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Abstract—The use of formal specifications in software development
allows the use of certain automated tools during the specification and
software development process. Formal description techniques have
been developed for the specification: of communication protocols and
services. This paper describes the partial automation of the protocol
implementation process based on a formal specification of the protocol
to'be 1mplemented An implementation strategy and a related software
structure for the implementation of state transition oriented specifi-
cations is presented. Its application is demonstrated with a much sim-
plified Transport protocol. The automated translation of specifications
into implementation code in a high-level language is also discussed. A
semiautomated implementation strategy is explained which highlights
several refinement steps, part of which are automated, which lead from
a formal protocol specification to an implementation. Experience with
several full implementations of the 0sI Transport protocol is de-
scribed.

Index Terms—Communication protocols, Estelle, formal description
techniques, formal specification, implementation methodology, proto-
col implemeritation; specification translation, transport protocol im-
plementation. |

I. INTRODUCTION

HE use of formal specification methods has been pro-

posed for software engineering. Such methods are of
particular importance for communication software since
communication software must satisfy the rules defined by
the communication protocols which are used. Many dif-
ferent 1mplementat10ns are usually built for a given com-
munication protocol. It is therefore important that these
rules be specified precisely. For this reason, they are can-
didates for being spe01ﬁed ‘with a formal specification
method.

The rules for communication between dltferent com-
-puter systems are usually based on some architectural as-
sumptions, such as defined by the OSI reference model
[21] and the service concept [30], which define a layered
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Fig. 1. OSI architecture.

system structure, such as shown in Fig. 1. For each layer,
the service specification defines the communication ser-
vice to be provided to the user entities in the next higher
layer. The protocol specification, which defines the be-
havior of an entity within the layet, defines how the cor-
responding entities in different systems communicate with
one another by exchanging so-called protocol data units
(PDU), using the communication service provided by the
layer below

Formal specifications, like informal ones, are used for
the following purposes:

1) For each communication protocol and service, there
is usually one specification which serves as ‘‘reference’’
for all other activities.

2) Protocol and service specifications are used for the
validation of the design of the protocol of a given layer.
For this purpose, the service provided by the protocol en-
tities (as defined by the protocol specification) commu-
nicating through the service of the underlying layer is
compared with the service defined by the service specifi-
cation of the given layer.

3) The protocol specification is used for the elaboration

-of implementations.

4) The protocol specification is used during the vali-
dation (debugging, testing) of an implementation, and for
assessing its conformance with the protocol specification.

Experiments with automated tools for the above activ-
ities have been reported in the literature (for a review, see
for instance [8]). Such tools become important when for-
mal specifications are used for real-life protocols which
are usually sufficiently complex to make some automation
desirable. Since such tools only become effective if they
can be based on specifications written in some formal
method, the development of suitable formal description
techniques (FDT’s) for communication protocols and ser-
vices has been an area of much concern. For this reason,
standardized FDT’s are developed within ISO and CCITT
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[29], [12]. The results of these standardization efforts are
three FDT candidates, SDL [24], Estelle [13], and Lotos
[18]. SDL and Estelle are based on the model of finite
state machines extended with programming language ele-
ments, while Lotos is based on CCS [20] and abstract data
types [1]. A number of protocol standards for Open Sys-
tems Interconnection (OSI) have been written using these
techniques.

This paper considers the automation of the protocol im-
plementation activity (point 3) above). In Section II of
this paper, general issues and design choices for protocol
implementations are discussed. Also different objectives
for the implementations are considered.

Section III describes a general implementation strategy
assuming that a formal specification of the protocol is
given written in an extended state machine formalism. For
this implementation strategy, a specification compiler has
been developed which translates a formal specification,
written in a dialect of Estelle, into appropriate Pascal
code, to be incorporated into a Pascal program imple-
menting the protocol specification. This implementation
strategy is demonstrated by a simple example for which
the generated Pascal code is explained.

A complete implementation methodology including au-
tomated and nonautomated aspects is presented in Section
IV. The application of this methodology to the implemen-
tation of the OSI Transport protocol class 2 is presented.
The implementation obtained through the semiautomatic
implementation methodology is compared with a similar
implementation which was developed in a traditional
manner.

II. Issues IN PrRoTOCOL IMPLEMENTATIONS

One advantage of formal specifications is the fact that
implementations can often be obtained in a semiauto-
mated manner, as for instance described below. How-
ever, different modes of executions, based on the formal
specification, may be useful for various purposes, such as
the following:

1) Traditional meaning of ‘‘implementation,”” where
the communication protocol is executed for providing a
communication service in a real operational system.

2) Simulated execution of the specification: this may
be useful during the design of the protocol for analyzing
the logical correctness of the protocol [16], [27], or for
making performance simulations [28], [9]. Performance
simulations are in particular useful for determining opti-
mal parameters for real implementations which are ex-
pected to satisfy specific performance objectives.

3) Test trace validation during conformance testing:
when a real implementation is tested for conformance with
the protocol specification, the observed sequences of in-
teractions may be ‘‘compared’’ with the specification,
i.e., the observed trace is checked in order to determine
whether it is a possible trace according to the specification
[16], [27], [10].

It is important to note that for each of these different

’

purposes, different design choices seem to be appropriate
for realizing the execution of the specification. In the fol-
lowing we only consider case 1).

In communication software design, it seems natural to
model the structure of the software system somehow along
the lines of the protocol architecture. This architecture
often follows the OSI Reference Model shown in Fig. 1,
or a subset of the layers defined in that model. Usually
several levels of protocols are involved in a given com-
munication system. The communication software must be
written in such a way that

1) all properties defined by the protocol specification
are satisfied by the system, i.e., the system conforms to
the protocol specification [23], and

2) other properties, not defined by the protocol speci-
fication, are chosen and implemented in such a way as to
make the resulting system useful; in particular the follow-
ing issues must be addressed:

¢ efficiency of operation (communication delays, max-
imum throughput, memory requirements, etc.),

® appropriate interfaces to user programs,

e appropriate interfaces to the underlying data trans-
mission facilities, usually through the 1/0 facilities of the
operating system.

Because of the importance of point 2), it is difficult to
completely automate the protocol implementation pro-
cess. However, the aspects of an implementation relating
to point 1) can be obtained automatically from a formal
specification, as explained below. An implementation
methodology addressing both aspects is described in Sec-
tion IV.

Given a formal specification of the protocol to be im-
plemented, many properties not defined are either related
to expressions, statements, functions, or procedures not
explicitly defined (which are called ‘‘implementation de-
pendent’’), or to the intrinsic nondeterminism of the spec-
ification. Most specification languages allow the specifi-
cation of nondeterministic systems for which several
behaviors are possible in a given situation. In the case that
an extended FSM model is used as specification language,
nondeterminism is introduced when for a given state of
the machine and given input interaction, there may be
more than one transition that could be executed. Nonde-
terminism may also be introduced by spontaneous tran-
sitions which may be executed, without involving any in-
put, provided that the present state satisfies a specified
condition. A method for implementing such transitions is
described in Section IV.

Another important implementation issue is the overall
software architecture in terms of procedures, modules, and
processes. This structure will usually reflect the structure
of the specification. A complete protocol specification for
a given layer often consists of several specification mod-
ules. As an example, Fig. 2 shows the structure of the
Transport protocol specification which was used for the
implementation project described in Section IV. It con-
tains one AP module for each Transport connection,
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Fig. 2. Structure of the Transport protocol specification.

which handles connection establishment, data transfer and
disconnection, and one common Mapping module which
looks after the multiplexing of several Transport connec-
tion over a single Network connection. The figure also
shows several instances of user modules U; and module N
providing the Network service; these latter modules rep-
resent the environment of the Transport entity.

However, the protocol for a given layer is usually not
implemented in isolation, but in combination with the
other protocol layers. Given that the software system cor-
responds to a large number of modules in the specifica-
tion, it is important to determine how the interactions be-
tween these different modules are realized in the
implementation. Some of these modules also interact with
the environment, e.g., user programs or I/O devices.
Often, the specification defines a static structure by which
the different modules are interconnected.

Important design decisions relate to the manner in which
these different interactions are realized. Another impor-
tant design decision is the question of how many pro-
cesses are used to implement the system, and how these
processes communicate with one another and the environ-
ment using the operating system facilities. The imple-
mentation strategy discussed below provides automati-
cally certain alternatives for the implementation of module
interactions. It assumes that several specification modules
are usually combined into a single process for implemen-
tation, although in an extreme case, one process per mod-
ule could be used.

III. TRANSLATING FORMAL SPECIFICATIONS INTO A
HiGH-LEVEL PROGRAMMING LANGUAGE

A. Specifications Using an Extended FSM Model

It is assumed in the following that the protocol speci-
fication is given in an extended finite state machine for-
malism [6], as for instance Estelle or SDL. Using such a
formalism, a module of the specification can be described
as an extended finite state machine which interacts through
input/output interactions with other modules in the sys-
tem. Alternatively, a module may also be described as
consisting of several interconnected more simple mod-
ules, as for instance the Transport entity shown in Fig. 2.
The behavior of each machine is described as an extended
finite state transition machine. It may execute a state tran-
sition due to an input interaction received, or sponta-
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neously. During such a transition, it may also generate
output interactions. The extensions relate to interaction
parameters and additional state variables. The relation of
the state transitions with these parameters and state vari-
ables is described using a programming language notation
(Pascal in the case of Estelle). For instance, an enabling
condition may be associated with a transition which may
depend on input interaction parameters and state vari-
ables, and which must be satisfied if the transition is to
be executed.

The output interactions generated by a given module
become input for another module of the specified system
or for the environment. The destination module is deter-
mined by the interconnection structure between the dif-
ferent module instances within the specified system. Usu-
ally, it is possible to describe systems with static module
interconnection structures, such as shown in Fig. 2, but
FDT’s and many other languages also allow the specifi-
cation of dynamically changing interconnection struc-
tures.

An important feature of the specification language is the
kind of module interactions assumed. Many languages as-
sume that output interactions are placed in an input queue
of the destination module, and the destination module will
independently consider each interaction at the head of an
input queue (Estelle allows for several input queues per
module) for execution of a corresponding transition [13],
[24]. Another approach is the direct interaction model,
similar to rendezvous [15], [18] where an output can only
be generated if the destination module accepts the inter-
action as input for one of its transitions.

B. A Simple Example Specification

In order to demonstrate the principles explained above,
and to lead to the discussion of the translation process,
this section presents a very simple specification example.
It is based on the Transport protocol, but only two (out of
many) transitions are considered.

As Fig. 2 shows, the Transport entity is described as
consisting of one module of type AP per Transport con-
nection and a single Mapping module. An (incomplete)
formal specification of this Transport entity is given in
Fig. 3. Fig. 3(a) defines the interaction structure of the
Transport entity in terms of its interaction points with the
environment and its refinement in terms of the Mapping
and AP submodules. TSAP is an array of interactions
points, one for each possible Transport connection, over
which the Transport service is provided to the user mod-
ules. The different connections are distinguished by an
index value of type TCEP__id__type. NSAP is the inter-
action point over which the Network service is used.

Fig. 3(b) shows the definition of the different kinds of
interactions that can occur between the Transport entity
and its users. The specification of the channel type
TS_ primitives given here defines only two kinds of in-
teractions: the TCONreq interaction by which the user
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module TP_entity;
(* external port declarations *)
TSAP : array [TCEP_id_type] of TS_primitives (provider):

NSAP : NS_primitives (user);
end TP_entity;
(a)
(* Transport service interactions *)
type
option_type = set of (optionl, option2);
data_type = ...; (* implementation dependent *)
T_address = ...; (* implementation dependent *)

channel TS_primitives (user, provider);
by user:
TCONreq (dest_address :
proposed_options :
TDATAreq (d : data_type);

ok ok ok ok

by provider:

*kk kK

end TS_primitives;

()
module Mapping:;
P : array [TCEP_id_type] of PDU_and_control (mapping):
NS : NS_primitives (user);
end Mapping;

T_address;
option_type) ;

©
(* PDU definitions *)
type
sequence_nb = 0 .. 255;
credit_type = 0 .. 127;

channel PDU_and_control (AP, mapping);
by AP, mapping:
CR (addresss : T_address;
options : option_type):
AK (TR : sequence_nb;
credit : credit_type);

Xk ok ok ok

end PDU_and_control;

@
module AP;
TS : TS_primitives (provider);
MAP : PDU_and_control (AP);
end AP;

process Mapping_process for Mapping;
* k Kk Kk Kk

end Mapping_process;

process AP_process for AP;

var

(closed, open, wait_for_ CC, ***** );
options : option_type;

TRseq : sequence_nb;

R_credit : credit_type;

dok ok ok ok

state :

function accepted_options (requested_options : option_type)
: option_type:
begin (* all options supported *)
accepted_options := requested_options
end;

trans
when TS .
from closed
begin
TRseq := 0;
options :=
out MAP
end;

TCONreq
to wait_for_CC

accepted_options (proposed_options);
. CR (dest_address, options);

*k kKK

trans
provided true (* it is possible to send an AK,
implementation dependent choice *)
from open to same
begin
out MAP
end;

. AK (TRseq, R _credit):;

ok kKK
end AP_process;

©

(* process instantiations and interconnections *)
Al : AP with AP_process;
A2 : AP with AP_process;
A3 : AP with AP_process;
A4 : AP with AP_process;

M Mapping with Mapping_process;

connect
Al.MAP to M
A2.MAP to M
A3.MAP to M.
A4.MAP to M

)

‘o u o

Fig. 3. Example specification.

can request the establishment of a connection, and the
TDATAreq interaction by which the user may send data
over the established connection. The notation - + - - - is
used here to indicate that certain parts of the specification
are not included. The specification also introduces two
roles, user and provider. As indicated in Fig. 3(a), the
module TP__entity plays the role provider for the inter-
action points TSAP. It is assumed that a similar definition
is given for the channel type NS__primitives.

Fig. 3(c) shows the definition of the submodule types
Mapping and AP. They are interconnected by channels
of type PDU__and__control, which are defined in Fig.
3(d). Over this channel coded protocol information is ex-
changed. The existing module’s instances and their inter-
connection structure are defined in Fig. 3(f).

Fig. 3(e), finally, shows the'definition of an extended
finite state machine specifying the behavior for a module
of type AP. Such a behavior is called a ‘‘process.’” Each
module instance associated with this process contains the
state variables STATE, options, TRseq, and R__credit.
STATE is the so-called major state variable which cor-
responds to the ‘‘finite state’’ of the machine. Only two
transitions are shown. The first is executed when a
TCONreq is received by the user. It leads to an update

C.

of the state variables, including the new major state
wait_ for_ CC, and to the generation of output of kind
CR. The second transition is a spontaneous one, which
may be executed whenever the connection is in the OPEN
(major) state. It has the effect of generating an AK output
interaction.

C. An Implementation Strategy

The implementation strategy described here applies to

-the automated implementation of specifications written in

an extended finite state machine language in general. It
was used by the Estelle compiler [14] which was used for
several implementation projects [25], [32]. The objective
of this compiler was to translate formal specifications
written in an Estelle-like language, as shown in Fig. 3,
into Pascal procedures which would be suitable for incor-
poration, without change, into a Pascal program imple-
menting the protocol. A similar translation approach can
be used for other implementation languages, for example

The following points present important aspects of the
implementation approach, and have a strong 1mpact on
the structure of the implementation.
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1) The automated translation process gives rise to one
procedure written in the implementation language (in our
case Pascal) for each process type in the specification.
Each of the so obtained procedures can be compiled sep-
arately, if the implementation language compiler supports
that option.

2) The execution of a transition of a module instance
is performed by calling the procedure corresponding to
the process type and passing to it as parameters the input
interaction (if any) and a record data structure which con-
tains the information about the present state of the mod-
ule.

3) In a given system state, a number of different tran-
sitions belonging to different module instances may be
possible. The selection of the next transition to be per-
formed is made by an overall transition scheduler, which
is usually part of the Pascal main program. This scheduler
determines which module instance and which input inter-
action (or spontaneous transition) will be processed, and
calls the corresponding process procedure. It is important
to note that this scheduler is not automatically generated.
A simple round-robin scheduler procedure is provided as
part of the run-time support for the implementations gen-
erated by the Estelle compiler; the implementor is free to
write his/her own scheduler to suit any particular imple-
mentation objectives.

4) For a given input interaction and a given state of the
module instance, there are, in general, several possible
transitions. A simple method of selection is to execute the
first possible transition in the order in which the transi-
tions are defined in the specification. With such an ap-
proach, the scheduler selects the module instance and the
input interaction to be processed, or possibly a sponta-
neous transition is to be executed. The selection of the
transition to process a given input is performed by the
procedure implementing the module type. This selection
may be realized by embedded case statements considering
different interaction points, different kinds of interactions,
and different major module states. It is also possible to
generate embedded IF statements following in lexical or-
der all the transitions in the specification, testing each to
see whether it applies. These are two extreme choices for
translating a module specification into program code.
Combined approaches may often be more suitable. It is
also possible to construct a transition table including, for
each major state and kind of input, the list of applicable
transitions. This form of code is particularly compact. The
run-time support will then include a state machine inter-
preter [5], which may also include facilities for step-wise
program execution, traces and other test instrumentation.
Which of these approaches is taken for the generation of
the program is largely a question of optimization.

5) The record data structure which contains the state
information for a module instance also contains pointers
to each of the surrounding module instances to which the
former is connected. These pointers are used to forward
output interactions generated by the module to the appro-
priate receiving module instances. Two options of module
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interactions are supported, queueing and ‘‘direct call.”’
The latter is a simplified version of rendezvous where the
outputting module calls the procedure generated for the
destination module, passing the generated output as input
parameter. It is assumed that an output operation is only
performed when the receiving module is in a state where
it can accept the given interaction as input. It is the re-
sponsibility of the designer of the specification/imple-
mentation to make sure that this condition is satisfied.

6) The above considerations apply to all interactions
between module instances which are part of the specified
system. Interactions with its environment are not easily
included in this general implementation scheme. How-
ever, most specified systems are ‘‘embedded’’ systems
which include interactions with the environment. For in-
stance, the Transport protocol implementation described
in Section IV interacts with the user processes and part of
the operating system providing the Network communica-
tion service. Output to the environment is easily imple-
mented by calling an implementation-dependent proce-
dure for output. Input from the environment can be
implemented by including spontaneous transitions in the
specification which would be called by the global sched-
uler and execute the processing related to the input. The
scheduler should be aware when the external input is
available.

7) The data structures containing the state information"
of the module instances and the pointers connecting them
according to the module interconnection structure defined
in the specification are created by support routines, which
are called during the execution of the implementation. In
the case of static system structure, these routines are called
during the initialization phase. The initialization proce-
dures are also generated by the Estelle compiler based on
the specification of the modules.

D. Translating a Specification into Implementation
Code

In order to make the above discussion more concrete,
we present in detail the translation of the example shown
in Fig. 3 using the translator mentioned before [14]. It is
important to note that the specification of Fig. 3 must be
““‘completed,’” as explained in Section IV-B, before the
translation process is applied. We assume in the following
that this has been done.

In summary, the compiler generates three categories of
statements. First are the type declarations for the records
which will represent the state of the module instances,
channels, and interactions as well as the variables and type
declarations required by the run-time support. Secondly,
there are procedures which implement the processes by
code to handle the various defined transitions. Finally,
there are procedures for the initialisation of the system
and the creation and linking of the various data structures.

Details of the generated code are shown in Figs. 4 and
5. Fig. 4 shows the declarations generated by the com-
piler. Lines 1-38 show the type declaration SOTYPE for
the records which represent the interactions in the speci-
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1 SITYPE = “SOTYPE;

2 SOTYPE =

3 RECORD

4 NEXT: SITYPE;

S CASE CHANNEL OF

6 C2TS primitives:

? (CASE T2TS_primitives: S2TS_primitives OF
8 S2TCONreq:

9 (D2TCONreq:

10 RECORD

11 dest_address: T_address;
12 proposed_opt ions : opticn_type
13 END);

14 S2TDATAreq:

15 (D2TDATAreq:

16 RECORD

17 d: data_type

18 END); );

19 CIPDU_and_control:

20 (CASE TIPDU_snd_control:

21 S1PLU_and control OF

22 SICRT

23 (DICR:

24 RECORD

25 address: T_address;

26 options: option_type

27 END);

28 S1AK:

29 (DIAK:

30 RECORD

31 TR: sequence_nb;

32 credit: credit_type

33 END); );

34 COAP_process:

35 (CASE TOAP_process: SOAP_process OF
36 RIANY:

37 O; )

38 END;

39

40 PITYPE = “POTYPE;
41 POTYPE =

42 RECORD

43 IDENT: P2TYPE;

44 CHANLIST: CITYPE;

45 NEXT, REFINEMENT: PITYPE;

46 CASE PROCESS OF

47 POMapping_process:

48 Qs

49 POAP_process:

50 (DOAP_process:

51 RECORD

52 STATE: (closed, open,
53 wait_for CC);
54 optlons: option_type;
55 TRseq: sequence_nb;
56 R_credit: credit_type;
57 END);

58 END;

59

60 VAR

61 POVAR: PITYPE;
62 COVAR: CITYPE;
63 SOVAR: SITYPE;

Fig. 4. Declaration code produced by FDT compiler.

fication. Each interaction primitive defined in the original
specification is implemented as a variant of that declara-
tion. Note the presence of a system attribute, NEXT in
line 4, required by the implementation in addition to the
variant fields that reproduce exactly the fields present in
the original specification (lines 11-12, 17, 25-26, and 31~
32). To handle the use of identical field names in different
interactions, the user fields are not inserted directly in the
variant for each interaction; rather, they are grouped in-a
dummy record (for example: D2T__CONreq in line 9)
which then appears as the only attribute of each variant
(S2T__CONreq in this case).

Another point to notice in the SOTYPE declaration is
the definition of an empty variant, COAP__process (lines

1 PROCEDURE AP_process;
2
3 LABEL
L} 1;
S
6 VAR
7 CIVAR: CITYPE;
8 SIVAR: SITYPE;
9
10
1t FUNCTION accepted_options(requested options: option_type)
12 soption_type;
13 BEGIN
14 WITH POVAR™ .DOAP_process DO
15 BEGIN
16 accepted_options := requested_options;
17 END
18 END;
19
20 BEGIN
21 CIVAR := COVAR;
22 SIVAR := SOVAR;
23 WITH POVAR" .DOAP_process DO
24 BEGIN
25 IF COVAR" .IDENT = | THEN
26 IF SOVAR™.T2TS_primitives = S2TCONreq THEN
27 WITH SOVAR" .D2TCONreq DO
28 BEGIN
29 IF STATE IN [closed] THEN
30 BEGIN
31 STATE := wait_for CC;
32 TRseq := 0;
33 options := accepted_options(proposcd_options);
34 BEGIN
35 PUPROCEDURE(2);
36 NEW(SOVAR, CIPOU_and_control,SICR);
37 SOVAR” .TIPDU_and_control := SICR;
38 SOVAR™.DICR.address := dest _address;
39 SOVAR" .DICR.opt tons := optlons;
40 ouT
41 END;
42 GOTO 1|; END;
43 END;
44 IF true THEN
45 BEGIN
46 IF STATE IN [open] THEN
47 BEGIN
48 IF COVAR™.IDENT = O THEN
49 IF SOVAR™ .TOAP_process = RIANY THEN
50 BEGIN
S BEGIN
52 POPROCEDURE(2);
53 NEW(SOVAR, CIPDU_and_control,S14K);
54 SOVAR".TIPOU_and_control := S1AK;
55 SOVAR” .DIAK.TR := TRseq;
56 SOVAR” .D1AK.credit := R_credit;
57 ouT
58 END;
59 GOTO I;
60 END;
61 END;
62 END;
63 END:
64 1:
65 CASE CIVAR" .IDENT OF
66 0:
67 CASE S1VAR™ .TUAP_process OF
68 RIANY:
69 DISPOSE(SIVAR, COAP_process, RIANY);
70 END;
71 1:
72 CASE SIVAR™.T2TS_primitives OF
73 S2TCONreq:
74 DISPOSE(SIVAR, C2TS_primitives,
75 S2TCONreq);
76 END;
77 END;
78 END;

Fig. 5. Procedure generated by FDT compiler.

34-37), which does not correspond to any explicit chan-
nel or interaction definition in the original source code.
This variant is generated to handle the spontaneous tran-
sition in the AP__process process. Spontaneous transi-
tions are treated as special interactions on a channel 0 and
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dummy variants are generated for each spontaneous tran-
sition present in the specification.

The second part of Fig. 4 shows the type declaration
POTYPE for the data structures which will represent the
module instances during execution. For each module type
defined, a variant is added to the POTYPE declaration.
The same technique outlined for the interactions is used
here and user declared local attributes appear without
change within a dummy record in each variant. The attri-
butes for the AP__process module of Fig. 3(e) are shown
in lines 49-57. There is also an empty variant (lines 47-
48) for the Mapping module present in the full example
specification. There are 4 system attributes (lines 43-45)
present in all process records; these are used by the run
time routines to identify, build and link the data structures
modelling the specified system.

Finally, in lines 61-63, are shown three key global
variables which determine the context for any transition.
During execution, these pointers (POVAR, COVAR and
SOVAR) will contain respectively the addresses of the
current module instance, the current channel whose inter-
action is being treated, and the current interaction itself.
These are the only global variables shared by all routines
in the system.

Fig. 5 shows the procedure generated to handle the
transitions for the AP__process module. The procedure
assumes that its context (POVAR, COVAR, and SO-
VAR) has been set up correctly before the procedure is
called. For each defined transition, a section of code is
generated. The example has two transitions: the first, trig-
gered by the receipt of a T CONreq interaction, leads to
the code in lines 25-43 and the second, a spontaneous
transition, leads to the code in lines 44-62. All proce-
dures begin with a partial saving of context (lines 21-22)
so that the environment is not lost when the output pro-
cedure modifies the values of COVAR and SOVAR. There
is also a WITH statement on the correct variant of the
current module (line 23) so that local module variables
may be referred to directly within the procedure body.

Creation and destruction of the interaction records
which transfer information between module instances is
implemented completely within the generated ‘‘module’’
procedures. At the end of each such procedure (lines 64—
77) in this case) Pascal code is generated to dispose of
any interactions the process may receive. It is in the na-
ture of the Pascal language that for each variant of a rec-
ord type, a separate DISPOSE statement is needed where
the value of the variant tag is expressed as a constant (it
is not possible to use a general-purpose DISPOSE state-
ment where the variant tag would be expressed as a vari-
able). Generation of this specific disposal code is an im-
portant task of the compiler.

Each transition follows the same pattern. The code is
preceded by tests on the identity of the received interac-
tion and that of the received interaction and that of the
channel upon which it came. To this may be added tests
corresponding to PROVIDED or FROM clauses (line 29).
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A WITH statement on the input (line 27) allows the re-
ceived interaction attributes to be used directly in the tran-
sition statements. At the end of the transition a ‘‘GOTO
1’’ statement passes control to the data record disposal
code. For a spontaneous transition (lines 44-62), the pat-
tern is the same except that the ‘‘spontaneous’’ channel 0
is used and the interaction is a ‘‘pseudo’’ interaction with
no attributes internally generated by the system.

Another aspect shown in Fig. 5 is the implementation
of the output statement (lines 34-41 and 51-58). The in-
teraction to be sent is first created (line 53) and its data
fields are initialized (line 54-56). The call to the library
procedure POPROCEDURE (line 52) had located chan-
nel MAP (assigned the number 2 by the compiler) and had
placed its address in COVAR. The output routine uses
data in the Channel data structure to place the interaction
in the right reception queue. If a channel with rendezvous
is specified, the procedure representing the recipient mod-
ule is called directly at this point. If the channel uses
queued interactions, control returns immediately to the
sender; the recipient being activated later by the scheduler
when it comes upon the pending interaction in its scan of
channel queues.

E. Translation Issues

The above example gives a simplified introduction to
code generated for Estelle specifications. In general, the
translation process is more difficult, in particular when the
full power of the specification language is taken into ac-
count. A number of specification translators have been or
are being built for Estelle and similar languages [5], [3],
[14], [4].

The Estelle compiler described here [14] is partitioned
into the usual phases of lexical, syntactic, and semantic
analysis, optimizations, and code generation. The syntax
analysis phase creates an internal representation of the
specification in the form of a tree structure. The nodes of
the tree are characterized by semantic attributes which are
evaluated during the subsequent semantic analysis phase.
During this phase, certain semantic conditions are also
checked. The compiler only verifies those semantic con-
ditions which would not be validated by the subsequent
Pascal compilation of the generated Pascal program. It is
noted, however, that it would be more convenient to have
a complete verification of the static semantics by the spec-
ification compiler. Certain optimizations may be per-
formed on the internal representation of the specification.
For instance, the different transitions could be sorted in a
specific order to make the generated code smaller or more
efficient. The code generation phase is relatively straight-
forward, in particular for those parts of a specification
which are already essentially written in the Pascal nota-
tion, such as the actions of transitions, or the expressions
in PROVIDED clauses. However, there are certain as-
pects of the specification language which are more diffi-
cult to handle, such as the following.

There seems to be no simple translation scheme which
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correctly handles Estelle’s scope rules in relation with the
WHEN clause and the associated input parameters. Our
compiler simply generates a Pascal WITH statement
which opens a scope containing the parameter names.
However, this approach does not work when the same
names are also used for formal parameters or local vari-
ables in a procedure declared within the transition.

Another problem related to scope rules is due to the
identifiers of certain run-time utility procedures, vari-
ables, and types. These identifiers are referenced in the
generated Pascal code. For instance an <output> pro-
cedure is used for generating an output interaction. There-
fore, the inadvertent use of the same identifiers for other
purposes in the specification leads to problems. One (un-
satisfactory) solution is to prohibit the use of these pre-
defined identifiers in specifications.

In addition, the compiler generates certain additional
identifiers which correspond to parts of the specification.
These identifiers should never be in conflict with the other
identifiers of the specification which remain present in the
translated Pascal code; they should also have a mnemonic
form closely resembling the part of the specification which
they represent. Our compiler forms such identifiers by
preceding the original name by a fixed character and a
number which is used to distinguish different cases (see
for example Fig. 4). There seems to be no completely
satisfactory solution, in particular if the generated code
should be compilable by a Pascal compiler that distin-
guishes identifiers based on only its first (say) 10 char-
acters.

The run-time utility procedures which are used for cre-
ating the interconnection structure between modules dur-
ing the initialization of a system have to work with any
type of module and channel. They are a kind of generic
procedures which are difficult to write in the Pascal pro-
gramming language.

IV. ProTOCOL IMPLEMENTATION METHODOLOGY

It is important to note that the automated translation of
specifications, as described above, covers only part of the
implementation effort. As mentioned before, there are as-
pects of an implementation which are not described by the
specification and which must be chosen during the imple-
mentation phase. These aspects are discussed in this sec-
tion. We first present a Transport protocol implementa-
tion which was developed in a traditional, ad hoc manner,
although a formal specification of the protocol was used
as a basis for certain parts of the code. A systematic meth-
odology for implementing protocols in several steps of
refinement and based on a formal specification is then de-
scribed. It was subsequently applied to the same Trans-
port protocol together with the automated specification
translation approach described above. A comparison of
these two implementations is also given.

A. An ad hoc Implementation Based on a Formal
Specification

The structure of this implementation [25] of the OSI
Transport protocol classes 0 and 2 is shown in Fig. 6. The

—1 adaptation ( transport service )J
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tesk AP AP2 AR,
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I
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nication |

Fig. 6. Structure of ‘‘manual’’ implementation.

logical behavior of the AP and Mapping modules is based
on the formal Transport protocol specification given in
[7]. The Transport entity is a single task in the operating
system, communicating through operating system primi-
tives with a task providing the Network service, and sev-
eral user tasks which may establish one or several Trans-
port connections with remote systems through the
Transport entity.

The interactions between the different tasks is based on
message exchange provided by the operating system. For
the original implementation which was running on a PDP-
11 computer, the user data was not directly included in
these messages, rather pointers to data buffers were passed
between the tasks. The data buffers were allocated in
shared memory by the task first generating the data, or
receiving it through external I/O primitives, and were
shared among all the processes using the data [19].

Overall, the program handles the incoming events in an
asynchronous manner. Messages received by the task or
internal time-outs give rise to event interrupts which
schedule corresponding event handling routines which in
turn call the procedures implementing the protocol. This
kind of program structure is efficient and relatively trans-
portable. In fact, the program was subsequently trans-
ported to run under VMS on a VAX, and it is presently
ported to run under Unix. Only the intertask communi-
cation package had to be adapted for each of these new
environments.

The experience of this implementation showed that the
availability of a formal specification simplifies signifi-
cantly the implementation process; however, only part of
the implementation is directly related to the formal spec-
ification. Much time was spent in the development of the
interfaces with the operating system for interaction with
the user processes and the Network communication ser-
vice, including buffer management. Another important
part, not included in the formal specification, is the cod-
ing and decoding of PDU’s. The size of the Pascal source
code for these different program sections is given in Table
I.

B. Implementing Protocols by Stepwise Refinement of
Specification

Although the number of steps to be used for going from
a protocol specification to the implementation code may
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TABLE I
S1ZE OF DIFFERENT PARTS OF TWO TRANSPORT PROTOCOL
IMPLEMENTATIONS

(A) ad hoc (manual) implementation approach
(B) implementation using the specification compiler

Number of Program size
source lines (in octets)
Part of program (a) (B) (&) (B)

(a) PDU de- and en-coding 3 000 3 000 11 940 11 940

(b) Code corresponding to the
transitions of the formal

specification 3 000 5 500%* 17 800 29 306

(c) Buffer management and
0/8 interfaces for

intertask communication 3 000 3 000 3 974 3 974

(d) Run-time support routines 1 000 1 400*** 2 324 3 452

1 000 400 6 468+ 3 282+

(e) main program

Noces
including static variables
** this part of the code is automatically obtained by
translation of the detailed specification (see Section 4.2)
*** this part of the code is fixed (independent of the
specification) and comes with the specification compiler

vary in different cases, we propose a methodology which
identifies the following steps:

1) Preparation of a detailed specification,

2) Adaptation to the implementation environment,

3) Program code creation, and

4) Testing.

Each of these steps is further discussed below.

1) Detailed Protocol Specification: As further ex-
plained in [26], the objective is to obtain a detailed spec-
ification which would be valid for a large number of im-
plementations of the protocol in question. However,
compared to the protocol specification, it is more detailed
and specific, i.e., the available choices are reduced. The
protocol specification should only describe properties that
must be satisfied by all conforming protocol implemen-
tations, and it should be designed in such a manner that
any two communicating implementations that conform to
the specification will provide the corresponding commu-
nication service (see point 2) in the Introduction).

It seems that the following aspects can normally be de-
scribed in the detailed specification:

a) More detailed specification of the local service in-
terfaces with the protocol layers below and above;

b) Identification of all error cases (in addition to those
already described in the protocol specifications) and def-
inition of the corresponding error handling (in particular,
the handling of unexpected interactions from the user
module);

¢) The handling of the spontaneous transitions.

Point a) includes in particular the definition of certain
data types which have been left undefined by the protocol
specification, such as data__type and T__address in Fig.
3. It may also include the definition of certain implemen-
tation-dependent procedures and/or functions, or the def-
inition of supplementary service primitive parameters.

A protocol specification usually indicates the required
behavior of the protocol entity in the case of certain errors
committed by the peer protocol entity. However, often
these indications are relatively vague, and more precise
choices must be made for any implementation. In addi-
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tion, erroneous behavior of the user and/or underlying
communication service may be foreseen. The detailed
protocol specification should define the behavior of the
protocol implementation for these situations.

As mentioned in Section III-B, a spontaneous transition
may be executed any time its enabling condition is satis-
fied. For efficiency reasons, however, an implementation
should normally select appropriate instants for the exe-
cution of the defined spontaneous transitions. The strat-
egy for doing this should be defined in the detalled pro-
tocol specification.

For example, Fig. 3 contains one spontaneous transi-
tion for sending acknowledgments which is enabled
whenever the connection is in the OPEN state. The as-
sociated PROVIDED clause is completely implementa-
tion dependent. In fact, the strategy for sending acknowl-
edgments can have an impact on the end-to-end
transmission delay, on buffer management at the sending
and receiving sites, and on the cost of communication.
Therefore, an appropriate acknowledgment scheme must
be selected depending on the performance requirements
of the protocol implementation. In practice, the sponta-
neous transition could for instance be executed whenever
an additional buffer (and therefore additional credit) is
available.

In general, a spontaneous transition has a PROVIDED
clause of the form PROVIDED <boolean expres-
sion>, and whether it is enabled may depend on addi-
tional state variables included in the expression. The fol-
lowing systematic approaches to the handling of
spontaneous transitions may be considered (it is noted that
such choices must be made whether a specification com-
piler is used, or not):

a) Considered all spontaneous transition for execution
at regular time intervals.

b) Maintain two lists of spontaneous transitions, called
active and passive. Initially, the active list contains all
spontaneous transitions. Transitions from the active list
are considered for execution at regular time intervals. If
one of them is not enabled at that time, it is placed on the
passive list. A transition from the passive list is put on
the active list when the execution of the transition may
have led the effect of changing the state variables in such
a manner as to make the enabling condition of the spon-
taneous transition true. An analysis of the data flow be-
tween the actions of all transitions (which may update the
state variables) and variables used in the enabling condi-
tions of the spontaneous transitions should be made in or-
der to determine whether, after the execution of a given
transition, one of the passive transitions should be made
active.

¢) Maintain a try list of spontaneous transitions. A data
flow analysis similar as for point 2) above should be used
to determine, after the execution of a given transition,
which spontaneous transition may be enabled due to the
action of the executed transitions. All those spontaneous
transitions are placed on the try-list and are considered for
execution before the next input transition is executed. It
is noted that the data flow analysis may be done in an
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informal manner by the person writing the detailed pro-
tocol specification. Operations of the form ‘try transition
<number>"’, which have the effect of putting the indi-
cated spontaneous transition into the try-list, may be in-
cluded in the definition of the transition actions. This lat-

ter strategy has been used for the Transport
implementation described in Section IV-C.
2) Adaptation to the Implementation Environ-

ment: While it can be expected that many design choices
made at the level of the detailed protocol specification may
be applicable for a large number of different implemen-
tation projects in different implementation environments,
the next step involves the adaptation to the particular run-
time environment. Buffer management issues and oper-
ating systems interfaces must be considered in detail, in-
cluding interprocess (task) communication.

The partition of the communication software into sev-
eral processes must be decided at this level. Fig. 6 shows
how the interprocess communication interfaces were in-
cluded in the software structure of the Transport protocol
implementation developed with the Estelle compiler (see
Section IV-C). The formal specification of the Transport
protocol was completed by the addition of two interface
modules which include environment-specific routines for
sending and receiving messages from the other processes
in the system.

3) Program Code Creation: Based on the formal spec-
ification of the protocol, which has been completed as de-
scribed above, the implementation code can be produced
manually, or through a specification compiler. It is noted
that the manual programming task is usually much sim-
pler based on a formal specification than when it is based
on an informal protocol specification.

4) Protocol Implementation Testing: Protocol imple-
mentation testing usually proceeds in several stages. De-
bugging testing is often performed using an interactive
testing tool by which arbitrary peer and user interactions
can be generated and the output of the implementation
under test (IUT) be observed. Afterwards, the implemen-
tation may be submitted to conformance test [23] which
is usually executed in a largely automated manner.

It is important to note that certain tests can be executed
based on the formal protocol specification or the detailed
protocol specification if a suitable execution support ex-
ists for the specification language. Any errors found in
these specifications may be corrected before the more de-
tailed steps of the implementation proceeds. If the de-
tailed specification is shared for many implementation
projects, they may all benefit from less error-prone spec-
ifications.

C. A Semiautomatic Transport Implementation

In order to evaluate the usefulness of the Estelle com-
piler for the automatic generation of parts of a protocol
implementation, the same formal specification that was
the basis for the implementation described in Section IV-
A was also used for generating an implementation with
the Estelle compiler described above.

The same buffer management and intertask communi-
cation routines were used in order to make a comparison
between the two implementations more meaningful. The
resulting program sizes are shown in Table I (column B).
It is noted that only row 2 is generated by the specification
compiler, and row 4 is a fixed set of run-time support
routines. Rows 1 and 3 are the same in the two imple-
mentations. As the table shows, the transition code gen-
erated by the compiler is larger than the corresponding
code of the hand-coded implementation, but it turned out
to be of a more regular structure.

As the above table shows, the buffer management and
intertask communication routines are relatively complex.
However, as explained in Section III-C, the specification
compiler allows the integration of several separately spec-
ified modules into a single Pascal program. The imple-
mented Transport protocol entity, for instance, consists
of one Mapping module and several AP modules, as
shown in Fig. 6. Also, the specifications of the protocols
for several layers could be combined into a single pro-
gram (task). This would reduce the intertask communi-
cation overhead associated with an implementation where
each layer protocol would be implemented in a separate
program.

It is interesting to note that about half of the overall
program code were generated by the specification com-
piler. It is also interesting to note that most errors found
after the initial debugging phase were related to the en-
vironment-specific parts of the specification. This indi-
cates that the detailed formal specification contained rel-
atively few errors [26].

V. DiscussioN AND CONCLUSIONS

The availability of the formal specification of a protocol
can be useful for the validation of the protocol design, as
well as for protocol implementation and testing. This pa-
per discusses the semiautomatic implementation of pro-
tocols based on their formal specification. It is important
to note that a protocol specification usually leaves impor-
tant design decisions unspecified; these design decisions
must be made for each implementation of the protocol de-
pending on the particular implementation requirements.
As discussed in Section IV-B, protocol specifications
written in a formal description technique (FDT) may be
refined in several steps until an implementation-oriented
specification is obtained.

It is sometimes argued that specifications in Estelle tend
to appear ‘‘implementation oriented,’’ in the sense that
they imply certain design decisions which are a matter of
implementation [17]. Real implementations adopting these
decisions can be obtained semiautomatically, as described
in the paper. However, it is conceivable that other imple-
mentations would use different implementation choices.
Their automated generation would require automatic pro-
gram transformations, which are more difficult to realize.
SDL has similar characteristics as Estelle. However, most
existing specifications written in SDL describe the ‘‘data
part’’ informally, which implies that this important part
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cannot be processed automatically. Other specification
languages, such as Lotos, are primarily intended for more
abstract specifications. So-called ‘‘wide band’’ languages
are designed with the aim to be suitable for writing ab-
stract specifications which can be transformed, within the
same language, into implementation-oriented designs and
code [31].

The implementation strategy using the stepwise refine-
ments described in Section IV-B can be applied with any
of the above languages. An important saving in imple-
mentation effort can be obtained if an existing formal pro-
tocol specification, or (better) detailed specification, can
be used as starting point for the implementation project.

The translation methodology described in Section III is
largely adapted to specifications written in an extended
finite state machine formalism. As discussed in Section
IV in relation with the Transport protocol implementa-
tions, a specification compiler can produce readable code
which is relatively efficient in space and run-time. How-
ever, it is also clear that it would not be used in cases
where high-performance implementations are desired.

Further experiences with the semiautomatic implemen-
tation approaches are underway. Areas which need par-
ticular attention include the following:

1) The automatic inclusion of testing facilities within
the generated implementations.

2) Efficiency improvements in the generated code re-
lated to interactions between different module instances.
An implementation language with generic types or less
strong typing rules than Pascal seems to be useful here.

3) Integration, within the specification language and its
compiler, of PDU coding and decoding facilities based on
the ASN1 notation [2] for OSI Application layer proto-
cols. This would allow for automatic code generation for
part (a) in Table I. :
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