
IEEE TRANSACTtONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 6, NOVEMBER 1978

Compile Time Memory Allocation for
Parallel Processes

GREGOR V. BOCHMANN

Abstract-This paper discusses the pzoblem of allocating storage for
the activation records of procedure calls within a system of parallel
processes. A compile time storage allocation scheme is given, which
determines the relative address within the memory segment of a process
for the activation records of all procedures called by the process. This
facilitates the generation of an efficient run-time code. The allocation
scheme applies to systems in which data and procedures can be shared
among several processes. However, recursive procedure calls are not
supported.

Index Terms-Code optimization, efficient variable access mech-
anism, memory allocation for activation records, overlays, parallel
processes, storage allocation.

I. INTRODUCTION
IN most computer systems the sharing of data structures and

procedures among several processes plays an important role.
Several language constructs have been proposed for the design
and programming of systems of parallel processes with shared
data and procedures. We mention in particular the concept of
user-defined and abstract data types [1] and of monitors [2].
In this paper we consider the problem of allocating the nec-

essary storage for the activation records and local variables of
procedures called by the different processes. A variety of dif-
ferent storage allocation schemes have been used, depending
on the computer architecture and the applications. We men-
tion in particular the following schemes (in order of increasing
flexibility of use and complexity of implementation):

1) fixed, disjoint allocation of activation records, such as
used for Fortran;
2) overlays, i.e., fixed but nondisjoint allocation;
3) dynamic stack allocation, such as used for Algol 60 and

other recursive languages;
4) allocation by segments of different size, with or without

garbage collection, such as used for Pascal's pointed variables
or Algol 68's heap.
Related to the storage allocation is the problem of program

and data relocation. For Fortran programs, the problem is
usually solved during the object module loading phase. For
Algol or Pascal programs, which use a stack allocation scheme,
variables are normally accessed via display registers that con-
tain the base addresses of the different activation records; this
makes the relocation easier. In systems with independent seg-
ments of virtual memory for different processes and data (e.g.,

Manuscript received June 17, 1976; revised May 5, 1978. This work
was supported in part by the National Research Council of Canada and
the Quebec Ministere de l'Education.
The author is with the Departement d'Informatique et de Recherche

Operationnelle, Universite de Montreal, Montreal, P.Q., Canada.

Multics), relocation is implicitly performed during run time by
the memory accessing mechanism.

In this paper we describe an allocation scheme that uses in-
dependent segments of memory for the different processes in
the system. The relative locations within the process memory
segment of the activation records of the called procedures can
be determined during the compilation phase. This is, in fact,
an overlay scheme suitable for nonrecursive procedures which
may be shared among several processes and which have local
variables of fixed size. Because the overlays can be determined
during the compilation phase, it is possible to establish more
efficient run-time mechanisms for variable accessing and pro-
cedure calling.
This allocation scheme may be used for an efficient imple-

mentation of programming languages such as Concurrent
Pascal [3]. We note, however, that the scheme may be used
for any system of parallel processes with shared procedures
that satisfy the necessary conditions.

II. AN EXAMPLE

We illustrate the problem of storage allocation for parallel
processes by the example of a communication system, which
is described in more detail in [4]. The system implements a
full duplex synchronous communication protocol for two-way
data communication over a point-to-point data link. Each side
of the communication link contains four parallel processes.

Fig. 1 shows the system on one side of the link. There is a
source process which generates messages, a sink process which
consumes messages that come from the opposite side of the
communication link, and the communications control program,
which consists of a control monitor, which is called upon by the
source and sink processes, and two processes that look after
the transmission and reception of frames. The processes ex-
ecute certain procedures which refer to the control monitor or
the transmission lines, as indicated by the arrows. The sender
and receiver processes are synchronized with the speed of the
transmission line. The source and sink processes are synchro-
nized relative to this speed by the control monitor.
The inner structure of the control monitor can be described

as follows. It consists of the four procedures: send, receive,
get, and put called by the processes. Mutual exclusion be-
tween the execution of these procedures is ensured by the
monitor. These procedures, in turn, call the procedures enter
and withdraw associated with the data structure of a message
buffer. For example, the procedures receive and get call the
procedure withdraw for obtaining a message from the input
buffer and output buffer, respectively.

0098-5589/78/1100-0517$00.75 ©) 1978 IEEE

517

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 6, NOVEMBER 1978

r
Communication control program

Source Process

I_Cycle
generate (message)
send (message)

End

L~~~~~~~~~~~

Sink Process I

Cycle

receive (message) I
use Cmessage)

End I

I

I -i I~~~~~~~~~~~~~~~~

1,

Control Monitor

Output buffer

I 1
_enter withdra

bo

Sender Process

Cycle
et(frame) outgoing
generate-check-field (frame)
transmit (frame) line

End

Receiver Process

%
Cycle ingoing1-,liste ingoing
-i r r (frame) then

put (frame)
End

line

Fig. 1. Structure of a data communication system.

Fig. 2. Calling relation of sink and sender processes with shared pro-
cedure withdraw.

The calling relations of the sink and sender processes, which
both use the buffer procedure withdraw, is shown in Fig. 2.
The usual dynamic stack allocation of the activation records
of the called procedures on the stack of the calling process

yields the activation record displacements shown in Fig. 3.
This allocation scheme may be called "top-down" because
the displacements are obtained by traversing the graph of the
calling relations from the calling processes down to the called
procedures.

It is important to note that for a shared procedure, such as

withdraw, the displacement of the activation record depends
on the calling process (see Fig. 3). In the case of the allocation
scheme described below, this displacement is independent of
the calling process, as shown in Fig. 4. Following a kind of
inverse stack discipline [5], this allocation is obtained by tra-
versing the graph of the calling relations in the opposite order,
i.e., from the bottom up.

III. BOTTOM -UP OVERLAYS
A. Assumptions
For the memory allocation scheme described below, we sup-

pose that each process of the system has its own memory seg-

ment which contains the variables of the process and the
activation records of all procedures called by the process. Data

use

sink I

i I receive withdraw
I

I

I I ~~~~~~~~~~~~~~~~~~~~~~I
I-- -total space for sink process - -

tbase address

I get withdraw I
1-4

I sender
I

I I

Qenerate-check-field
I

I

transmit
I
k - -total space for

ssender process

base address

I
-->I

Fig. 3. Memory segments for sink and sender processes with dynamic
stack allocation.

structures shared between several processes may either be al-
located within the segment of the process in which they are

declared or may have their own memory segment. In all cases,
the allocation records of the procedures associated with these
data structures are allocated in the segment of the calling
process.
A memory segment is identified by a segment number or by

withdraw enter

Input buffer

518

/

\

I
I
I

41

I

I

-11.

I-10,

BOCHMANN: COMPILE TIME MEMORY ALLOCATION

use I
I sinkk

wIthdrawI
recei ve

o--total space for sink process-- J

jbase address

withdraw
' get

t 1, sender
Igenerate-check-field

transmit

total space for_
-< sender process

base address

Fig. 4. Memory segments for sink and sender processes with "bot-
tom-up" overlays [as defined by (1)].

its base address in central memory. During run time, a variable
is addressed by identifying the memory segment and giving the
relative address of the variable within the memory segment.
This addressing scheme can be efficiently implemented by in-
dexed addressing, reserving one base or index register for the
base address of the active process.
The number of processes in the system is either fixed (as in

Concurrent Pascal) or may vary dynamically. In the latter case
the creation of a new process poses no particular problem (as
long as sufficient central memory is available), whereas the de-
letion of a process poses the problem of garbage collection at
the level of memory segments for processes.
We suppose that the following restrictions are satisfied:
1) there are no recursive procedure calls;
2) the size of all local variables of procedures can be de-

termined at compile time;
3) procedures are not passed as parameters (this restriction

could possibly be suppressed).

B. Definition of the Overlay Scheme
Given a procedure x, we write size (x) for the size of its

activation record (which contains the necessary call return in-
formation, parameters, local variables, and possibly some space
for temporary storage).
We write x -e y if the body of a procedure x contains a call

of procedure y, i.e., there is an arrow from x to y in the graph
of the calling relation. Because of conditions 1) and 3) above,
this graph has no cycles, and the relation generates a partial
order on the set of procedures in the system.
For each procedure x we write low-addr (x) for the relative

address of its activation record within the memory segment of
the calling process. (Note that it is independent of the calling
process.)
The bottom-up overlay scheme is defined by the following

equation which holds for all procedures x of the system:

fo if there is no procedure y
such that x-+y, or

low-addr (x) = x, Y (low-addr (y) + size (y)) (1)
where the maximum is taken over

L all procedures y such that x -ky.

s i nk J

recei ve I withdraw

- --total space for sink process--

Tbase address

nPt A0 withdraw I
Isender l

gnenerate-check-field
I t

i+_ _ total space for - -
sender process

base address

Fig. 5. Memory segments for sink and sender processes according to
the usual overlay scheme [as defmed by (2)].

We note that the usual overlay scheme used in the case of a
single process is defined by a similar equation:

0O if there is no procedure y
low-addr (x) = such that y -+ x, or

L miny (low-addr (y) + size (y)).

(2)

In the case of procedures shared between several processes,
this overlay scheme leads to an allocation of process segments
which are not necessarily minimal, as shown in Fig. 5. There-
fore, this allocation scheme is not suitable for systems of paral-
lel processes.

C. Allocation Algorithm
An efficient general algorithm for evaluating (1) for all pro-

cedures of a given system is as follows.
Step 1: Determine an order for traversing the graph of call-

ing relations such that, when a procedure x is encountered, all
procedures y with x -*y have been encountered previously.
Such an order can be obtained by a topological sort [6].
Step 2: Traverse the graph of calling relations in the order

obtained in Step 1, and evaluate (1) for each procedure x en-
countered. This evaluation poses no problem since, for all pro-
cedures y considered in the expression, the value of low-addr
has been determined previously.
In the case of a programming language in which a procedure

must be defined before it can be used, as, for example, in Con-
current Pascal [3], the programmer must write the procedures
of a system in an order corresponding to the one obtained in
Step 1 above. Therefore, a compiler could determine the bot-
tom-up overlays (Step 2 above) in a single scan of the program
text from left to right. During the parsing of the declaration
part of a procedure x, the size size (x) of the activation record
is determined. During the parsing of the executable state-
ments of the procedure x, a list of the called procedures is
established. At this point, all these called procedures have al-
ready been parsed and their size and low-addr are available.
Now the relative address, low-addr (x), of the activation record
ofx is determined according to (1) above.
Note that the relative address of an activation record is only

known after the complete procedure has been parsed. This
infonnation, therefore, cannot be used during the same pass

519

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 6, NOVEMBER 1978

through the program text for the generation of variable access
code. This means that the compiler must perform at least two
passes over the program text. If a one-pass compilation is pre-
ferred, a relocating link editor may be used for the second
pass, while the compiler generates a code assuming a zero rela-
tive address for all activation records.

D. Comparison with the Dynamic Stack Allocation Scheme
The following points provide a brief comparison of the

bottom-up overlay scheme with the dynamic allocation of
activation records "on the stack" [7].
Restrictions: The bottom-up overlay scheme requires the

restrictions 1), 2), and 3) given in Section III-A. These restric-
tions do not apply to the dynamic stack allocation.
Used Memory Space: The memory space allocated for each

process is minimal in the case of both allocation schemes. It is
easy to see that the size of the memory segment for a process
x, where x also denotes the "main" procedure of the pro-
cess, is equal to the maximum of 2i7l 1 size (z1) over all paths
X = ZI + Z2 e * * * > Zn in the graph of calling relations. Each
of these paths represents a possible sequence of embedded
procedure calls executed by the process x.
Run-Time Efficiency: In the case of the bottom-up overlay

scheme, the relative address, with respect to the base address
of the calling process, is known at compile time for the activa-
tion record of each procedure of the system, being shared or
not shared among several processes. Therefore, local variables
of called procedures, as well as the variables declared within
the process, may be accessed with a fixed displacement with
respect to a register pointing to the base address of the calling
process' memory segment. This is also true for accesses of non-
local variables declared in calling procedures. In the case of
the dynamic stack allocation, these accesses are usually made
through pointer chains or display registers.
Procedure calls can be implemented more efficiently with

the bottom-up overlay scheme than with the dynamic stack
allocation. For the former, a procedure call involves no up-
dating of addressing information, whereas for the latter, the
display or other registers, pointing to the activation records on
the stack, must be updated at each procedure call and return.
For example, Brinch-Hansen's implementation [8] of Con-

current Pascal uses the dynamic stack allocation scheme with
two base registers ("local base" and "global base") which are
both updated during procedure calls and returns. The "local
base" is used for accessing the activation record of the active
procedure (variables declared in calling procedures are never
accessed), whereas the "global base" is used for accessing
variables declared in the running process or in the class or
monitor components accessed by the process through entry
procedure calls. If the bottom-up overlay scheme were used,
only a "process base" register would be required, which would
need no updating during procedure calls. For more efficient
access to the variables of class and monitor components, an
additional register, similar to the "global base," could be pro-
vided which would only be updated during calls and returns of
entry procedures.
For efficient language implementations, the difference in

the efficiency of the procedure call and return primitives
between the bottom-up overlay and the dynamic stack alloca-
tion schemes could be up to about 50 percent (return address

and "local base" updates versus return address alone). For an
interpretive implementation such as [8], however, an addi-
tional overhead is associated with procedure calls, which re-
duces the relative gain in efficiency that could be obtained by
using the bottom-up overlay scheme.

IV. CONCLUSIONS
We have shown that the relative location within the memory

segment of a process of the activation records of the called
procedures can be determined at compile time according to an
allocation scheme of "bottom-up" overlays. In contrast to the
well-known overlay scheme for a single process, the scheme
can be used for systems in which data and procedures are
shared by several parallel processes. Compared with the
scheme of allocating the activation records on a dynamic
stack, this overlay scheme provides more efficient run-time
mechanisms for variable access and procedure calls, but im-
poses the conditions that procedure calls be nonrecursive and
that the memory size of local variables be determined at com-
pile time.
We feel that these conditions represent no serious restriction

for many applications, in particular for many special-purpose
systems.
The main applications probably lie in the area of small

specialized computer systems where efficiency is important,
for example, in computer-based communication systems, con-
trol applications, and small operating systems.

ACKNOWLEDGMENT
Several interesting discussions with P. Desjardins and J.

Vaucher contributed to the development of this paper.

REFERENCES
[1]' B. H. Liskov and S. N. ZiLes, "Specification techniques for data

abstractions," IEEE Trans. Software Eng., voL SE-1, pp. 7-18,
1975.

[21 C. A. R. Hoare, "Monitors: An operating system structuring con-
cept," Commun. Ass. Comput. Mach., voL 17, pp. 549-557,
1974.

[3] P. Brinch-Hansen, "The programming language Concurrent Pas-
cal," IEEE Trans. Software Eng., vol. SE-1, pp. 199-207, 1975.

[4] G. V. Bochmann, "Logical verification and implementation of
protocols," in Proc. 4th Data Commun. Symp., Quebec City,
1975, pp. 7.15-20.

[5] -, "Storage allocation for parallel processes in micro-computers,"
in Proc. Canadian Comput. Conf., CIPS, May 1976.

[6] D. E. Knuth, The Art ofComputer Programming, vol. I. Reading,
MA: Addison-Wesley, 1968, pp. 258-265.

[7] D. Gries, Compiler Construction for Digital Computers. New
York: Wiley, 1971, sect. 8.9.

[81 P. Brinch-Hansen, "Concurrent Pascal machine," Tech. Rep.,
Inform. Sd., CaL Tech, 1975; and the listing of the Concurrent
Pascal interpreter.

Gregor V. Bochmann received the Diplom in
physics from the University of Munich, Munich,
Germany, in 1968, and the Ph.D. degree from
McGill University, Montreal, P.Q., Canada, in
1971.
He has worked in the areas of programming

languages and compiler design, communication
l _* .- protocols, and software engineering. He is cur-

2 |_ rently Associate Professor in the Departement
d'lnformatique et de Recherche Operationnelle,
Universit6 de Montreal. His present work is

aimed at design methods for communication protocols and distributed
systems. In 1977-1978 he was a Visiting Professor at the Ecole Poly-
technique Federale at Lausanne, Switzerland.

520

