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Structured Specification of Communicating
Systems

GREGOR V. BOCHMANN AND MICHEL RAYNAL

Abstract-Specification methods for distributed systems is the
underlying theme of this paper. A model of communicating processes
with rendezvous interactions is assumed as a basis for the discussion.
The possible interactions by a process, and the interconnection between
several subprocesses within a process are specified using the concept
of ports, which are specified separately. Step-wise refinement of
process specifications and associated verification rules are considered.
The step-wise refinement of port specifications and associated inter-
actions is considered as well. After the presentation of an introductory
example, the paper discusses the basic concepts of the specification
method. They are then applied to more complex examples. The step-
wise refinement of ports and interactions is demonstrated by a hard-
ware interface for which an abstract specification and a more detailed
implementation is given. Proof rules for verifying the consistency of
detailed and more abstract specifications are discussed in some de-
tail.

Index Terms-Communication processes, design verification,
distributed system design, interface specifications, parallel processing,
ports, specification consistency, specification language, specification
methods, step-wise refinement.

I. INTRODUCTION

MUCH work has been done in recent years in the area
of design methods for distributed systems. This in-
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cludes the development of languages for distributed systems,
the choice of appropriate interaction mechanisms (message
transmission, rendezvous interactions, remote procedure calls,
etc.), communication protocol design for long distance and
local computer networks, as well as for the communication
between several VLSI components within a single computer
system. As in the case of nondistributed software systems, the
notion of step-wise refinement seems to be an important design
tool for distributed systems. Some difficulty is encountered,
however, if some sort of indivisible interaction primitives are
assumed.
The specification method discussed in this paper indicates

how the step-wise refinement of distributed systems may be
described with the concept of process substructure and the
concept of interactions that may be refined. The method is
based on the concepts "process" and "port." A process is an
entity that performs some data processing and is assumed to
be the unit of specification. A port is a part of a process and
serves for the communication of that process with its envi-
ronment, i.e., other processes in the system. A process may
possess several ports for communication with different parts
of its environment. The specification of the properties of a
process or port is given at an abstract level, in the sense that
only the externally visible behavior of a process or port is de-
scribed (i.e., its communication behavior), but not the way this
behavior is realized by an internal structure of the process or
port. Process and port implementations are specified separately
as the elements for one step in the step-wise refinement of a
system description.
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The specification of a port consists of two parts: a) an enu-
meration of the types of interactions that may occur at the port,
and b) additional properties of the port which may in particular
restrict the order and parameter values of the executed inter-
actions.
The specification of a process also consists of two parts: a)

the specification of the communication properties of its ports
(as described above), and b) additional properties of the pro-
cess which may in particular relate the interactions taking
place at the different ports of the process. An implementation
of a process is given by defining an internal structure of the
process in terms of subprocesses and interconnections between
their ports.

This paper discusses the different aspects of this speciflca-
tion method. In Section II, an introductory example is given
which illustrates the method and the concepts used. In Section
III, the elements of the specification method and its underlying
model are defined in more detail. The approach of step-wise
refinement, in particular the refinement of port specifications,
is discussed in detail in Section IV. Section V contains an
overall discussion of the problems of design verification which
allows to check the consistency between a process implemen-
tation with its specification.

II. AN EXAMPLE
The following example is given as an illustration for the

specification method discussed in this paper. It introduces the
main specification elements, which are processes and ports.
These elements are more formally defined in Section III. The
specification method favors a top-down design where first the
specification of a process is given and then its refinement
(implementation) in terms of communicating subprocesses is
considered. Because of such possible refinements, a process
is not necessarily sequential, but may involve several parallel
activities.
A. The Specification ofa Multiserver

Our example consists of a finite number of user processes
which use the service provided by another process which is of
type multiserver. Two operations are provided for interaction
with the multiserver process. They are called request and re-
sponse. A request contains a question which is answered by
a response, For each user, a request interaction initiated by
the user must always precede a response interaction.
The concept of a port is introduced to structure a process and

its possibilities for interaction with the environment. Inde-
pendently of its realization, a port is defined by a set of inter-
actions and the constraints on their execution. For the example
considered here we have the following port type definition.

port type service-access is

operation request (X: question);
response (Y: answer);

constraint

(/request)i - (/response)i (/request)j+i
end service-access.
Here it is assumed that data type definitions are given for

the parameters used in the port definition. They could, for
example, be of the form

ty question is array [1 . . 100] of char;
answer is array [1 . . 200] gf char.

The notation (p/a)i --+ (q/b)j specifies that the ith interaction
of type a at the port p must precede the jth interaction of type
b at the port q. For the specification of a port constraint, as in
the definition above, the name of the port is implicitly given;
therefore we simply write (/a)i for the ith interaction at the
port. We note that this sequence-oriented notation is just taken
as an example. The concepts discussed in this paper could as
well be used when the constraints are specified by methods
oriented towards programming languages or state machines
[12].

In the following is considered a multiserver process which
has a number of ports (one for each user process) through
which the user processes obtain access to the question an-
swering service. This service is realized by the interactions of
type request and response, as explained above. Without going
into more detail, we assume that the answer to a question is a
function of that question, and that the interactions over the
different ports do not interfere with one another. More for-
mally, these properties may be specified as follows:
process type multiserver is

users : array [user-id-type] !af service-access;
constraint

for u in user-id-type holds

(user[u]/response)i. Y =

FUNCTION-OF ((users[u]/request)i . X) end multiserver.

Here the notation (p/a)i . X denotes the value of the parameter
X of the ith interaction of type a at the port p. We assume that
the index data type of the array is defined as

t user-id-type is 1 . . n;

and the function FUNCTION-OF defines the answering ser-
vice of the multiserver. This function is not specified here. The
given constraint defines the noninterference between the dif-
ferent ports.
The nature of the specification of a process type is similar

to the nature of a port type specification. [In the following we
often simply say process (or port) for a process (or port) type.]
In the case of a process specification, the set of declared ports
of the process are associated with a constraint which must be
satisfied by the executions of the interactions at the different
ports. In addition, it is understood that the port constraints of
the different ports are satisfied as well. For each port users[u],
for example, the ith interaction request must precede the ith
interaction response. Each process cooperating with the
multiserver uses a port of type service-access. To show the
flexibility of the specification method, we continue the ex-
planation of the example by distinguishing two types of user
processes, in particular, we assume that a simple-user process
will only submit- a subset of the possible questions. The user
processes may be specified as follows:

121



IEEE TRANSACTIONS ON COMPUTERS, VOL. C-32, NO. 2, FEBRUARY 1983

process type user is

service: service-access;

end user;

process type simple-user is

service: service-access;
constraint (service/request)i . X in simple-question

end simple-user.

As before, the specification of a user process describes the
interactions of a process with its environment. The specification
of a simple-user includes an additional constraint for the pa-
rameter value of the request operation. Such restrictions are
considered in [9]. In simpler cases, it could be specified by a
data type definition of the form

t simple-question is question range...
which is analogous to the definition of subtypes in ADA
[16].

For the specification of a process type, only the interactions
of that process are considered, but not the internal structure
of the specified process. In the example above, nothing is said
about the internal operations of the user processes. It is as-
sumed here that they are really the sink for the information
provided by the multiserver process. In reality, a user process
may consist of a terminal handling process, a terminal and an
operator that consults the database of the multiserver for some
clients requesting information. The interactions between the
operator and the clients is not defined in the specifications
given in our example.
The interconnection of processes of type user, simple-user

and multiserver, as shown in Fig. 1, is called a system of co-
operating processes. In general, such a system may again be
considered a process at a higher level of abstraction. Some
language elements are needed for specifying the intercon-
nection structure of the processes. The system shown in Fig.
I may be specified as follows:

Fig. 1. A system of cooperating processes.

system is

S : multiserver;
SU: array [1 . . nSU] !/j simple-user;
U: array [(nSU + 1) . . n] fuser;

connectiono

for u in 1 . . nSU: SU[u] . service = S . users[u];
for u in (nSU + 1). .n: U[u] . service = S. users[u]

end system.
An interconnection between processes is established by con-
necting their ports. (It is necessary, however, for the ports to
be of the same type.) An interaction occurs when the two
processes invoke the same type of interaction on the inter-
connected ports. A rendezvous kind of interaction mechanism
is assumed, as discussed in more detail in Section Ill-A.
B. A Refinement of the Multiserver Process

It is important for a specification method to support the
step-wise refinement of specifications. In the case of the
specification method discussed in this paper, a decomposition
method is used similar to the example shown in Fig. 1.

Continuing our example, we assume that a multiserver
process consists of two subprocesses, as shown in Fig. 2: a
server process that provides the answering service over one
port, and a multiplexer process which provides the appropriate
multiplexing between the different users.
The specification of each of these subprocesses may be given

in the following form:
process type server is

user : service-access;

constraint

(user/response)i. Y = FUNCTION-OF ((user/request) . X)

end server;

process type multiplexer is

singles : array [user-id-type] of service-access;

multiplexed service-access;

constraint

for s in user-id-type holds V i 3 i'

((singles[s] /request)i = (multiplexed/request)i'
and (singles[s] /response)i = (multiplexed/response), ')

end multiplexer.

user -.u_er service-access
.~~~~~~~~~

.u?tiserver

sinple-uuser. service-access.SU[ll
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m4u tiserver

- <multipe serve

Fig. 2. The internal structure of a multiserver process.

In the case of the server, the constraint specifies the corre-

spondence between the ith question and the answer. In the case

of the multiplexer, the constraint specifies that all requests
from a given user s are forwarded to the service process and
that the obtained'answer is returned to the user, without in-
terference with the activity of the other users.

Given the above specification of the subprocesses, we may
now give a refined specification of the multiserver process as

shown in Fig. 2. The specification that follows defines instances
of the service and multiplexer process types, and defines the
interconnection between these subprocess instances:

process implementation imps for multiserver is

M: multiplexer;

S: server;

internal connection M. multiplexed = S . user;

external connection users is M. singles

end imps.

'Here the abbreviation users is M. singles stands forfor all

u in user-id-type: users[u] is M. singles[u].
While a process type specification has the major parts "port

declarations" and "constraints," a specification of a process

implementation, which is a refinement of a given process type
specification, has the major parts "declarations of the sub-
processes" and the "interconnection of their ports." As the
example shows, two kinds of interconnections are distin-
guished: The external connections specify how the ports of the
process type specification are realized by the implementation,
while the internal connections define connections between the
ports of the subprocesses that are not visible at the higher level
of abstraction (as represented by the process type specifica-
tion).

It is clearly possible to define several different implemen-
tations for a given process type. They would differ from one

another by the types of the subprocesses used and by the in-
terconnection structure between the subprocesses. The same

kind of external connections must be defined by all imple-
mentations, since they connect the external ports which are

defined, together with their types, in the process type specifi-
cation. This approach has certain similarities with the step-wise
refinement of abstract data type specifications [24], [14], [34].
As in the case of such specifications, we have to address the
problem of asserting the coherence between a process type
specification and its implementation. We will come back to
these questions in Sections IV and V. We note that the example
above and most related work [10], [15], [26], [27], [18] as-

sume that the same type of ports are used in the process type
specification and its implementation. In Section IV, we con-

sider the refinements of ports which eliminates this restriction
of the specification method.

III. THE CONCEPTS USED FOR SPECIFICATION

In this section we examine in more detail the concepts used
for specification. This amounts to defining an underlying
model for the specification method. In Section III-A, we first
examine the concepts of processes and their interactions; then
in Section III-B, we consider the concept of a port and the in-
terconnection mechanism associated with it. In Section III-C,
we introduce the concept of a role which is taken by a process
in respect to a given port. Section III-D discusses the specifi-
cation method based on processes, ports and their intercon-
nection.

A. Processes and their Interactions

For the specification of a process type, the point of view of
an external observer is considered. Only the externally visible
behavior should be specified; a process is therefore defined by
its possibilities of communicating with its environment, i.e.,
interacting with the other processes in the system.
An interaction between two processes occurs when both

processes invoke the same type of interaction on ports that are
connected. It is assumed that a rendezvous kind of interaction
mechanism [ 15], [26] is used. The first process ready to exe-
cute the interaction must wait for the second to be ready. (The
assumption of such an interaction mechanism simplifies the
model without restricting its descriptive power; for example,
a message queuing mechanism may be specified by the intro-
duction of a buffering process.)

In this paper we do not make the assumption that interac-
tions are necessarily atomic. In fact, we assume, as discussed
in [22] that the execution of an interaction consumes some
time. This assumption seems more realistic than an "event
model" [19] where it is assumed, for specification purposes,
that different interactions exclude one another in time. We
note, however, that a transition between the two models may
be defined: it is sufficient to define for each nonatomic inter-
action p two atomic events begin(p) and end(p). By specifying
a total order over the events begin(p1) and end(p,), it is possible
to define an arbitrary ordering of the interactions pi, including
the possibility of simultaneity [13], [32], [1]..

Since the specification of a process type should only describe
its externally visible behavior, the specification should define
the possible interaction types and the order in which they may
be executed. As shown by the example in Section lI-A, the
interaction types are defined by a name and the type of the
exchanged parameters. (The reason for associating the inter-
actions with ports will be discussed in Section III-B.) In gen-
eral, the constraint part of the specification of a process type
defines restrictions on the possible interactions and the possible
execution order. The specification of such restrictions may take
different forms, such as assertions on parameter values, ex-
pressions defining full or partial orders of execution sequences.
Different specification techniques may be considered for this
purpose. Whichever technique is chosen, it must be suitable
for the two kinds of restrictions mentioned above. In the case
that a total order of the interactions is specified, the specifi-
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Fig. 3. A process and its environment. (a) Abstract view of the environment.
(b) and (c) Different implementations of the same environment specifica-
tion.

cation of a process type is analogous to the specification of a
module or abstract data type as discussed in [30] and [41.

B. Ports and their Connections

'The concept of a port [3], [331 allows to give some structure
to the interactions of a process with its environment. The ports
defined for a given process type may be considered as an ab-
straction of the environment of that process. Let us consider
the example of a process P with three ports pI, P2 and p3, as

shown in Fig. 3.
The ports Pi represent an abstract specification of the en-

vironment of P, as it is seen by the process. The environment
may be implemented in different ways, as shown in the figure.
The specification of P, however, is the same for all these en-

vironments.
A port binds together a number of different interaction types

and defines some constraints on their executions (see example
of Section 1I-A). Similarly, a process, if it has several ports,
defines some additional constraints that must be satisfied for
the- eXecutions of interactions at the different process ports.
Each interaction of the process is associated with a particular
port.

For the specification of distributed systems,-the notion of
a port may also be used for distinguishing different points (in
the distribution space) of the distributed system. The speciti-
cation of a communication service, for example, is usually
given in terms of a (distributed) process that provides a certain
number of ports (called "access points") through which the
user processes may access the communication service [6].

Apart from the above considerations, the main reason for
the introduction of the port concept is its use in the refinement
process. As already discussed in Section lI-B, the concept of
ports is essential for the specification of process implementa-
tions in terms of subprocesses. The interconnection -of these
subprocesses is in fact defined by establishing an identity

relation between the ports of different subprocesses. The
connected ports must be of the same type (i.e., allow the same
type of interactions with the same port constraints). It is pos-
sible to define more complex connection patterns where the
ports of more than two processes are identified by one con-
nection [30]. An example of such a connection can be found
in Section IV-C.

C. The Role Concept
The concept of a port as explained above may appear in-

complete. In fact, for an interaction that involves the transfer
of parameter values from one process to another, it may be
necessary for a complete specification to indicate which process
determines the value. (We note that the interaction is executed
when both processes invoke the interaction as a rendezvous;
therefore both processes may, in principle, participate in the
determination of the parameter values.) The role concept is
introduced to make this aspect more precise: In the definition
of an interaction, each parameter is associated with the name
of a role, and only the process that has this role attribute as-
sociated with the port will have to provide the parameter value
for the interaction in question; the other process is implicitly
the receiver of the parameter value. When for the purpose of
implementation two ports of different processes are connected,
it is clearly necessary that the two connected processes have
complementary roles for the connected ports. We note that this
concept has certain similarities with the definition of protection
attributes [17] which apply to operation names, instead of
parameters as in our case.
To further explain the concept, we consider the following

example:
port type p is

role sidel, side2;

operation opI (X y sidel : integer);

op2 (Y y side2: character);

op3 (T y side : integer, U by side2: Boolean);
constraint ....

end p.

We suppose that two processes Q I and Q2 have declared the
ports p1 and p2 of type p with the roles side 1 and side2, re-
spectively, and suppose that the two ports are connected. In
-the case of-a joint execution of the op 1 interaction, the process
Q ] will provide the integer parameter value and the process
Q2 will receive it; in the case of op2 the actions ofQ I and Q2
are interchanged. In the case of op3, QI determines the integer
value of the parameter T, while Q2 determines the boolean
value of U.

It is important to note that the roles played by the processes
in respect to interaction parameters is independent of which
process initiates the interaction. For example, the execution
of op 1 could be initiated by QI or Q2. The distinction of an
initiating process is usually made in a more detailed specifi-
cation or an implementation of a system. For example, when
guarded commands [ 1 ] are used for the description of the
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processes, the initiating process is usually the one for which
the interaction is not part of a guard. (The initiation is usually
in a deterministic context.) We note that in CSP [15], in
contrast to ADA [ 16], the distinction between initiation and
parameter determination does not exist: only the reception of
interaction parameters may appear in guards. Several pro-
posals for eliminating this restriction have been made [5], [33],
and [7].

D. Specification ofPorts and Processes

The example of Section II showed the similarity of the
specifications for ports and processes: the specification of a port
type consists of a list of interactions (possibly with roles) and
constraints on their execution; the specificatin of a process type
consists of a list of ports and constraints on the execution of the
interactions that are defined for those ports. The latter con-
straints are sometimes called "global constraints" since they
involve the interactions on several ports. In addition, the pro-
cess satisfies for each of its ports, the constraints specified for
the corresponding port type. These constraints are sometimes
called "local constraints" since they are local to one port. The
syntax used in this paper for the specification of process types
adopts a kind of "ADA style." The syntax for a process type
specification is as follows:

process type (name) is

(list of port declarations);

constraint

(port constraints on execution order)

end (name).

For the description of an implementation of a process type, as
a step in the refinement process, the following syntax is
used:

process inplementation (impl-name) for (name) is

(subprocess declarations);

internal connection (interconnections of subprocess ports);

external connection (interconnections to the external ports)

end (impl-name).

In the remaining part of this section we give another ex-
ample which illustrates the specification of processes with roles.
The example is a process that provides some communication,
service with queuing between two ports p1 and p2. User pro-
cesses that are connected to these ports may exchange mes-
sages in both directions through the service. A specification
of the port and process type is given in the following.

port type sr-point is

role caller, callee;

operation send (X by caller: message);

receive (X by callee : message);

constraint

(/send)i --* (/receive)j or (/receive)j --* (/send)i
end sr-point;

process type service is

p1 (callee), p2(callee): sr-point;

constraint (p1/send)i . X = (p2/receive)i . X

and (p1 /receive)j . X = (p2/send)j . X

end service.

The- constraints of the service specifies that the received
messages are those that were sent, and that the order of re-
ception is the same as the order of sending; the communication
service is reliable, no messages are lost nor damaged. In the
case that additional coordination is desired (such as rendez-
vous, limited buffering, etc.), supplementary constraints must
be given. For instance, the additional constraints:

(p2/receive)i -- (pl/send)i+,,
and (p 1/receive)j --+ (p2/send)j+m
would specify a maximal buffering of n in one direction, and
m in the other.
We note that the declaration of the ports in the definition

of the service process type includes a definition of the role of
the service process at the ports. The specification for the port
p1 implies that the connected user process provides the mes-
sage parameter for the send interaction, and the service process
for the receive interaction.

IV. STEP-WISE REFINEMENT OF A SPECIFICATION

The proposed specification method allows a step-wise re-
finement of specifications. The example of Section II shows
on the one side, how the specification of the external behavior
of a process or port can be given independently of an imple-
mentation, and on the other side, how a specification can be
refined by giving a particular implementation. Such an im-
plementation is given by defining a decomposition of the pro-
cess into several subprocesses and a connection pattern between
the ports of the subprocesses. This kind of step-wise refinement
is considered in previous work [10], [27], [18]. It implies that
the interaction primitives that are exchanged between the
process and its environment are the same for the more abstract
specification as for the more detailed refinement. We think
that it is important to allow for a step-wise refinement of the
interaction primitives as well. Therefore we discuss in Section
IV-B an approach to the step-wise refinement of port specifi-
cations. The use of this approach is illustrated in Section IV-C
by the example of an arbiter [31], [8], and the implications for
the verification of the refinement step are discussed in Section
V.
We note that the approach to refinement discussed in this

paper can be used in as many steps of refinement as desired.
As shown by the arbiter example of Section- IV-C, this may
lead to a level of detail which allows direct realization in
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hardware. If software implementation is sought, it seems
convenient to convert at a certain level of detail to a specifi-
cation by a programming language, which is used to implement-
the subprocesses obtained in the last step of the refinement.
An example for this can be found in [28].

A. The Internal Structure ofProcesses
We give in this subsection some comments on the internal

structure of a process implementation. First, there are two
kinds of connections: internal and external ones (see example
in Section Il-B). The former interconnect ports of the sub-
processes and are purely a matter of implementation choice.
The latter specify which ports of the implementing subpro-
cesses represent the (external) ports that are defined in the
higher-level specification of the process. Therefore the same
kinds of external connections will be found in each imple-
mentation of the process. Second, it is important to note that
during the phase of the compilation of a process implementa-
tion description, it is possible to perform certain consistency
checks. In particular, the port types and roles can be checked
for each connection, as discussed in the Sections 11-B and
III-C. Another check would be to detect any port that has not
been used for any connection.

B. Port Refinements
A port of a process represents an abstract interface of the

process which defines the possible interactions and the con-
straints for their execution, as explained in Section III-B. A
refinement of such a port, which must be defined for an im-
plementation, brings up the following two questions.

1) Is a given interaction of the port, which is a primitive at
the abstract level of the specification, also a primitive at the
more detailed level of the implementation?

2 Is a given port composed of several subports? (In this case
a nonprimitive interaction may involve several interactions at
several different subports.)
To illustrate the first question, we consider the port speci-

fication that follows.

port type resource is

role user, server;

operation use-resource (X by user: question,

Y by server: answer);

constraint (/use-resource)1 --i- (/user-resource)j+1
end resource.

This port defines the interaction use-resource which represents
a procedural access by a user process to a process playing the
server role. The user process provides the question value of the
fi'rst parameter and receives from the server the answer value
of the second parameter. Comparing this port specification
with the service-access port defined in Section II-B, we see that
the latter may be considered an implementation of the former,
where the use-resource interaction is implemented by the se-
quential composition of the interactions request and response.

(The syntax for the specification of such a port implementation
is demonstrated by the next example.)
To illustrate the second question (implementation with

subports), and to give an example of the syntax for port im-
plementations, we consider the port specification below.

port type reservation is

role requesting, responding;

operation reserve;

release;

constraint (/reserve)i -- (/reserve)j+1
and (/release)i --+ (/release)j+i
and (/reserve)i ---k (/release)i
and (/release)i --- (/reserve)j+1

(1)

(2)
(3)
(4)

end reservation.

The port type reservation offers two types of interactions,
reserve and release. The execution constraints are expressed
using two temporal relations "---" (precedes) and "--+" (may
influence) [221. (The expression "A -- B" means that the
execution of the interaction A ends before the execution of the
interaction B begins; and "A -- B" means that A has begun
when B ends). These temporal relations are used in the speci-
fication of the constraints to indicate that the execution of the
interactions may extend over a certain time period, and their
execution may possibly overlap. In fact, the (i + 1 )th reserve
interaction may begin before the ith release interaction ends,
but it may not end before the latter [see line (4)]. Lines (1)-(3)
define the usual sequential ordering of interactions.

Let us now consider the port specification given below,
which reflects the properties of a hardware circuit (i.e., a single
wire) in a digital system.

port type circuit is

role active, passive;

Operation up;

down;

constraint (/up)i --- (/down)i --+ (/up)i+l
end circuit;

The two interactions of the circuit are up and down (i.e., "set"
and "reset" or set to 1 and set to 0) with the constraint that
their execution alternates.

In the following we give an implementation of the reserva-
tion port type by two subports R and A of type circuit. The
implementation is based on the so called "four-cycle signaling
scheme" which is illustrated in Fig. 4.
The subport R carries the reserve and release requests

(implemented by the up and down interactions, respectively)
from the process with the requesting role to the process with
the responding role, while A returns the acknowledgments of
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R^\ / - |transfer-dece-1-I 1process

UP~~~~~I
A f transfer[l]

user-1Isrl
Fig. 4. Four-cycle signaling scheme. rocess resource

arbiter
user-2 user[2]the responding process. The order in which these signals may process ser[2]

be invoked is defined by the four-cycle signaling scheme, as trans r[2]
shown in Fig. 4. (We note that a temporal logic description of
this scheme may be found in [8].) A formal notation for the - transfer-device-2- rocess
description of this port implementation is given below. It also
demonstrates a possible syntax for such specifications. Fig. 5. Structure of the system

port implementation four-cycle for reservation is

R (active=requesting), A (active=responding) circuit;

constraint

(R/up) -- (A/up)i-- (R/down)i ---) (A/down)i-- (R/up)i+l
mapping reserve is R . up --* A up;

mapping release is R . down --* A . down

end four-cycle.

The constraint part of the specification defines the four-cycle
signaling scheme, and a correspondence part which defines the
implementation of the interactions by giving for each inter-
action of the reservation port a mapping into a sequence of
interactions of the subports R and A. The declaration of the
subports also defines the relation between the roles of the
subports and the roles of the port. We note that this relation
is not the same for the two subports, since R carries informa-
tion from the requesting to the responding process (the active
ole is requesting), while A carries information in the opposite
direction (the active role is responding). We note that the
mapping definition which defines the correspondence between
the port and subport interactions is particularly simple in this
example. In general, it may involve sets of subport interaction
sequences, and/or mapping of parameter values similar to the
mappings found in the stepwise refinement of abstract data-
types [34], [14].
The above example demonstrates the refinement of a port

into two subports of simpler structure. It is an example of a

step-wise refinement process that leads from a more abstract
port specification to a more detailed specification that shows
how the abstract port may be implemented. Such port re-

finements are important for the design of communicating
systems for the following reasons.

1) The communication between the different parts of a

system is usually first described by defining an "'abstract in-
terface" which defines the logical interactions that may take
place [6]. Subsequently, during the system implementation,
this abstract interface is refined by giving an implementation
in the form of software procedure calls, interprocess commu-
nication primitives, or hardware constructs.

2) The constraint part of the port type, or port implemen-
tation specification gives a complete view of the constraints

that are imposed on the communication between two processes

at the given level of detail. We believe that a separate specifi-
cation of these constraints leads to a clearer structure of the
system specification.

3) We note that the port refinement may lead to a specifi-
cation level that is directly implementable in hardware, as the
above example demonstrates. (The reservation port is imple-
mented by two hardware circuits.)
Once an implementation of a port is-described, the question

rises whether the implementation is correct. This is discussed
in Section V-C. Before, however, we-give a more complete
example for the refinement of a process specification, using
the port implementation given above.

C. An Example ofRefinement

The following example serves two purposes: a) to illustrate
the use of port refinements as discussed in Section IV-B, and
b) to serve as an example for the discussion of verification in
Section V.

1) The abstract specification: We consider the example of
an arbiter which assures mutual exclusion to the access of a

shared resource between two user processes. As in [31], [8],
from where this example is taken, the arbiter is associated with
two transfer-device-i (i = 1, 2) processes which transfer the
operational parameters from the two respective users to the
resource. The communication between the arbiter and the
other processes in the system is realized through ports of type
reservation using the interactions reserve and release.
As shown in Fig. 5, the arbiter communicates with the other

processes through the five ports user[ 1], user [2], transfer[ 1],
transfer [2] and resource. In respect to the first two ports, it

plays the responding role, while it plays the requesting role in
respect to the others. When a user process executes a reserve

i with an arbiter.
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transfer 1I -

SR '

resource

SA I

TR2 TA2
transfer [2 1

Fig. 6. Internal structure of the arbiter.

interaction the arbiter establishes a rendezvous between the
user, the resource, and the corresponding transfer process, such
that the latter may transfer the operational parameters from
the user to the resource (as indicated in the figure by the
pointed lines). A similar rendezvous occurs during a re-
lease.

This informal description may be defined more precisely
with our specification language as follows:
process type arbiter is

user (responding),

transfer (requesting): array [1 . . 2] o[ reservation;

resource (requesting): reservation;

constraint

for i in I .. 2 holds

((user[i]/reservej ** (transfer[i]/reserve)j and (1)

(user[i]/reserve)1 ** (resource/reserve)j and (2)

(transfer[i]/reserve)j ** (resource/reserve)j and (3)
... similarly for release ...

foriin .. 2 holds

(i * j implies not

((user[i]/reserve)k --+ (userU]/release)k' (4)
and (userlU]/reserve)k' --- (user[i]/release)k)) (5)

end arbiter.

This specification uses the abbreviation "A <- B" which is
equivalent to "A --- B and B --+ A" which means that A and
B overlap in time. Lines (4) and (5) of the specification define
the mutual exclusion property, while lines (1)-(3) define the
three-way rendezvous during the reserve interaction of a
user.

2) Refined Specification-Implementation: The imple-
mentation of the arbiter process considered here uses as sub-
processes elementary hardware components. The components
used are the combinational circuits AND and OR, the more
complex Muller C-elements (for which the output remains
constant until both inputs assume the opposite value), and a
primitive mutual exclusion element ME. The interested reader
may find more details in [31] and [8]. Here we concentrate our
discussion on the subprocess and connection structure of the
implementation, and the refinement of the reservation ports.
The structure of the implementation is shown in Fig. 6.

The implementation uses two ports of type circuit to realize
a reservation port of the abstract specification. For example,
UA 1 and UR 1 implement the reservation port user [1 ]. The
correspondence between the pairs of circuits shown in Fig. 6,
and the abstract reservation ports is defined by thefour-cycles
implementation discussed in Section IV-B. We note that the
circuits URi, TRi and SR carry requests (for the TRi and SR
the arbiter plays the active role, whereas for the URi, it is the
user), while the other circuits UAi, TAi and SA carry the
corresponding acknowledgments.
More formally, the implementation may be defined as fol-

lows:

process implementation arb-impl or arbiter is

OR: array [1 . . 2]!af OR-gate; These elementary

AND: array [1 . . 2] gf AND-gate; processes have ports

Ca, Cb : array [1 . . 2] Xj C-element; named "input" and

ME: ME-element; "output" of type

OR3: OR-gate; circuit.
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internal connection

for i in . . 2begin

MEO[i] is ME . output[i] = AND[i] input[1];

MEI[i] is ME . input[i] = OR[i] . output;

SR[i] is Cb[i] . output = OR3 . input[i]

end;

external connection

fori in I . _.2

user[i] using four-cycle is

(OR [i]. input[2] = AND [i] . input[2] = Cb[i] input[2],

Ca [i] . output = OR [i] . input [1]);

transfer[i] using four-cycle is

(Cb[i] . input[1], AND[i] . output = Ca[i] . input[1]);

resource using four-cycIe is

(Ca[l] . input[2] = Ca[2] . input[2], OR3 . output)

end

end arb-impl.

For clarity purposes, the internal connections are given a name

which is also used in Fig. 6. As in the example of Section II-B,
the external connections define the ports of the abstract process
specification. In this case, however, these ports are imple-
mented by a refinement. Therefore the specification of the
external connections define the correspondence between the
abstract ports and the ports of the implementation, as well as

the implementation model used, i.e., the port implementation
four-cycle.

As explained in Section Ill-A, a connection between two
ports imposes a synchronized execution of the interactions by
the two connected processes. The above example shows how
such a synchronization can be extended to more than two ports.
For instance, the three-port connection of line (1) between the
ports OR[1] . input[2], AND[1] . input[2], and Cb[l] .

input [2] imposes a synchrony between these three circuits, and
defines in addition the correspondence with the subport R of
thefour-cycle implementation of the abstract reservation port
user[1].

V. VERIFICATION OF SPECIFICATION CONSISTENCY

We discuss in this section the steps that are required to verify
that the definition of a process implementation is consistent
with the more abstract specification of the process. We first
discuss in Section V-B the case of a process implementation
with an internal structure of subprocesses, but no port re-

finement. Port refinements are considered separately in Section
V-C. In the first subsection some comments on the underlying
semantic model are made. No formal definition of the, se-

mantics of process specifications is given. Such a definition
would depend on the scope and generality of the language

adopted for the specification of process and port constraints.
These considerations are beyond the scope of this paper. We
think, however, that the following considerations are valid for
most semantic models that could be adopted.

A. Comments on the Semantic Model

The following definitions and comments are made in order
to clarify the meaning of the specifications of processes and
their implementations, and to define the framework in which
a semantic model for processes and their interactions can be
given which would be the formal basis for proofs of consistency
between specifications at different levels of detail.

1) Interaction type: The type of interaction defines the
possible parameter values that are exchanged over a connection
during the occurrence of an interaction of that type.

2) Interaction occurrence: An interaction occurrence is
defined by the following informations.

* The connection (within the system) where the inter-
action occurs; this may be an external port of the process
considered or an internal connection between the ports of
(several) subprocesses of an implementation.

. The time period during which the interaction is exe-

cuted, (beginning and ending point in real time).
The interaction value that occurs, i.e., the parameter

values exchanged. (We note that these values must adhere to
the corresponding interaction type.)

3) Execution histories: An execution history is a set of in-
teraction occurrences. (We note that this definition excludes
the possibility of including in the same history two identical
interaction occurrences, i.e., identical interactions (with same
parameter values) during the same time period and on the
same connection.) In the case of a model with atomic inter-

(1)
(2)

(3)

(4)
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actions, the interaction occurrences of an execution history
may be put into a (in part arbitrary [21]) order. One obtains
a semantic model based on execution sequences.

4) Safeness properties: Safeness properties of a process
specification or implementation are usually stated by defining
conditions that are satisfied by all possible execution histories
in which the process can be involved.

5) Liveness properties: For the consideration of liveness
properties of a process specification or implementations, it
seems natural to distinguish between the process that initiates
an interaction occurrence over a given connection and its
counterpart. This distinction is related to guarded commands
[1 1], [15] that may be part of a process implementation and
determine a choice among several possibilities for future be-
havior. Liveness properties may also be described by the con-
cept of a process state which defines the possible future exe-
cution histories of the process [26], [29].

6) Sometimes it is necessary to make certain assumptions
about the safeness and liveness properties of the environment
in which the process evolves [27], [8].

B. Consistency ofSubprocess Structures

We consider in this subsection a process specification and
an implementation of that specification in terms of several
subprocesses without port refinements, i.e., each (external)
port of the process is a port of one of the subprocesses.
A process type specification defines the following properties

sponding to the connection structure of the implementation
before the property 3) of the subprocess can be applied to the
execution history of the implementation.)
To show the consistency of a process implementation with

the speciflcation of the process, we have to prove that properties
1)-3) of the process specification can be implied from the
subprocess constraints 4) of the implementation. Since there
are no port refinements, and the type compatibility of con-
nected ports is compile-time checked, the properties 1) and 2)
follow directly from the corresponding properties of the sub-
processes. The property 3) is in general more difficult to
prove.

For the example of the multiserver process given in Section
IT-A, the consistency proof is outlined as follows. The global
constraint 3) of the multiserver specification (to be proven)
has the form:

for each (external) connection users[u] holds

'i (users[u]/response)j. Y=
FUNCTION OF ((users[u]/request)j.X).

This property can be implied from the global constraints of
the subprocesses server and multiplexer implementing the
multiserver (see Section II-B); these constraints are rewritten
as follows with the appropriate renaming of the port/con-
nection names used in the implementation:

(S. user/response)j. Y = FUNCTION OF ((S . user/request)1. X)
andfor each connection users[u] holds

Vi 3i' ((users[u]/request)i = (S . user/request)i1
and (users[u]/response)i = (S. user/response)1)

of the execution histories in which a process of that type can
be involved. Such a process may be part of a large system.

1) Interaction type constraints: The values of each inter-
action occurrence in a history correspond to the interaction
type associated with the external connection where the inter-
action occurs.

2) Port constraints (onefor each port ofthe process): The
subhistory of those interaction occurrences (of a history) that
occur at a given external connection of the process satisfies the
constraints explicitly specified in the port type definition
corresponding to that connection. (Such subhistories are
special cases of "projections" as considered in [25], [20].)

3) Global constraint: A history satisfies the constraints
explicitly defined in the process speciflcation.
The definition of a process implementation, similarly,

implies the following properties of the execution histories
possible for this implementation:

4) Subprocess constraints (onefor each subprocess ofthe
implementation): The subhistory of those interaction occur-
rences of a history that occur over (external and/or internal)
connections to which the subprocess is connected satisfies the
properties 1)-3) of that process. (We note that a suitable
port/connection name substitution must be made corre-

This example is particularly simple. In more typical cases,
the proof involves induction and invariant properties that hold
throughout the execution of the system. The proofs of the
input/output properties of a procedure, based on its imple-
mentation in an algorithmic language, is the corresponding
consistency problem for sequential programs. Related work
can be found in [2], [27], [10]. A constructive approach for
deriving the specification of a subprocess from the specification
of the process and the other subprocesses is explored- in
[25].

C. Consistency and Port Refinements
We consider in this subsection in addition to the problem

of Section V-B that the process implementation uses one or
several port implementations, as explained in Section IV-B.

1) Consistency of port implementations: A port type
specification defines the following properties of the port
histories of the interactions occurring over the port (which are
subhistories of global system execution histories with appro-
priate renaming).

1') Operation type constraint: The values of each interac-
tion occurrence in a history correspond to the interaction type
specified.

130



BOCHMANN AND RAYNAL: STRUCTURED SPECIFICATION OF COMMUNICATING SYSTEMS

2') Port constraint: A history satisfies the explicitly spec-
ified constraints.
A port implementation defines, similarly as a process type

specification, three properties 1')-3') for a port implementation
history (i.e., an execution history of the interactions occurring
over the subports of the implementation) where the port con-
straints [property 2')] are those of the declared subports of the
implementation, and the global constraint [property 3')] is the
constraint explicitly defined for the implementation.

In addition, a port implementation defines a correspondence
which is, in the more general case, a mapping (possibly one to
many) from occurrences of port interactions to (finite) port
implementation subhistories. We assume that the inverse of
this mapping is not ambiguous, by which we mean that for each
port implementation subhistory, it can be determined whether
it is the implementation (i.e., image of the correspondence
mapping) of a port interaction occurrence or not; and that it
is the implementation of at most one interaction occur-
rence.

The correspondence mapping can be naturally extended to
a mapping from port histories (sets of port interaction occur-
rences) to port implementation subhistories, where the re-
sulting history is the set union of the subhistories corresponding
to-the different operation occurrence in the port history.
A port implementation should satisfy the following consis-

tency conditions:
i) Inversefunctionality of correspondence: The extended

correspondence mapping should have an inverse function over
the set of those implementation histories that satisfy the con-
ditions 1')-3') of the implementation.

ii) Realization ofport constraints: The image, under the
inverse correspondence mapping, of an implementation history
satisfying I')-3') should satisfy the port constraints (property
2') of the port type specification.
As an example, we consider thefour-cycle implementation

of the reservation port type discussed in Section IV-B, the
global port implementation constraint (property 3):

(R/up)i ---) O/i -0- (R/down)i--
(A/down)i ---i (R/up)i+l

and the given correspondence rule imply that the ith reser-
vation interaction occurrence of a port history corresponds to
the ith sequence of (Rlup) --) (A/up) in the corresponding
implementation history; and the ith release to the ith sequence
of (Rldown) --) (A/down). Therefore the inverse functionality
of the correspondence mapping is guaranteed. This also shows
that

(/reserve)i--* (/releas,e)i
holds; and applying the global constraint one more for i + 1
one obtains

(/release),-- (/reserve)i+l-- (/release)i+l
which implies the constraints of the port type reservation which
is implemented.

2) Consistency of Process Implementations: We now
consider the consistency conditions that should be satisfied by
a process implementation using port implementations. As in

the case without port refinements discussed in Section V-B,
the general consistency condition is that the properties 1)-3)
of the process specification can be implied from the subprocess
constraints (property 4) of the implementation. Considering
the structure of the implementation,- this consistency condition
can be implied from the following conditions:

a) For each port not using any refinement: properties 1')
and 2') (see Section V-C-1) are satisfied.

b) For each port using an implementation:
b-1) For each subport of the implementation: properties

1') and 2') (see Section V-C-1) are satisfied.
b-2) The global port implementation constraint (property

3') can be implied from the subprocess constraints.
c) The global process constraint (property 3, see Section

V-B) can be shown to be satisfied by all (abstracted) execution
histories obtained by the application of the inverse corre-
spondence functions of the port implementations, from the
implementation execution histories satisfying the subprocess
constraints.
We note that the conditions b- 1) and b-2) for a given refined

port together with the consistency conditions of the port im-
plementation (see Section V-C-1) imply that the properties
1') and 2') are satisfied for the given port. Therefore the con-
ditions a)-c), together with the consistency conditions 1) and
2) for the port implementations, imply the general consistency
condition mentioned above.
The verification of the conditions a) and b-1) is made by the

port type compatibility checking at compile-time. The verifi-
cation of the conditions b-2) and c) is in general more difficult
and must be compared with the verification of property 3) in
the absence of port implementations (see Section V-B). Often
the verification involves the establishment of invariant prop-
erties that are needed for deriving both conditions b-2) and
c).
As an example we consider the arbiter specification and

implementation discussed in Section IV-C. A detailed verifi-
cation of the consistency conditions is given in [8]. We limit
the discussion here to the major points of the verification. It
is important to note that the verification of the port imple-
mentation constraint [condition b-2)] involves several sub-
processes of the implementation. As Fig. 6 shows, the con-
straints that the UA I circuit of the user [ I ] port, for example,
is not set up before the UR I circuit of the same port goes up,
involves the propagation of the UR 1 circuit signal through the
subprocesses OR 1, ME, AND I and Ca i; and also relies on the
assumption that the same port implementation constraint is
satisfied by the processes in the environment of the arbiter
connected to the ports transfer [ 1] and resource. As a conse-
quence condition b-2) can only be verified by considering the
interplay between the different parts of the process imple-
mentation and its environment, which is formalized in [8] by
an invariant and a reachability analysis based on the properties
of the subprocesses, their interconnection structure and as-
sumptions on the environment. From this invariant and rea-
chability analysis, it is then straightforward to derive the
constraints of the port implementations. The same invariant
is also the basis for deriving the global constraints (especially
the mutual exclusion) of the arbiter specification [condition
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c)]. We note, however, that the global constraints of the arbiter
specification in [8] are not given in terms of an abstracted
reservation port specification, but in terms of the subport op-
erations of the implementation. This simplifies the proof since
it is not necessary to consid-er the inverse correspondence
function to make the abstraction from the detailed interactions
of the implementation subports to the more abstract interac-
tions of the reservation port used in the arbiter specification
of SectionIV-C. With the correspondence discussed in Section
V-C-1, it is however not difficult to derive the global con-
straints of the arbiter specification given in SectionIV-C from
the global properties of the arbiter specification given in
[8].

VI. CONCLUSIONS

A method for specifying communicating systems is dis-
cussed and demonstrated by several examples. The method is
based on the concepts of communicating processes and process
interactions that are associated with communication ports. The
step-wise refinement of a process specification is considered
by the definition of an internal structure of the process, con-
sisting of subprocesses and connections. Internal connections
identify the ports of the subprocesses, and external connections
define the ports of the abstract process specification in terms
of some internal ports of the subprocesses.
The described specification method combines this process

refinement approach with a method for the refinement of ports
and their interactions, which is analogous to the refinement
of sequential software modules, where an operation at the
higher level of abstraction is implemented in general by several
operations at the more detailed level. This port refinement
method is important for considerations of subsystem interfaces,
their abstract specification and implementation.
The stepwise refinement of process spedifications as dis-

cussed in this paper is similar to some approaches described
in the literature [10], [27], [18]. These approaches do not
foresee the refinement of interactions and port specifications.
Such refinement is considered in the literature on stepwise
refinement of abstract datatype specifications [34], [14]. These
references, however, consider the refinement of the operations
defined for a given module in the context of sequential pro-
cesses or shared resources where the operations of the module
are called upon by the active agents of the system. The ap-
proach to port refinement, as discussed in this paper, may be
considered a generalization of the refinement of abstract data
types to the context of distributed systems.
The structured specification method described in this paper

seems applicable to the areas of software as well as hardware
design. It addresses in particular the question of system
structure and the communication between the different system
parts, which is an important aspect in the design of distributed
systems. It is to be noted that the described method only con-
siders static implementation structures. This seems to be
suitable for description at the hardware (or physical subsys-
tem) level, and for many software applications in systems for
communication and realtime control.

While this paper concentrates on the structure of com-

municating systems, it is clear that appropriate specification
techniques must be available for defining the constraints that
determine the possible interactions and their order of execution
for the specified system. For the examples of this paper we have
used certain specification language elements which have been
used on different occasions, such as temporal ordering of in-
teractions, constraints on parameter values expressed by as-
sertions, etc. Other specification languages, involving for in-
stance the notion of process states [19], [12], could also be
used. A complete specification method could therefore be
based on the process and port structure discussed in this paper
and a semantic model which provides the framework for for-
mally defining the execution histories considered in Section
V. This semantic model would also be the basis for the speci-
fication language by which process and port constraints can
be expressed. However, such considerations go beyond the.
scope of this paper.
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A Distributed Channel-Access Protocol for Fully-
Connected Networks with Mobile Nodes

YARON I. GOLD, MEMBER, IEEE, WILLIAM R. FRANTA, MEMBER, IEEE, AND SHLOMO MORAN

Abstract-We present a theoretical description and analysis of a
collision-free channel-access protocol for a shared channel with
"mobile" nodes that are all within range and in line-of-sight of each
other, in arbitrarily changing spatial (one-, two- or three-dimensional)
configurations.
The protocol provides distributed access-control under Fixed pri-

ority, Fair Round-Robin and Prioritized Round-Robin priority dis-
ciplines. The protocol employs information on the changing node

Manuscript received December 29, 1981; revised June 25, 1982.
Y. 1. Gold is with the Department of Electrical Engineering and Computer

Science, University of Connecticut, Storrs, CT 06268.
W. R. Franta is with the Department of Computer Science, University of

Minnesota, Minneapolis, MN, 55455.
S. Moran is with the Department of Computer Science, Technion, Israel

Institute of Technology, Haifa, Israel.

configuration to dynamically tune its scheduling-function. This in-
formation is efficiently obtained by repeated, self-induced updates that
are executed in a distributed manner by all nodes. The protocol's
theoretic performance characteristics (throughput and delay) are at
least as good as, and most often better than those associated with
protocols that employ less information.

Index Terms-Adaptive, broadcast, collision-free, communication,
distributed, local networks, mobile networks, multiple access, per-
formance analysis, protocols.

I. INTRODUCTION

M ULTIACCESS protocols are schemes that multiplex
node access to a shared communication channel.
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