
Logical Verification and Implementation of Protocols
G.V. Bochmann
Proceeding of the Fourth Data Communications Symposium, Quebec, Canada, 1975
Pages 8-5 - 8-20
© 1975 by the IEEE. Reprinted by permission.

5.1

Abstract

The implementation and logical verification of
communication protocols are considered in view of ob-
taining reliable communication systems. It is proposed
that methods for specifying communication protocols
should be useful for obtaining a comprehensive descrip-
tion, and for simplifying the logical verification and
implementation of the specified protocol. These issues
are discussed for a particular protocol, which is taken
as an example throughout the paper. The example chosen
is a simple HDLC protocol for two-way simultaneous data
communication over a point-to-point data link. After
an informal description, its operation is defined pre-
cisely. From the definition of the protocol, certain
properties are proved which show the correct operation
of the protocol. In particular, it is shown that line
transmission errors are correctly recovered, and that
the sequence counts can be represented modulo a given
constant. A condition for completed data transmission
is also given. The method for proving these properties
is general, and can also be applied in the case of the
more complex protocols that are used in actual applica-
tions. The second part of the paper deals with the
problems of parallel processes and the implementation
of protocols. Well structured high-level languages
which include facilities for describing parallel pro-
cesses and monitors are proposed as tools for the
implementation of protocols. As an example, it is
shown how such a language can be used to program the
protocol introduced earlier. It is pointed out that
this program can be easily obtained from the original
protocol definition by doing only few changes and
refinements. Therefore it is expected that
implementation is relatively reliable.

1. Introduction

The design and implementation of appropriate com-
munication protocols is an important part of the devel-
opment of any new communication or distributed computer
system. Normally, a protocol is designed to operate
efficiently in normal situations, and also to deal with
occasional erroneous behavior or malfunction of sub-
systems. The different situations a communication
protocol has to cope with, are well described in ref-
erence 1. A realistic scheme of interprocess communi-
cations must foresee appropriate actions for the fol-
lowing situations :

(a) Normal communication between subsystems.
(b) Occasional erroneous behavior of one or

several of the subsystems. This includes
the occasional malfunction of the communi-
cation line. The recovery procedure will
normally consist of trying the same action
again.

(c) Long range erroneous behavior or failure
of one or several subsystems. The recovery
procedure will normally consist of recon-
figuration of the system.

The design of a communication protocol is a dif-
ficult task because many different situations must be
considered. Besides the normal operation of the pro-
tocol, situations due to erroneous behavior .of one or
several subsystems must be described. The synchroniza-
tion between the subsystems in these situations is not
very simple to understand. Therefore a logical veri-
fication of the protocol would be very useful. By
logical verification we mean proving certain properties
of the protocol which assure its correct operation in
all situations. After its design, a protocol must be
implemented in software and/or hardware. An implemen-

tation must be easy to understand, correct and efficient.
The choice of a good programming language for the imple-
mentation is of large importance.

The method used for specifying protocols has a
strong influence on how easy or difficult it is to de-
sign and implement a protocol for a given communication
problem. We believe that the design, logical verifica-
tion, and implementation of a protocol are inter-
related. Therefore a method for specifying protocols
should be useful for all three of these activities.
More precisely, a method for specifying protocols should
have the properties that :
(1) a protocol can be specified in a comprehensive

form; in particular, the complete definition of
a protocol can be partitionned into different
levels of abstraction;

(2) the specification of a protocol allows proving
certain properties of the protocol and its opera-
tion, proving in particular that the error
recovery is effective, and that all possible
situations of erroneous behavior have actually
been considered;

(3) given the specification of a protocol, its
implementation is simple, and part of the
implementation may be obtained automatically.

It seems that at present, there is no method for
specifying communication protocols that satisfies all
these requirements. However, several tools for speci-
fying, proving properties of, and implementing systems
of parallel processes have been discussed in literature.
The purpose of this paper is to show by an example that
certain tools that have been developped in different
fields of computer science can be useful for the design
and implementation of communication protocols. We dis-
cuss in particular the possibility of logical verifica-
tion by proving certain properties of protocols, and
implementing protocols using a high-level language for
parallel processes. Logical verification of protocols
is useful for obtaining reliable communication systems,
because it helps detecting weak points or errors in the
protocol design which are difficult to find by simula-
tion or testing. The use of a well-structured high-
level language for the implementation of protocols has
many advantages. It simplifies the programming effort,
facilitates the detection of programming errors, makes
the system more transportable, and clarifies the pro-
gram documentation.

In this paper, we use a simple protocol for two-
way simultaneous data communication as an example.
This protocol is informally introduced in section 2.
In section 3, we give a formal specification of the
same protocol. This specification is then used to de-
rive certain properties of the protocol and its opera-
tion. In particular, we show that the protocol correct-
ly transmits message sequences, and that the internal
sequence counts can be represented modulo a certain
constant, thereby allowing a reasonable implementation.
We use the technique of assertions 2 for verifying
these properties. We note that this technique cannot
be used for proving the absence of undesired loops, and
the effective termination of a transmission sequence.
These problems, however, have been considered in ref-
erence 4.

In section 4, we discuss bow the concepts of par-
allel processes and monitors 5> can be used for the
implementation of a protocol in a high-level program-
ming language. As an example, we give the protocol

158 COMMUNICATION PROTOCOL MODELING

introduced in section 2 in the form of a program which
includes several processes and a monitor. Using a
high-level language for the implementation of the sys-
tem facilitates the use of structured programming.
However, an implementation of such a language must be
available.

2. A simple HDLC protocol

The following simple protocol will be used
throughout this paper as an example. It is a protocol
for two-way simultaneous data communication over a
point to point data link. It is based on the HDLC
(double numbering) standard ', which is for instance
adopted by IBM 8, and the Canadian Datapac service 9.
We discuss in this paper only those aspects of the
protocol which deal with message numbering and re-
transmission for error recovery. Other aspects, such
as message formats, are described elsewhere 7. The
protocol is very simple, and uses only information
format frames. It is supposed to be initialized by a
line setup procedure not described here.

Each information frame sent over the line contains
in its control field the send sequence count S, and
the receive sequence count R of the transmitting
station. Each received frame is verified by a redun-
dancy check. The receiving station then compares the
sequence count S of the frame with its own internal
receive sequence counter R. If S is the next se-
quence to be received the information field of the
frame is passed on to the user and the internal se-
quence counter R is incremented by one. Otherwise
the received frame is ignored.

The reception of a frame with the receive se-
quence count R acknowledges all frames, transmitted
in the opposite direction, with a send sequence count
smaller or equal to R. Normally, messages are sent
in sequence, and the send sequence counter S of the
station is incremented by one for each frame sent.
Retransmission of frames is initiated after a certain
number of frames have been sent without being acknow-
ledged. When the number of outstanding frames, i.e.
frames sent but not yet acknowledged, becomes larger
than a £gjtain system constant _M. the station trans-
mits in sequence all frames following the last frame
acknowledged.

For synchronizing the data link control with the
speeds of the information source and sink the follow-
ing procedure is adopted: (a) as long as a station has
not obtained any more information to be transmitted it
retransmits, in regular time intervals, the last frame;
(b) if a station receives correctly a frame in sequence,
but the information sink (i.e. the usei or the user
buffer) is not ready to accept the information con-
tained in the frame the received frame is ignored;
like a frame out of sequence.

So far, we have described information transfer
from a source to a sink (see figure 1, upper half).
However, the protocol supports two-way simultaneous
data communication as indicated in figure 1. The
stations at both sides of the data link have the same
structure. Each contains a sending and a receiving
part. For distinguishing the two sides of the data
link, the elements of the station on the opposite
side (i.e. on the right) are written with an over-
lining bar.

3. A proof of correct operation

The section above gives an informal description of
a simple HDLC protocol. In the following we show how
certain useful properties can be proved about its oper-
ation. In order to do this, we first give a more for-
mal definition of the protocol. This definition also
serves as starting point for obtaining an implementa-
tion of the protocol, as discussed in section 4. From
the definition of the protocol, we prove certain asser-
tions about the states through which the protocol can-
pass during its operation. These assertions are then
used to prove that the protocol correctly recovers the
transmission errors of the data link, and that the
sequence numbers can be represented modulo the constant
2M.

3.1 Definition of the protocol

The information to be transmitted from a source to
a sink consists of a sequence of messages. Each mes-
sage is transmitted as the information field of a sin-
gle frame (i.e. transmission bloc). We write the i-th
frame that travels on the transmission line in the form
<S., R., m.>, where S. and R. are the send and receive

sequence counts, and m. is the information field, i.e.

a message; all other fields of the frame (including the
redundancy check field) can be ignored for our present
purposes. At a given instant, during the operation of
the protocol, a certain number of frames travel on each
line. This sequence of frames is written as:
<S, <s

<sn' "n
i+r
V

m>

Figure 1: Two-way simultaneous data communication

where <S,, R^, !»„> is the last frame sent by the trans-

mitting station, and <S , R , m > is the next frame to

be received by the receiving station.

Each station contains a message buffer Bend-buffer
for the messages to be transmitted. For simplicity we
suppose that its size is unlimited; later, however, we
show that a cyclic buffer for 2M messages would be suf-
ficient. Each station also contains the internal se-
quence counters L, A, S, N, and R. The meaning of the
values of these counters is the following:

L is the sequence count of the last message obtained
from the source.

A is the highest sequence for which a correct recep-
tion, at the opposite station, has been acknowledged.

S is the sequence count of the last frame sent.
N is the highest value that has been reached by S so

far.
R is the sequence count of the last received frame

that has been passed on to the sink. We note that
this counter refers to the transmission in the
opposite direction.

At this point, these meanings have to be under-
stood as pure comments whi ch may help the reader to
understand the protocol definition that follows.
Based on the definition, we shall show later (in sec-
tion 3.3) that the counter values actually have these
meanings.

The state of the protocol, at a given instant
during its operation, is defined by the values S, R,
A, N, and L of the internal counters of one station,
the values S, R, A, N, and L of the counters of the
opposite station, and the sequences of frames that
travel on the transmission lines. The initial state of
the protocol is characterized by

S = R = A = N = L = 0 (and S = R = A = S = t = 0)

and no frames on the lines. The reader can find in
figure 2 a typical situation of a transmission station
during the operation of the protocol.

Programming Language Models 159

f

message buffer

Typical situation of the counter values and
the message buffer of a transmission sta-
tion (during retransmission) .

State transitions can occur due to the events of
sending or receiving a frame, or obtaining a new mes-
sage from the source. The state transformation of
each of these events, which exclude one another in
time, is described by the statements below.

We note that M > 1 is a system constant which
determines after how many outstanding non-acknowledged
frames retransmission is to start. Normally this con-
stant will be adjusted to the expected delay for re-
ceiving an acknowledgement for a given frame, and the
number of frames sent in unit time. The statements of
the events are written in a free style Pascal, and
comments are given in brackets { }.

(a)

(b)

The event of obtaining a new message from «he
source
(1) obtain (message);
(2) I :- L + 1;
(3) send-buffer [L] :• message;
The event of sending a frame
(4)

(S)

(6)

(7)

(8)

(9)

if S > L

(c)

{no new message to be transmitted)
or S > A + M
{too many outstanding frames)

then if A - L then S:- A
{retransmit last frame)

else S:= A + 1
{retransmit last non-acknowledged frame)

else S :- S + 1;
{send next frame)

N:- max (N,S);
{increment N if necessary)

(10) send-frame (<S,R, send-buffer [S]>);

The event of receiving a frame
(11) listen-to-next-frame

t^frame' Rframe' ••"•«•>>!

(12) if redundancy-check-is-valid
(13) then begin
(14)

(15)

(16)
(17)
(18)
(19)
(20)
(21)

if R frame then "frame'
{adjust A)

end

if Sframe ' R + '
{correct sequence)

and sink-is-ready-to-receive
then begin

R:- R + 1;
pass-on-to-sink (message)
end

Corresponding events can also occur at the opposite
station. The order in which these events occur is not
specified, however, they never occur simultaneously
(mutual exclusion). We assume that there will always
be a successive sending and receiving event after a
finite time interval, i.e. the operation of the proto-
col will never stop.

3.2 Properties of the protocol

The protocol defined above transmits messages in
correct sequence from source to sink simultaneously in
both directions, and it recovers line transmission
errors, as long as the line does not break down perma-
nently. This can be summarized by the following pro-
perties, which hold for each of the two transmission
stations at any instant between the occurrences of the
events (a), (b), or (c) defined above, and which are
proved below.
Property (1): At any given instant, exactly R mes-

sages, from the source at the opposite
station, have been passed on to the sink
correctly (i.e. without any bit error,
and in the correct sequence).

Property (2): At any given instant, at least A mes-
sages from the source have been correct-
ly passed on to the sink at the opposite
station.

Property (3): When A = L, all messages obtained from
the source (and no more) have been cor-
rectly passed on to the sink at the
opposite station.

We note that the assertion of correct transmission re-
lies on the assumption that the redundancy check on
received frames detects all transmission bit errors.

The properties (1) and (3) show the "correct op-
eration" of the protocol. The following property (4)
is important for an implementation of the protocol.
We have so far assumed that the sequence counts can
grow indefinitely. We see now that a representation
modulo 2M can be used:
Property (4): The sequence counts S and R, in the

internal counters of the stations as
well as in the transmitted frames, can
be represented modulo 2M.

We note that similarly the counters L and A can use a
representation modulo a constant. This constant de-
pends on the size of the message buffer, and should at
least be equal to 2M.

For proving these properties, it is useful to con-
sider the following assertions which hold at any in-
stant between the occurrences of the events (a), (b),
or (c) defined above.
Assertions on the internal counter values (see for
example figure 2):
(a) N - M < S (b) S < N (c) N < L
(d) N - M < A (e) A < R (f) R < N
Assertions on the content of the frames travelling over
a line :
(g) A < Rn (h) Rt < Ri+J for n<i<t (i) Rj < R
(j) Si < N for 0<i<i
(k) mi is the Sj-th message obtained from the source.

A corresponding set of assertions holds also for the
opposite direction of transmission.

3.3 Proof of the properties and assertions
In this section, we use the protocol definition of

section 3.1 and derive from it the properties and as-
sertions stated in the section above. We first prove
the assertions, and then the properties (1) through
(4).

We prove the assertions and properties by induc-
tion on the number of events (a), (b), or (c) that have

160 COMMUNICATION PROTOCOL MODELING

occurred since the initialization of the protocol.
Clearly the assertions and properties hold for the ini-
tial state of the protocol. We now assume that they
hold immediately before the occurrence of a single
event (a), (b), or (c), and show in the following para-
graphs that they then also hold immediately after the
same event.

We first note that L is only changed by the
event (a) of obtaining a new message, S and N by the
event (b) of sending a frame, and R and A by the
event (c) of receiving a frame. It is also clear from
lines (2), (14), (9), and (18) that the values of L,
A, N, and R can never decrease.

For assertion (a), one has to prove that it re-
mains valid when the event (b) of sending a frame in-
creases N or decreases S. When N is increased we
have S = N, and since M > 1 we get N - M < S.
The only way to decrease S is by assigning to it the
value A + 1 (see line (7)). But then we have A < S
after the event, which together with assertion (d)
yields assertion (a).

Assertion (b) follows from line (9). For asser-
tions (c) and (d), one has to prove that they remain
valid when the event (b) of sending a frame increases
the value of N. Because of (9) this implies an in-
crease of S, and S = N holds after the event. The
only way to increase S is by executing line (8). If,
however, after the test of line (4) and (5), line (8)
is executed, S < L and S < A + M must hold before
the event, from which follow the assertions (c) and
(d) afterwards.

Assertion (e) follows from the assertions (g),
(h), and (i) for the opposite direction of transmission.
Assertions (h) and (i) follow from the fact that R
never decreases, and successive values of R are con-
tained in the successive frames on the transmission
line (see line 10). Assertion (g) follows from line
(14) and assertion (h).

For proving assertion (f) we note that, because
of lines (IS) and (18), R = Si where <Si, Rj, m^

is the last frame accepted by the receiving station,
i.e. i < n. Assertion (f) then follows from asser-
tion (j).

Assertion (j) follows from the fact that N is a
non-decreasing function of time, that S. = S where

S, is the sequence count of the last frame sent, and

S < N (assertion (b)).
Assertion (k) follows from the definition of the

event (a) of obtaining a new message (lines (1), (2),
and (3)) and line (10).

Property (1) is proved by supposing it holds imme-
diately before the event (c) of receiving a frame.
During this event, either no message is passed on to
the sink (invalid redundancy check, reception out of
order, or the sink is not ready) or the message passed
on is the (R + l)-th message obtained from the source
(see assertion (k) and line (15)), and the counter R
is incremented by one.

Property (2) follows immediately from property
(1) and assertion (e), and property (3) follows from
property (1) and R = L (the latter being a conse-
quence of A = L and assertions (e), (f), and (c)).

For proving property (4) we rewrite the lines (4)
through (10) equivalently as :

i f (A - S + M) = A - L + M
or (A - S + M) = 0

then if A = L then S:= A
else S:= A + 1

else S:= S + 1;

transmit-frame [<S, R,
send-buf fer [A - (A - S + M) + M] >)

and the lines (14) and (IS) as

A:= A + ("frame '«'
if CR - Sframe + "> = M -1

We note that the value of N is not needed for the
operation of the protocol, and that the case ">" can
never occur in the comparisons of lines (4) and (5),
as is shown by the assertions (b), (c), and (d). We
shall show below that all the expressions in brackets
(...) of the lines above have values that satisfy the
relation 0 < value < 2M. From this follows that an
evaluation modulo 2M of these expressions does not in-
troduce any ambiguities. Therefore we can introduce
a modulo 2M representation for the sequence counts S
and R without changing the operation of the protocol
if, at the same time, we evaluate the expressions in
brackets (...) modulo 2M.

We note that the values of S, and R,
frame frame

used in the event (c)_of receiving a frame are exactly
the values S- and R- of the frame <S-, R-, i-> at

n n n' n n
the instance immediately before the event. The rela-
tions 0 < (A - S + M) < 2M, 0 < (Rjj - A) < 2M, and

0 < (R - Sj + M) follow directly from the assertions.

The remaining relation (R - S- + M) < 2M can be shown

as follows: Be <3̂ , R^, m> the last received and

accepted frame, i.e. S^ = R and i < n. We have

Sj < fr ' from assertion (b) at the instance when the

framê CŜ , R^, m> was sent by the opposite transmis-

sion station. Since N is a non-decreasing function

of time we have fi^ < N^ . Assertion (a) at the in-
stant when the frame <§-, R-, m-> was sent yields,•-•> n n n,•-•>
1 ' < S- + M. These things together yield the rela-

tion (R - S- + M) < 2M.n
3.4 Remarks and extensions

We note that we have not dealt with the impor-
tant problem of proving that a certain protocol state
will actually be attained after a finite amount of
time. For instance, we have proved the property (3)
which states that if the protocol state is such that
A = L then all messages have been correctly delivered.
But we have not shown that the protocol will reach
such a state after a finite time interval. This ques-
tion actually depends not only on the correct operation
of the protocol, but also on the probability of trans-
mission errors. For example, if the line brakes down
completely, a state with A » L will never be reached.

The problem of proving that a given state will
actually be reached is related to the problem of pro-
ving that a given sequential program terminates. How-
ever, the operation of a communication protocol is non-
deterministic due to the presence of errors. Therefore
in general, such a termination proof would be difficult
to obtain. In the case of finite state half duplex
protocols, however, the approach of reference 4 can be
used.

The retransmission scheme of the protocol dis-
cussed above is probably not the most efficient. It
has been chosen for its simplicity. Several different
schemes could be considered, such as retransmission of
non-acknowledged frames after a fixed time interval
("time-out"), or selective retransmission with a more
flexible receiving discipline. Window operation has
been proposed for network access protocols 1", These
and similar transmission schemes can be described in
the same manner as the simple protocol above, and cor-
responding assertions and properties can be proved for

Programming Language Models 161

such protocols, using the sane techniques.

4. Programming a Protocol
In this section we discuss some aspects of proto-

col implementation; we suppose in particular an imple-
mentation in software. As mentioned earlier, we be-
lieve that the implementation of a protocol is closely
related to its design and logical verification. Writ-
ing a program that implements a given protocol on a
given computer may introduce new errors (programming
errors). Therefore, it would be advantageous to use a
high-level implementation language so that only few
transformations are necessary for obtaining the program
from the original protocol definition. Using a high-
level language and structured programming are likely to
increase the reliability of the protocol implementation.
We discuss in the following more specifically the des-
cription of parallel processes as they occur in proto-
cols.

The concept of parallel processes is a useful
structuring tool for the design of protocols. For
example, the protocol introduced in section 2 may be
understood as consisting, at each station, of the fol-
lowing processes: (1) a message producing source pro-
cess, (2) a sending process, (3) a receiving process,
and (4) a message consuming sink process. Programming
tools for specifying inter-process communication and
synchronization have been described in the literature
S»6. The concept of monitors is particularly inter-
esting. Monitors can be used to delimit the inter-
process interaction and to specify explicitely the syn-
chronization between the processes. They provide an
efficient implementation tool 5,11.

The use of different levels of abstraction for the
description of protocols is another useful design me-
thod. Often discussed in the .literature on structured
programming, this approach leads to the design of pro-
tocols in distinct levels 1>9. for example, the pro-
tocol introduced in section 2 describes only a certain
level of the whole communication system. The Ĵ vels
below concern, for instance, the redundancy check for
error detection, or the modem line interface. The
levels above may concern message routing in a communi-
cation network, or the exchange of messages for the
communication between a resource and a "user".

Independent of these different levels in the de-
sign of a communication system, each level of the sys-
tem Bay be described in more abstract or more detailed
terms. For example, the description of the protocol in
section 3.1 is relatively abstract. For an implemen-
tation of this protocol we would look for a relatively
detailed specification, for instance in the form of a
system written in some programming language for a given
computer. In the remaining part of this section, we
consider the protocol defined in section 3.1 as an
example, and show how one can obtain for the sane pro-
tocol successively more detailed descriptions, which
lead to an implementation. We use in particular the
concepts of parallel processes and monitors, and the
notation of the programming language Concurrent Pascal

As mentioned earlier, we consider four parallel
processes on each side of the communication link.
Figure 3 shows the system at one side of the link:
There is a source process which generates messages, a
link process which consumes messages that come from
the opposite side of the communication link, and the
transmission station, which consists of one monitor
which is called upon by the source and sink processes,
and two processes that look after the transmission and
reception of frames. The processes execute certain
procedures which refer to the central monitor or the
transmission lines, as indicated by the arrows, The
lender and receiver processes are synchronized with
the ipeed of the transmission line. Relative to this

speed, the source and sink processes are synchronized
by the control monitor.

TwwsmssioN STATIW

Figure 3: The structure of the communication system
at one side of the transmission line.

The inner structure of the control monitor, not
shown in Figure 3, is described by the Concurrent
Pascal 12 program of the appendix. Essentially the
monitor consists of the four procedures called upon by
the processes. It enforces the mutual exclusion be-
tween the execution of these procedures. It contains
the sequence counters L, A, S, and R, and a finite
size eend-buffer. Two queue variables are used to make
the source or sink process wait, if necessary.

We note that very few logical changes have been
introduced to the protocol definitions of the section
3.1 and 3.3 in order to obtain this program. We con-
clude that the language used is suitable for program-
ming communication protocols. We hope that, in the
future, sufficiently efficient implementations of lan-
guages for parallel processes and monitors will be
available for the implementation of protocols.

We note that in Figure 3, we have assumed the ex-
istence of two additional processes, not shown in
Figure 3 and may be implemented in hardware, which
actually perform the continuous transmission and recep-
tion of bit strings on the two lines. We call these
processes line processes. The procedures transmit
(frame) and listen (frame) of the sender and receiver
processes refer to the actions of these line processes.
The line processes should not be interrupted by the
sender or receiver processes when the latter execute a
control monitor procedure. The interaction between the
sender, receiver, and line processes could ag'ain be
described by using monitors. However, we'do not intend
to give a description of the line processes in this
paper.

S. Conclusions
We believe that the design, verification, and im-

plementation of a protocol are inter-related activities.
In this article, we have considered a particular proto-
col as an example, and have shown how certain tools,
developped in different contexts, can be successfully
applied to the logical verification and implementation
of this protocol. We are confident that the same me-
thods can also be applied in the case of the more com-
plex protocols that are used in actual applications.
The main objective of these efforts is to obtain more
reliable and better documented communication systems.

We note that, apart from the tools discussed in
this paper, other approaches (see for example in ref-
erence 3) have been described for dealing with the pro-
blems of logical verification and efficient implementa-
tion of communication protocols. Further research is
needed for comparing the relative merits of these dif-
ferent methods.

There are at least two remaining problems which,
in this paper, have been mentioned only briefly. The
first problem (see lection 5.4) ii related to the

162 COMMUNICATION PROTOCOL MODELING

logical verification of protocols, and is expressed in
the following questions: What is the best method for
proving that the operation of a given protocol, for a
finite amount of information transfer, will terminate
after a finite amount of time? What is the best method
for showing that there are no undesired loops or dead-
locks in the communication system?

The other problem is related to the implementation
of protocols. We have proposed the use of a well-
structured high-level language for describing parallel
processes and monitors. This approach supposes that an
efficient implementation of such a language exists on
the computers that are used for the communication sys-
tem. The author does not know of any language imple-
mentation of this kind that is available at present.
However, several projects of implementation are in
progress.
Acknowledgements!

I am grateful to Jean Vaucher for his interesting
discussions, and many useful suggestions about the
content of this paper.

sink-waiting:** false;
signal (next-frame)
end

end

APPENDIX: The control monitor of a transmission sta-
tion written in Concurrent Pascal 1^.

const
mseq " 2 * M j
mbuf "... {multiple of mseq} ;

type
sequence-count " 0 .. mbuf -1;
buffer-index =» 0 .. mbuf -1;
message-type • ...;
frame-type • record S-frame, R-frame :

sequence-count;
msg-frame: message-type;
check-field: ...

end;
var
control-monitor: monitor;

var send-buffer: array [buffer-index]of
message-type;

A.L: buffer-index;
S,R: sequence-count;
next-frame, buffer-free: queue;
sink-waiting: boolean;
sink-pointer: -fmessage-type;

{pointer types represent an
extension to the language of
reference 12}

procedure entry send (a; message-type);
begin if (L-A) mod mbuf - mbuf -1

then wait (buffer-free) ;
1: - (L + 1) mod mbuf;
send-buffer [L 1 :" m

end;
procedure entry receive (p: -fmessage-type);

{p is a pointer to where
the message is to be placed}

begin sink-waiting:- true ;
sink-pointer:- p;
wait (next-frame)

end;
procedure entry put (f: frame-type);

var increment: sequence-count;
begin with f do begin

increment:- (R-frame - A) mod mseq;
if increment > 0
then begin

A:" (A + increment) mod mbuf;
signal (buffer-free)
end;

if (R - S-frame -I- M) mod mseq - M - 1
and sink-waiting

then begin
R:- (R + 1) mod mseq;
sink-pointer* :- msg-frame;

end ;
procedure entry get (f: frame-type);

var seq: sequence-count;
begin seq:- (A - S + M) mod mseq;

if seq- (A - L + M) mod mbuf
or seq - 0

then if A»L then S:" A mod mseq
else S:- (A + l)mod mseq

else S:- (S + 1) mod mseq;
with f do begin

S-frame:- S;
R-frame:- R;
msg-frame:- send-buffer

[(A + M - A) mod mbuf]
end (A-S + M) mod (nj«q

end ;
begin {monitor initialization}

A:- L:- S:- R:- 0;
sink-waiting:- false;
clear (next-frame); clear (buffer-free)

end;

REFERENCES:
[1] L. POUZIN, Network protocols, Nato International

Advanced Study Institute, Brighton, Sept. 1973.
[2 I C.A.R. HOARE, An axiomatic basis for computer

programming, Com. ACM, 12, p. 576 (1969).
t 3] ACM Interprocess Communication Workshop, Santa

Monica, Calif., March 1975.
[41 G.V. BOOMANN, Communication protocols and error

recovery procedures, in reference 3.
[SIP. BRINCH-HANSEN, Operating systems principles,

Prentice Hall Inc., New Jersey, 1973.
[6] C.A.R. HOARE, Monitors: An operating system struc-

turing concept, Communications AOM, 17, p. 549
(1974).

[71 ISO TC97/SC6, Document IOCS.
[8] R.A. DONNAN and J.R. KERSEY, Synchronous data link

control: a perspective, IBM Systems Journal, 13,
p. 140 (1974).

[9] DATAPAC, Standard network access protocol, The
computer communication group, Trans-Canada Tele-
phone System, Nov. 1974.

[10] L. POUZIN, Basic elements of a network data link
control procedure, ACM Computer Communication
Review, Vol. 5, No. 1 (1975).

[11] A.R. SAXENA, An efficient implementation of moni-
tors and condition variables, in reference 3.

[12] P. BRINCH-HANSEN, Concurrent Pascal - a program-
ming language for operating systems design, Techn.
Report No. 11, Information Science, Cal Tech,
April 1974.

