-net), that is equivalent to a given Lotos description.

The idea is to take advantage of the large number of verification techniques that have been developed

for P/T-nets. P/T-nets are introduced in Section 2. How we obtain Petri nets from syntactically

restricted Lotos specifications is described in Sections 4 and 5.

Various Petri net semantics for CCS [Degano et al. 1988], CSP [Olderog 1987] and Lotos

[Marchena, Leon 1989] have been proposed. In general, these approaches generate unbounded

numbers of places and transitions when recursion occurs inside parallel, sequential composition and
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disabling operators. It is therefore impossible to apply the techniques elaborated for P/T-nets since

they require finite structure nets. Our approach is different in that we treat a restricted language.

Recursion is limited inside parallel operators and it is possible to obtain finite structure nets, which

means that the traditional P/T-net analysis methods are applicable. The problem of deriving

finite nets has also been investigated by Goltz [1988] and Taubner [1989]. Taubner and Goltz

consider subsets of CCS which are limited to two-way rendezvous. Our language supports multi-

way rendezvous, the Lotos sequential composition and disabling operators. Moreover, Taubner's

approach is completly different from ours since he uses the high level Predicate/Transition net

model.

Another original feature in our approach is that we show that the restrictions we put in order

to obtain finite structure P/T-nets are in some sense "minimal" since conversely P/T-nets can be

simulated in our restricted language. This simulation is presented in Section 6. Other authors have

proposed simulations of Petri nets in languages such as Prolog [Azema et al. 1984] or Meije [Boudol

et al. 1985]. However their simulations are not in languages that where shown translatable to finite

structure Petri nets. The relation of our work with other authors' work is further discussed in the

conclusion, Section 7.

2 Petri nets

We slightly deviate from the usual notation for P/T-nets. We represent a P/T-net as triple

(P, T, Mo) where

• P is a set of places,

• T C 1P x Act X 2P, is a transition relation,

• Act is a set of transition labels, and

• M0 < Np is the initial marking.

A P/T-net has a finite structure if the sets P, T and Act are finite.

Here, 1P denotes the set of subsets of the set P whereas Mp denotes the set of multisets of the

set P. An element t = (X, a,y) £ T will also be denoted as X — a —> Y. Its preset pre(t) is X,

its postset post(t) is Y and action act(t) is a. The operators <, + and — denotes respectively

multiset inclusion, union and difference.

A transition t £ T is enabled in marking M if pre(i) < M. This is denoted as M[t >. An

enabled transition can be fired and the successor marking M' is defined as

M' - M - pre(t) + post(i)

this is indicated by M[t > M' or M - act(i) —> M'.



For a P/T-net N = (P, T, MO), we define the case graph of N as the automaton

where M0 € £5 and for all * 6 T, M e RS

if M[< > M' then M ' 6 flS A (M, aci(i), M') 6 T.

3 Lotos

The version of Lotos under consideration is as follows. A Lotos behavior expression is formed out

of the following terms:

Inaction stop

Action prefix a; B

Choice -Bi[]-B2

Process instantiation p[gi,~;9n]

Pure interleaving 51|||B2

General parallel composition Bi\[gi,...,gn]\B2

Successful termination exit

Sequential composition B\ BI

Disabling B\[> B%

hiding hide g\, ...,gn in B\e B, Bl and 52 are behavior expressions. The operational semantics of Lotos is given in

[Bolognesi, Brinksma 1987]. An operational semantics uses an abstract machine to model the

execution of programs. Lotos uses nondeterministic transition systems derivable from the initial

behavior expression structure. More precisely, given an expression B, we associate the transition

system A = (5,T, B) where

• S is a set of states (behavior expressions),

• B G S is the initial state,

• T C S X Act x S is transition relation, and

• Act denotes a set of user-defined actions together with the successful termination action 6

and internal action i.

An element (B,a,B') £ T is also denoted as B - a — > B'. The transition relation T is defined

by means of a set of inference rules. More details can be found in the Reference.

Proposition 1 The language under consideration has the power of Turing machines.



Proof. A Turing machine is an abstract device that consists of a finite control box and an

infinite read-write tape. We can show that this language has the power of Turing machines by

simulating the behavior of an arbitrary Turing machine with three parallel Lotos processes. One

process simulates the finite control and two stack processes simulate the read-write tape. The

symbols to the left of the read-write head are stored on one stack and the symbols to the right are

stored on the other stack [Hopcroft, Ullman 1979]. In [Gotzhein 1986] stack processes are modeled

in a Lotos which includes data types. Since a Turing machine alphabet is finite it is possible to

model a stack in a Lotos which does not include data types by defining one process USED-STACK for

each possible tape symbol, similarly for the push, pop operations.

Since, this subset of Lotos has the power of Turing machines no nontrivial property is decidable.

P/T-nets (with finite structure) do not have the power of Turing machines as Lotos does. In

the rest of this section we define a subset of Lotos, PLotos, from which P/T-nets can be derived

and, conversely, into which P/T-nets can be simulated. The P/T-net semantics is introduced in

the next section whereas P/T-nets simulation in PLotos is described in Section 6.

On the basic Lotos presented above we impose easy to verify syntactical constraints. They are

formulated bellow and will be further justified in the sequel.

The main source of difficulty is recursion. A recursive process is a process which calls itself

(directly or indirectly). The contraints on the above Lotos subset are:

1. Recursive process instantiations must be well-guarded. A process instantiation term is well-

guarded if it is in the scope of a prefixing operator ";" or a right sub-term in a sequential

composition "»" or in a disabling "[>".

2. The general parallel operator "|[]|" may not occur in a recursive process body definition.

3. In the left sub-expression B\ of a sequential composition B\ By or of a disabling B\> B^,

instantiation of recursive processes is not allowed.

In Appendix A we express precisely the syntax of PLotos by means of the attribute grammar

formalism.

Theorem 1 PLotos has the power of P/T-nets. That is for every PLotos behavior specification

we can derive an equivalent P/T-net. And, conversely, for every P/T-net we can construct an

equivalent PLotos behavior specification.

Proof. In Sections 4 and 5 we shown how to translate to a P/T-net a PLotos specification. The

converse is true as well and will be demonstrated in Section 6.



4 P/T-net Semantics

4.1 General Idea

In general a behavior-expression B represents the composition of a set of concurrent activities. The

idea is to decompose the expression B in order to obtain an explicit representation of this set of

parallel activities. The representation of each activity also contains information on its dependencies

with respect to other activities. For instance, the Lotos expression a; b; p\[b]\b; stop represents two

concurrent activities. The first activity executes the actions a and 6, and next instantiates process

p. The second activity performs the action b and stops. Both activities are coupled on gate 6

and are therefore dependent on each other with respect to the execution of action b. The set of

parallel components resulting from the decomposition of behavior a;6;p|[&]|6;.stop is denoted as

{a;6;p|[6]|,|[&]|&;siop}. In this representation, we denote explicitly the fact that the activities are

coupled on gate 6 by concatenating the symbol |[6]| to the right of a; 6;p and to the left of 6; stop.

In the Petri net representation, place names correspond to names of parallel activities. The

Petri net for the example above will include places named a;6;p|[6]| and |[6]|&;,siop. The presence

of a token in place named X means that a component with behavior X is active in the given system

state. Several tokens in the same place represent several identical parallel activities. This models

unbounded parallelism with finite structure nets.

Set of parallel activities will denote P/T-net markings. For instance, a transition from the

parallel activities above will be:

{a-b;P\(b}\,\(b}\b-Stop}-a^{b-P\(b}l\(b}\b-stoP}

We first introduce the decomposition function in Section 4.2, then we present in Section 4.3

an operational and non-constructive Petri net semantics for PLotos. Based on this semantics, in

Section 5 an algorithm is presented which can be used to construct the P/T-nets. The algorithm

can be seen as a deductive system implementing the inference rules.

4.2 Decomposition Function

The decomposition function is denoted as dec. Its domain is the set of well-formed PLotos behavior-

expressions. Its range is the set of all possible multiset of place names. A place name is either a

constant symbol (stop or exit) or a symbolic expression constructed with a prefix function symbol (;

or hide g\, ...,gn in), a prefix postfix function symbol (||| or \[gl, ...,gn]\) or an infix function symbol

([] and »). Expressions constructed with function symbols may contain process instantiation

sub-terms p[gi,...,gn].

Let BI,BZ denote syntactically correct PLotos behavior expressions, a denote an action name



and S = <?i, ...,</„ a list of synchronization gates,

(dl) dec(stop) = {}

(d2) dec(a;Bl) = {a;Bi}

(d3) dec^Q^a) = {£i[]#2}

(d4) dec(p[ff!,...,0n]) = dec(Bp[gi/hi,...,gn/hn}}

(d5)

(d6)

(d7) dec(fl! » JB2) =

(d8) dec(Bi[>52) = {5i[> £2}

(d9) dec(hide S in B I ) = hide S in.dec(Bi)

where

• 5P represents the body of the definition of process p,

• in (d4), gi, ...,gn is a list of formal gates,

• h\, ...,hn is a list of actual gates,

• \9ilh\i •••,9n/hn] is the relabeling postfix operator, gate 3,- becomes gate hi (i = 1,..., n), and

• the expression dec(J?i).|[5]| denotes {a;|[5]| : x 6 dec(5i)}, similarly for |[5]|.rfec(52) and

/iit/e 5" in.dec(Bi).

The rfec function is deterministic taking into account operator precendences. The restriction to

guarded recursive processes is necessary to stop recursion in the dec function.

4.3 Inference Rules

This section presents the heart of our P/T-net semantics. The P/T-net N = (P, T, MO) associated

to a PLotos behavior B is such that:

1. Mo'= dec(B) C P,

2. if X C P and X - a -> F then F C P and (X, a, Y) 6 T, and

3. only the elements that can be obtained from items 1 or 2 are in P and T.

The transition instances are inferred from the rules bellow.

For all PLotos expressions BI, B(, B^, B'2, action name a, list S — g\ ...,gn of synchronization

gates and subsets of places Mj, M2, M[, M'2'.



(rl) {a-B^ - a -> dec(Bl)

(r2) if #! - a -»• 5J

then {£i[]52} - a

(r3) i f £ 2 - a^ j9 2

then {5i[]J32} - a -

(r4) if Afi - a -»• M{ and a 0 {5, 6}

then Mi-l^l-a-^MMIS1]!

(r5) if M2 - a -»• M^ and a 0 {5, 5}

then |[S]|.Af2-a-> |[5]|.M^

(r6) if Mj - a -> M{ and M2 - a -»• M^ and a 6 {S, <

then M!.|[S]| + |[5]|.M2 - a -» M{.|[5]| +

(r7) if 5i - a ->• BJ and a ^ S

then {5i » 52} - a -»• {5J »

(r8) if 5j - S -+ B{

then {Bi » 52} - 6

(r9) if BI - a -* 5J and a

then £!> B2 - a -

then {JB1[>52}-^^ {}

then {J9![> 52} - a -* dec(52)

(r!2)if MI - a -» M{ and a g {5}

then /izde 51 in. MI — a — >• /lide 5 in.M[

(r!3) if MI - a -»• M{ and a € {5}

then /iz'de 5 in. MI — i — >• /izde 51 in.Afj

In the "if part" of inference rules (r2), (r3), (r7) (r8), (r9), (rlO) and (rll) behavior BI (52) goes to

behavior 5^ (B'2) on action a or S according to the original Lotos semantics in [Bolognesi, Brinksma

1987].

Theorem 2 The Petri net semantics of Lotos is consistent with respect to the original Lotos se-

mantics. That is, for all PLotos behavior expressions B,B' and action a:

B - a -» B' «=> dec(B) - a -+ dec(B')

Proof. The proof technique is by induction on the number of operators in a behavior expression B.

(=£•). We must show that for all B, B' , a:

B - a -+ B' =$• dec(B) - a -» dec(B')



Basis (Zero operators) The expression B must be stop or exit. In the first case no transition is

possible in both semantics. In the second case functionality of behavior exit is exit (see Appendix

A for the meaning of the functionality attribute). This is necessarily the left sub-expression of a

sequential composition and this is handled by case 5 bellow.

Induction (One or more operators) Assume that the theorem is true for behavior expressions

with fewer than i operators, i > 1. Let B have i operators. There are seven cases depending on

the form of B.

CASE 1 B = a; B'. The conclusion is immediate from (d2) and (rl).

CASE 2 B = B\[]B2. In that case the conclusion is immediate because (r2) and (r3) are defined

in terms of the original semantics.

CASE 3 B — Bi\\\B2- Both B\d BI must have fewer than i operators. According to the

original semantics,

if BI — a — »• B{ and a ^ S

then B!\\\B2 - a ̂  B{,

if BZ — a — »• B'2 and a ^ 6

then Bi\\\B2 -a-> B'2,

if BI - 8 -»• B{ and B2 - 6 -» B'2

First, suppose that sub-expressions BI and B% have functionality noexit, in that case the third rule

does not apply. We will treat only the first rule, since the second rule is similar. By the induction

hypothesis:

BI - a -> B{ =>• dec(Bi) -a-* dec(B-fi

Moreover, from (d5)

dec(Bi) < dec(Bi) + dec(B2) = dec(Bi\\\B2)

therefore

dee(B1\\\B3) - a ̂  dee(B(\\\Bt).

If sub-expression BI and B% have functionality exit, the expression 5i|||J?2 is the left sub-expression

of a sequential composition and this is handled by case 5 bellow.

CASE 4 B = -Bi|[5]|^2- According to the original semantics,

ifBi-a-+B{ and a £{5,<S}

then J?i|[S]|J32-a-+BJ|[$]|.B2,

if B-2 - a -»• B'z and a ^ {5, 6}

then Bl [S]\B2 - a -* ̂ l^]!^,

if J?! - a -* B( and 52 - a -> B2 and a 6 {51, 6}

the* Bi\[S]\B3 - a -> B{\[S]\B'2,

8
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Let us consider the first rule. By the induction hypothesis:

BI - a -» B( =$> dec(Bi) - a -

If we substitute dec(B\), dec(B{) to respectively MI, M{ in (r4) we obtain:

Futhermore, from (d6):

< dec(B1).\[S]\,

dec&lWlBj - a -» dec(5j|[Sp2).

The second rule is similar to the first one whereas the third rule is not much more difficult to

prove.

CASE 5 B — BI » J?2- In that case the conclusion is immediate because (r7) and (r8) are

defined in terms of the original semantics of Lotos.

CASE 6 B = BI[> B2. The conclusion is immediate because (r9), (rlO) and (rll) are defined

in terms of the original Lotos semantics. Note that in (rlO) the postset is {} if we admit the

equivalence stop\[S]\stop = stop and consider the following easy to verify property of PLotos:

(V5, B')[B - 6 -» B' =» B' = stop]

CASE IB — hide S in B\. The original semantics inference rules for the hiding operator are:

if B! - a -)• B{ and a £ {S}

then hide S in BI - a — >• hide S in B{

ifBi-a-+B{ and a 6 {S}

then hide S in BI — i — > hide S in B[

By the induction hypothesis:

B! - a -» B[ =*• dec(Bi) - a -»• dec(B[)

If we substitute dec(Bi), dec(B() to respectively MI, M{ in (r!2),(r!3) and from (d9) we obtain:

if a £ {5} then dec(hide S in BI) — a —> dec(hide S in B[)

if a 6 {S} then dec(hide S in BI) - i — > dec(hide S in B{)

^

-



(^=). We must show that for all B, B', a:

dec(B) - a -* dec(B'} => B - a -* 5'

In this part we must assume the following equivalence laws from [ISO 1988]:

51|||52 =

=(51|||52)|||53

The proof is similar to above.

Remark 1 A thing has to be remarked, let us consider the following behavior:

B = (stop\[a]\a; stop)\\\(a; stop\[a]\stop)

According to the original Lotos semantics no action is possible from this behavior. However as it

is, the P/T-net semantics can infer the action a because:

dec(B) = {stop\[a]\,\[a]\a;stop,a]stop\[a] ,\[a]\stop}

Rule (r6) can be applied with

M\ {stop, a; stop} and MI = {a; stop, stop]

to deduce action a. To avoid such wrong reasoning, \[S]\ can be distinguished with distinct

labels (e.g. \[S]\k)- Since such expressions cannot appear in recursive processes each \[S]\k can

appear at most once in a given global state.

Definition 1 Two graphs G\ (V\,E\,n\) and GI — (V^-E^^a) are isomorphic if there is a

one-to-one onto function f : V\ »• Vi such that f(n\) — n^ and

(v,a,v')eV1&(f(v),a,f(vl))£V2.

An immediate consequence of Theorem 2 is the following.

Corollary 1 Let the P/T-net N = (P, T, MO) associated to a PLotos behavior B, A(N) = (RS, T, M0)

its associated case graph and the transition system A = (S, T, B) associated to B from the original

semantics of Lotos. The two graphs A and A(N) are isomorphic with the function dec.

5 Derivation Algorithm

In this section we define a PLotos to P/T-nets procedure, Lopep, which constructs the net ac-

cording to the semantics of section 4. The P/T-net modeling the PLotos behavior B, denoted

as Lopep(B,Env,k), is obtained by computing the transitive closure of the transition relation T,

10



starting from the initial marking dec(B). That leads naturally to a recursive procedure. The sec-

ond parameter, Env, is a set of process instantiation terms that have been considered so far in

the derivation. It is initially empty and used to stop recursion in the Lopep procedure. The third

parameter k is used to assign distinct labels to |[5]| operators. Its initial value is zero.

procedure Lopep(B:Expression, Env:Set, var k:integer):P/T-net

case B of

stop :-» (1)

Bl»B2 :-» (7)

BI[> B2:-*(8)

/ude 5 in 5i :-» (9)

end;

(1) Nothing can be derived from stop.

return ({},{},{})

(2) Inference rule (rl) says that from dec(a;Bi), a transition t labelled with action a and with

postset dec(Bi) can be inferred. By means of a recursive call to Lopep we obtain the net

modeling the successor behavior B\.

(P, T, M) «- Lopep(Bl , Env, k)

return ({a; Bj} U P, {({a; A}, a, M)} U T, {a; BI})

(3) In that case rules (r2) and (r3) apply. In P and T we put respectively the places and the

transitions derivable from - B i ! ^ -

forall a, B' suchthat Bl - a -+ B' or 52 - a ->• 5' do

(P',T',M) *- LopeP(JB/,Env,k)

P *- P U P'

return (P,r,{J?iD53})

11



(4) The net denoted by a process instantiation is constructed only if the process instantiation term

has not been considered so far in the derivation, the condition p[<7i,...,<7n] 6 Env is false. In

that case solely the initial marking is returned. This prevents unbounded recursive calls to

Lopep. Otherwise, Lopep is called recursively on the body definition Bp of process p.

, . . . , f i fn] G Env

then return ({},{},dec(Bp[gi/hi, ...,0n//in]))

else return Lopep(Bp[gi/hi, ...,gn/hn],Env U {p[gi, ...,$„]}, k)

(5) For pure interleaving, we combine the nets obtained from dec(Bi) and dec(B2).

(Pi.ri.Mi) *- Lopep(Bl,Env,k)

(P2,T2,M2) <- Lopep(B2,Env,k)

return (Pi U P2, ?i U T2, -Mi + M2)

(6) For the general parallel operator case, we first obtain the nets denoted by B\d B2 and we

merge the transitions inferred from rules (r4), (r5) and (r6).

k <- k + 1

(Pi,Ti,Mi) «- Lopep(Bi,Env,k)

(P2,T2,M2) «- Lopep(B2,Env,k}

(* Transitions from (r4) *)

Tj' «- {(Mi. | [5]|fc, a, MM [5] U) : (Mj.a.Mf) G TI A a ^ {

(* Transitions from (r5) *)

T!> 4- {(|[5]U.M2,a,|[5]U.M^) : (M2,a,M£) G T2 A a ^ {

(* Transitions from (r6) *)

(Mi,o,M{) G TI A (M2,a,M2) 6 T2 A a 6 {

return (Pi-|[5]|i U |[5]|,-.P2,r{ U T^ U T', dec(P,i).|[S]|t- + |[5]|i.dec(B2))

(7) Recursion is not allowed in sub-expression B\. It has been indicated before in [Bolognesi,

Smolka 1987] that such a behavior can be mapped to a finite transition system. Let (5, T, B\]

denote this transition system:

Pi *- {s » B2 :s G S}

71! «- {({s » P.2},a,{s' » £2}) : (a.a.s7) G T A a ^ ^}U (* r7 *)

{({s » 52},«5,dec(£2)) : (S,<5,5 ') G T} (* r8 *)

(P2,T2,M2) 4- Lopep(B2,Env,k)

return (Pi U P2, Tj U T2, (5i » B2})

12



(8) As in (7), recursion is not allowed in BI . Let (5, T, BI) denote this transition system modeling

Pl «- {s[> B2:s£S}

T! - {({5[> 52}, a, {s'[> B2}) : (s, a, s') e T A a ? 6}U (* r9 *)

{({S[> 52},M» : (MX) € T}U (* rlO *)

{({s[> Bt},6,dec(B$) : s[> £2 € PI A 52 - a -» £2) (* rll *)

(P2,T2,M2) «- Lopep(B2,Env,k)

return (Px U P2,Ti U T2, {.&![> 52})

(9) Inference rules (r!2) and (r!3) apply. Transitions labelled with action in {S} are relabelled

with i:

(P, T, M ) *- Lopep(Bl , JSnw, Ar)

TI *- {(fade 5 in.M-L,a,hide S in.M{) : (Mi,a,M{) 6 T A a 0 {5}}

T2 <- {(Aide 5 in.M^i.hide S in.M{} : (M^a,M{) £ T A a 6 {S1}}
return (hide S in.P,Ti U T2,hide S in.M)

We will illustrate the result of Lopep with an example:

specification pl[a,b, c] :=

P2[a,b}\[a]p2[a,c}

where

process p2[a;,t/j :=

x;exit » (y;stop\\\p2[x,y})

endproc

endspec

Note that all constraints mentioned in Section 3 are satisfied. The P/T-net is obtained by calling

Lopep(p[a, 6, c],{},0) is illustrated in Fig. 1. In the graphical representation, places are shown as

circles, transitions as bars and tokens as dots inside places.

Note that the following example is not in PLotos and, as shown in [Goltz 1988], cannot be

represented by a finite structure net:

process p[a,b] : =

a;b-(p[a,b}\[b]\p(a,b})

endproc

The problem is that after each recursive call, the number of activities to be synchronized on action 6

grows by one. To be represented, it would require an arbitrarily large number of P/T-net transitions.

13
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-

a;exit»(b;stop|||p2[a,b])|[a]| |[a]|a;exit»(c;stop|||p2[a,c])

O
|[a]|exit»(c;stop|||p2[a,c])

exit»(b;stop|||p2[a,b])|[a]|

b;stop|[a]|

i i

|[a]|c;stop

L_ 1

Figure 1: Example
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The problem is similar in a sequential composition BI » B^. With recursion combined with

parallelism in the sub-expression BI, the number of processes to be synchronized on the successful

termination action 8 is dynamic and cannot a priori be determined. In a disabling BI[> By, with

recursion and parallelism in BI the number of processes to be synchronized on 6 and any action

performed by _B2 is also unbounded.

6 Simulation of P/T-nets in PLotos

In this section we complete the proof that PLotos has the power of P/T-nets. That is for every

P/T-net we can construct an equivalent PLotos behavior specification.

In the Lotos simulation of P/T-nets, a token is a Lotos process. We make the following hypoth-

esis: No place is simultaneously in the preset and the postset of a given transition. This restriction

is not significant since a sub-graph such as:

Can be simulated by the sub-graph:

6.1 Modeling of Places

Let TV = (P,T,M) be a P/T-net with P = {pi,...,pn} and T = {ii,...,im}. We first discuss how

tokens into places are represented by Lotos processes.

Given place pi 6 P, let

• F~1(p,-) = {tj : pi e post(tj)} (transitions that deposit tokens into place pi),

• r(p,-) = {tj : pi 6 pre(tj)} (transitions that take tokens from place p,-), and

• T(X) = UPieA-(r(pt) U F-^P,-)) (transitions connected to places in X).

A. token inside place p,- can participate in the firing of a transition in F(pt).

Definition 2 Let F(p,-) = {t0i, ...,t0k}, a token inside place p,- is represented as the following Lotos

process.

process tokeni[t0i, ...,t0k] :=

t0i;stop[}...[]tok;stop
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endproc

Let T~l(pi) = {tn,...,tij}, the place p,- is modeled by the following process:

process Pi[tn, ...,i,j,i0i, ...,<0jt] :=

(<il;exif[]...[]*ij;ea;^) » (tokeni[t0i,\..,t0k]\\\pi[tiit...,tij,t0i,..,tt0k])

endproc

Note that there is no recursion in the left sub-expression of operator » and the recursive

call to pi is guarded since it is in the right sub-expression of a sequential composition. Informally,

this says that when a place p,- input transition is fired, either t{\r ... or /,-j, then a new token is

deposited into place p,- (an instance of process token^ is created). This newly created token can

now contribute to enable and fire a transition in r(p,-).

The next lemma demontrates the consistency of the PLotos model of a place.

Lemma 1 Let, for k 6 A/", P»(&) denotes the place p; containing k tokens, defined as:

-P.(O) = Pi[tii,—,tij,t0i,...,tok]

P,-(Jb) = token{\\\Pi(k - 1)

For all k £ J\f,

Pi(k] - t - > p & [ ( t e r~l(pi) AP = Pi(k + 1)) v (k > o A t e r(p,-) A P = pt(k - i))].

Proof. The proof is by induction on k.

(=>). Basis Let k — 0, Pi(k) — pi[tn, • • . ,*t j ,<oi , •••,t0k] and according to definition 2:

Pi - t -*• p => (t 6 T-^Pi) A p = <ofcen,-|||p,- = P<(1))

Induction Let A; > 0, assume that the lemma is true whenever n < k. By definition

Pi(k + 1) = tokeni\\\Pi(k),

and according to the induction hypothesis:

tokeni\\\Pi(k') - t -+ p => [ (i G f-^pi) Ap = tokeni\\\Pt(k + 1))V

(i 6 r(p,-) A k > 0 A p = /oA;eni|||P,-(A; - 1))V

This implies that

Pi(k + 1) - 1 -> p =» [(< e r-1^,-) A p = pf(* + 2)) v (* e r(p,-) A p =

(<=). Similar.
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6.2 Modeling of P/T-nets

The model of a P/T-net in Lotos is also defined inductively. For 1 < i < n, we denote by

tfi,,- = (A,,-,Tw,Mi,<)

the subnet of JV = (P,T, Af) with

. T!,,- = {(X,act(t),Y) : (t 6 T)A(X = Pre(t)nPl>i)A(Y =

• MI,,-, the marking M restricted to places in P\^.

Note that Ni<n = JV. We denote by A/i ,,-(«) the number of tokens inside place p,- for the marking

Definition 3 For 1 < i < n, the subnet N\j is modeled by a PLotos process named Niti(Mn)

defined as:

process Ni^Mi^ti, ...,tm] :=

endproc

For i > I , Niti(Miti) is defined as:

process Ni:i(Mlti)[ti,...,tm} :=

P,(M1,i(0)l[r({pO)nT({p1,...,

endproc

Note that, for i = 1, ..., n, Niti(Mi,i) is not recursive.

The model of a P/T-net TV in PLotos is the process -/Viin(Mi>n). The next lemma demonstrates

the consistency of the PLotos model of P/T-nets.

Lemma 2 Let N = (P, T, M) a P/T-net and M' 6 Np a marking. For every i — l,...,n, let

NIJ = (Piti,T-iti,Miti) the subnets defined as above, then for all t 6 TI,,-;

Mlti[t > M[ti o

Proof. The proof is by induction on i.

(=>) We must show that

Mlti[t > M[fi =>
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Basis (i—l) Suppose that M\\[t > M{^, by definition 2,

(t 6 T-1^) A M{tl(l) = MM(1) + 1) V (t 6 T(Pl) A M^l) = Af l t l(l) -

from Lemma 1, it implies that

and by definition 3 we conclude:

- t

Induction Let i > 1, assume that the lemma is true whenever n < i. Suppose that MI

M[ i+1, there are three cases.

CASE 1 t e T({Pi+1}) and t 6 T({pi, ...,p,-}).

By Lemma 1,

Pi+i(Mllt-+i(i + !))-*-» Pf+iCMi^+^i + 1))

and by induction hypothesis,

Both pocesses are synchronized by the operator |[T({p;+1}) n T({p\, ...,p,-})]| we can therefore

conclude from definition 3 that:

CASE 2 i 0 T({pi+1}) and t e T({pi, ...,p,-}). In that case Mi,,-+i(t + 1) = Afj'^^^ 1).

We have that

P,-+i(MM+i(« + 1)) - PJ+i(M1)i+1(i+ 1))

and by induction hypothesis,

The process N\^(Mi^i) can make its transition independently since it is not synchronized by the

operator |[T({pj-+i}) n T({p\, ...,p;})]| we can therefore conclude from definition 3 that:

CASE 3 t £ T({pi+i}) and t g T({p1; ...,p,-}). In that case MI,,- = M{,

By Lemma 1,

P,-+i(Afi,,-+i(» + 1)) - ^ - P.-+i(Afi,,-+i(* + 1))

and we have that

18



The process P,-+1(Mi(,-+i(i + 1)) can make its transition independently since it is not synchronized

by the operator |[T({pt-+i}) D T({p\, ...,pi})}\e can therefore conclude from definition 3 that:

(«£=). Similar.

7 Conclusion

In the original semantics of Lotos, parallelism is modeled by nondetermillistic interleaving of con-

current actions. The goal of Olderog and Degano et al. was to provide a true concurrency semantics

for CSP and CCS. In such a semantics a global system transition may involve multiple indepen-

dent actions. From a verification point of view, interleaving semantics is an interesting abstraction

since it avoids the "transition space explosion" problem. The transition domain of an interleav-

ing semantics is T whereas in true concurrency the global transition domain is 2T. Consider the

process:

process p[a, b, c] :=

(a; s£op|||fr; stop)[]c; stop

endproc

The semantics of Olderog or Degano et al. would produce the net in Fig. 2 whereas our semantics

generate the net in Fig. 3.

Parallelism inside a choice operator is not decomposed in our semantics whereas it is with the

other authors' semantics. In general our semantics exhibits less parallelism. In compensation, our

semantics does not lead to the problem of non-updated markings. For instance in Fig. 2, when

transition a is fired, the successor marking is:

M' = {stop\\\, (\\\b- stoP)[]c- stop}

However, according to the original Lotos semantics:

p[a,b,c] - a — > 5iop|||6; stop

we say that the marking M' is rtot updated because:

M' ^ dec(stop\\\b; stop)

A consequence of this is that, for a given PLotos specification, the transition system obtained with

the original semantics and the case graph obtained with the P/T-net semantics are isomorphic

with the function dec. In [Barbeau, Bochmann 1990] we show that this property can be exploited
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(a;stop|||)[]c;stop (|||b;stop)[]c;stop

stoplH Illstop

Figure 2: Olderog's Semantics

to apply P/T-net verification techniques to Lotos without even translating explicitly Lotos into

P/T-nets.

This paper has presented a derivation system for obtaining an equivalent P/T-net from a given

Lotos specification. Since the subset of Lotos that we considered has the power of Turing machines,

it is necessary to restrict the language such that finite structure P/T-nets can be obtained. More-

over, we have shown that the converse is also possible. We therefore demonstrated that our PLotos

has the power of finite structure P/T-nets.

It is possible to consider different subsets of Lotos from which finite structure P/T-nets can be

obtained. For instance, in a sequential composition B\ B^ or disabling -Z?i[> BI we can allow

recursion but forbid parallelism since BI can still be mapped to a finite transition system. As future

area of investigation, we plan to extend this derivation system to support process and interaction

parameters with the help of Coloured Petri nets [Jensen 1981] to model Lotos behaviors.
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Appendix A: PLotos

To formalize our PLotos we use the technique of attribute grammars [Waite, Goos 1985] since

they can specify concisely and precisely the syntax and the semantical constraints of a language.

An attribute grammar is a context-free grammar but terminal and nonterminal symbols of the

grammar have attributes. To each rule B0 ::= BI, ..., Bn is associated a set of assignment statements

and assertions, the attribution. Assignments define attribute values whereas assertions are logical

formulae that put constraints on the values.

The attribute a of grammar symbol B is denoted as B.a. The informal interpretation of the

attributes of our grammar is as folllows:

• B.func is the functionality of behavior B. It is equal to exit iff the behavior terminates

with the successful termination action. Otherwise its value is noexit.

• B.callee is the name of the process that instantiates behavior B. This attribute is used in

rule (p9) to prevent the occurrence of j[] | operators in recursive processes.

• B.guarded is true iff the behavior B is guarded.

• B.call is the set of process names instantiated in behavior B.

• p.rec is true iff process p is recursive.

We use italics for nonterminal symbols and boldface for keywords.

Rule (pi)

S ::= specification p[gi, ...,#„] :=

B where D

endspec.
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Attribution

B.callee <— p

B.guarded *— false

ASSERT B.func = noexit

Rule (P2)

D ::= DP\P.

Rule (P3)

P ::= process p\gi,...,gn] :=

5

endproc.

Attribution

B.callee <— p

B.guarded *— false

p.June <— B.func

p.rec +- p £. closure(B.call)

where closure is a function which computes the transitive closure of the call relation in order to

obtain all the process names directly or indirectly instantiated by p.

Rule (p4)

B ::= stop.

Attribution

B.func <— noexit

B.call <- {}

Rule (p5)

B ::= a;Bl.

Attribution

B\.callee <— B.callee

B\.guarded <— true

B.func <- Bi.func

B.call <— B\.call

Rule (p6)

5 ::= 5x052.

Attribution
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Bi.callee <— B2.callee <— B.callee

BI.guarded <— B2.guarded «— B.guarded

B.func «- Bi.func

ASSERT Bi.func = B2.func

B.call ̂  Bi.call U J92-ca//

Rule (p7)

-B "= P[5l,-,5n]-

Attribution

p.callee <— B.callee

B.func <— p.func

B.call t- {p}

ASSERT p.rec => B. guarded

Rule (p8)

Attribution

Bi.callee <— Bi.callee <— B.callee

BI. guarded <— B2. guarded <— B. guarded

B.func <— Bi.func

ASSERT Bi.func = B2.func

B.call *- BI. call \JB2. call

Rule (p9)

Attribution

Bi.callee <— Bi.callee <— B.callee

Bi.guarded *— B2. guarded <— B. guarded

B.func <— Bi.func

ASSERT 5i./unc = 52.

5.CG// «- BI. call U B2. call

ASSERT #.ca//ee 5.ca//

Rule (plO)

5 ::= exit.

Attribution

B.func 4
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B.call *- {}

Rule (pll)

B ::= 5! » 52.

Attribution

Bi.callee <— Bi.callee *- B.callee

B<2.guarded <— irwe

B.func <— Bl.func

ASSERT Bi.func = exit

B.call <- BI.call \JB2.call

ASSERT (VpG c/osMre(J5i.ca//))[p.rec= /a/se]

Rule (p!2)

5 ::= J5j[> 52.

Attribution

Bi.callee *— Bi.callee *— B.callee

BI-guarded

B.func <—

ASSERT Bi.func = Bl.func

B.call+-BI.call UB^.call

ASSERT (Vp G closure(Bi.call))\p.rec= false]

Rule (p!3)

£ ::= hide gi,...,gn in 5X.

Attribution

Bi.callee <— B.callee

BI.guarded <— B.guarded

B.func <— Bi.func

B.call <— B
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