10
Fault models for testing in context®

A. Petrenko 1, N. Yevtushenko 2, and G. v. Bochmann 3

1 - CRIM, Centre de Recherche Informatique de Montréal,

1801 Avenue McGill College, Montréal (Québec), H3A 2N4, Canada,
Phone: (514) 398-3054, Fax: (514) 398-1244, petrenko@crim.ca

2 Tomsk State University, 36 Lenin str., Tomsk, 634050, Russia,
yevtushenko @ elephot.tsu.tomsk.su

3 - Université de Montréal,

CP. 6128, Succ. Centre-Ville, Montréal (Québec), H3C 3J7, Canada,
(514) 343-7535, Fax: (514) 343-5834, bochmann@iro.umontreal.ca

Abstract
We focus in this paper on the problem of modeling faults located in a given component
embedded within a composite system. The system is represented as two communicating FSMs,
a component FSM and a context machine that models the remaining part of the system which is
assumed to be correctly implemented. We elaborate various fault models for testing in context.
The existing FSM-based methods are assessed for their applicability to derive tests complete
w.r.t. the fault models appropriate for testing in context.

Keywords
conformance testing, embedded testing, communicating FSMs, fault models

1 INTRODUCTION

There have been many research efforts on conformance test derivation for protocols based on the
FSM model and the black-box representation of an implementation under test (IUT). In this
testing scenario, the fault model consists of a reference machine, fault domain and conformance
relation. The reference machine is a given specification. The fault domain represents a finite set
of possible implementations that is the set of mutant (faulty) machines. The conformance relation
determines what is a conforming (or non-conforming) implementation. A test suite is to be
considered as complete, w.r.t. a given fault model, i.e. having complete fault coverage, if it can
detect nonconformance of any implementation from the predefined fault domain to the reference
machine (Bochmann, Petrenko, and Yao, 1994). Testing an FSM implementation in isolation is
usually the classical FSM equivalence problem. It is required to determine by testing if an
implementation and the reference FSMs are equivalent. The fault domain is usually defined by
an upper bound on the number of states in all potential implementations, since no assumptions
are usually made about the internal structure of an IUT (Gill, 1962), (Petrenko and Bochmann,
1996).

In practice, however, an IUT is often embedded within a complex system under test, see,
e.g. the embedded test method defined for conformance testing (Rayner, 1987). In this paper,

* This research was done when the second author was with Université de Montréal

fu'

164 Part Three FDT-Based System and Protocol Engineering

we model a composite specification by two communicating FSMs. One FSM, called a
component machine, represents the behavior of a certain component embedded within the
system, while the other machine, called a context (machine), models the remaining part of the
system. The context may be viewed as a lumped, i.e. composed machine of all components of
the system, except the component at hand. The context of the component serves as its
operational or testing environment (Heerink and Brinksma, 1995), (Dam, Kloosterman, and
Kwast, 1991), (Petrenko, Yevtushenko, and Dssouli, 1994), (Petrenko, Yevtushenko,
Bochmann, and Dssouli, 1996). We are required to test the component machine via the context
which itself is assumed to be correctly implemented. The problem of testing an FSM in context
is more complicated than that in isolation. The final goal is to provide systematic methods for
deriving tests with fault coverage guarantee for a component at hand. To reach this goal, fault
models adequate to implementation errors in the embedded component should first be
developed. In this paper, we elaborate various fault models for testing in context. Based on
these models, complete test suites can be derived once an appropriate method is devised. The
existing FSM-based methods are assessed for their applicability to derive tests complete w.r.t.
the fault models discussed in this paper.

The rest of this paper is structured as follows. Section 2 contains several notions related to the
FSM model. Section 3 discusses fault models used for local testing of a single component for
later use within a context. Section 4 presents an explicit fault model for testing in context. In
Section 5, we analyze different fault models based on the composed machine of a given system.
Fault models based on the so-called approximation of the component are considered in Section
6. In Section 7, we give a simple comparison of the proposed models.

2 PRELIMINARIES

2.1 Finite state machines

A finite state machine (FSM), often simply called a machine throughout this paper, is a
completely specified initialized (possibly nondeterministic) Mealy machine which can be
formally defined as follows. A finite state machine A is a 5-tuple (S, X, ¥, h, sg), where S is a
set of states with s as the initial state; X - a finite set of input symbols; ¥ - a finite set of output

symbols; and h - a behavior function h: SxX — P(SxY), where P(SXY) is the powerset of

SxY (Starke, 1972). The machime A becomes deterministic when lh(s,x)l=1 for all (s,x)e SXX.
In a deterministic FSM, instead of the behavior function which is required for expressing a

nondeterministic behavior, we use two functions: the next state function 6, and the output

function A.
We extend the behavior function to a function on the set X* of all input sequences containing

the empty sequence ¢, i.e., h: SXX*— P(SXY*). For convenience we use the same notation A
for the extended function, as well. Assume h(s,€) = {(s,£)} for all se S, and suppose that h(s,B)
is already specified. Then h(s,fx) = { (s',yy) | 3Is"€ S [(s",7) €h(s,B) & (s'y) e h(s"x)] }.

The function k1 is the next state function, while A2 is the output function of A, h! is the first
and h2 is the second projection of h, i.e., hl(s,0) = { s'13 B e Y* ((s'B) e h(s,)] }, h2(s.00)
= {B13s'eS [(s'B) e h(s,a)] } for all oe X*.

Given two states s of the FSM A and r of the FSM B= (T, X, Y, H, 1), and a set V& X*;
state r is said to be a V-reduction of s, written r<y s, if for all input sequences oz e V the
condition H2(r,) S h2(s,@) holds; r is not a reduction of s, r£y s, if there exists an input
sequence & € V such that H2(r,a) & h%(s,). States s, and r are V-equivalent states, written
szyr, iff s<y r and r<y s. On the class of deterministic machines, the above relations coincide.

' Fault Models for Testing in Context 165

We denote < the V-reduction in the case where V=X*, similarly, = denotes the equivalence
relation.

Given two machines, A and B, B is a reduction of A, written B<A, if the initial state of B is a
reduction of the initial state of A. If B<A and B is deterministic then it is referred to as a D-

reduction of A. We denote the set of all D-reductions of a given FSM A with at most m states as
D-red,(A).

Similarly, the equivalence relation between machines is defined. B=A, iff B<A and A<B. The

equivalence relation between FSMs is sometimes called trace equivalence. The traces of a

machine are I/O sequences defined for its initial state. Equivalent machines exhibit identical

behaviors, i.e. they execute the same traces. In this context, the reduction can be viewed as a

trace preorder. '
Given an input alphabet X and output alphabet ¥, there exists a special nondeterministic FSM

such that any machine, deterministic or not, is its reduction. In particular, consider a chaos

machine Ch(X,Y) = ({p}, X, Y, H, p), where H(p,x) = {p}xY for all xe X. Clearly, A<Ch [‘
(X, Y) for all A over the alphabets X and Y. | |

An NFSM B = (S, X, Y, k', 50) is said to be a submachine of the NFSM A = S X Y h

50) if S' S S and h'(s,x) € h(s,x) for all (s,x) € S'x X. Obviously, all submachines of A are
reductions of A, but the converse is not true. If a submachine of A is deterministic then it is said
to be a D-submachine of A. We denote D-sub(A) the set of all D-submachines of A. Rl
Given an input alphabet X, an output alphabet ¥, and the number of states m, there exists a i
special nondeterministic FSM such that any machine, deterministic or not, with up to m states
defined over X and VY, is isomorphic to one of its submachines. In particular, consider another

chaos machine Chp(X,Y) = (P, X, Y, H, pg), where |Pl=m, H(px) = PxY for all (p,x)e PxX. Ll
Clearly, any machine A over the alphabets X and ¥ is isomorphic to a submachine of Ch,(X,Y) Hi
provided that the number of states of A does not exceed m. The two types of chaos machines
Ch(X,Y) and Chp(X,Y) are equivalent, both have the same set of reductions; however, all the
submachines of the machine Ch(X,Y) have only one state and submachines of Chpm(X,Y) may
have up to m states. We will be using both chaos machines to compactly represent either sets of
reductions or sets of submachines whenever convenient.

2.2 Fault models
The equivalence and reduction relations serve as conformance relations between implementations !
and their FSM specifications for deriving test suites with guaranteed fault coverage. |

We define a fault model as a triple <A, ~, >, where A is a (reference) specification, a finite
set Jis the fault domain that is a set of possible implementations (mutant machines) defined over
the same input alphabet as the specification, and ~ is a conformance relation, ~ € {= <}

A test suite w.r.t. a given fault model is a finite set E of finite input sequences of the reference '| :
machine A. A test suite E is said to be complete w.r.t. the fault model iff for all Be 3,B+A |
implies B+ A. |

Let S,(X,Y) denote the universal set of all deterministic FSMs over input and output
alphabets X and Y with at most m states. The fault model <A, =, Sm(X,Y)> is a classical black- _
box fault model for testing deterministic FSM implementations in isolation (Gill, 1962). It |
reflects a black-box representation of an IUT and is used in a number of methods for deriving |

test suites that provide complete fault coverage, for example, (Vasilevski, 1973), (Chow, 1978),
(Fujiwara et al, 1991).

2.3 The model of a system with an embedded component I
Many compound systems are typically specified as a collection of communicating components. (|
Assuming that the behavior of each component of a given system is known and can be described -

by an FSM, we can use a system of communicating machines as the model of the given system. |
The composition of two communicating FSMs, connected as shown in Figure 1a, is general |

166 Part Three FDT-Based System and Protocol Engineering

enough to discuss problems related to testing an embedded component. Further we assume for
the sake of simplicity that the sets X, U, Z, and Y of actions are pairwise disjoint.

(@) @ty | ostem Under Test
—X> —U> Spec _Z> _Y> | _U. wr _Z>
C (context) . i ra— .
Lest pass
;‘uﬁ; _L. Refercnczssj:;em ail

Figure 1 Composition of two communicating FSMs (a) and test architecture (b).

One FSM, called a component machine Spec, represents the behavior of a certain component
embedded within the system, while the other machine, called a context (machine) C, models the
remaining part of the system. The context may be viewed as a lumped, i.e. composed machine
of all components of the system, except the component Spec.

Two FSMs are communicating asynchronously via bounded input queues where actions are
stored. Bounded queues are usually assumed in order to obtain a finite state model of the global
System. In addition, we impose an /O ordering constraint on a manner the environment interacts
with the system. Specifically, a next external input x is only submitted to the system after it has
produced an external output y in response to the previous input. In other words, the system at
hand has a single message in transit. Under these assumptions, the number of global states of
the system is finite. A global state consists of states of input queues and states of the component

and context machines and can be represented in the form of a 2x2 matrix, where the first row
contains states of each input queue and the second row contains current states of the two
machines. According to the I/O ordering constraint, global states fall into the two categories,
stable and transient states. A stable state has empty input queues, and thus it is ready to accept an
bxternal input action. Accepting such an action, the system changes its current state from a stable
Yo a transient state where it cannot accept any extemal action. The system returns to a stable state
E.fter it has produced an external output action. Note that the number of stable states in the

ystem is bounded by the product of the numbers of states of the two machines, whereas the
number of the transient states may exceed that of stable states by the factor of the total number of
internal and external inputs.

The collective behavior of the system of two communicating FSMs can be described by
means of a product machine and composed machine. The former describes the behavior of all
component machines in terms of all actions within the system, whereas the latter describes the
'observed behavior in terms of external inputs and outputs.

The product machine SpecxC is customary represented by a graph of global states, obtained
by performing reachability computation (West, 1978), (Bochmann and Sunshine, 1980),
(Merlin and Bochmann, 1983), (Brand and Zafiropulo,1983), (Luo, Bochmann, and Petrenko,
1994). It can be deemed as a labeled transition system (LTS). The action set of this LTS is the
union of all alphabets of the communicating machines.

Based on the product machine SpecxC, a composed machine SpecoC can be obtained. Here

- *' is a hiding operation on all internal actions in the product machine. However, SpecoC

becomes an FSM under certain assumptions only, viz. the product machine should have no
livelocks. Hiding internal actions usually amounts to determinizing the LTS (an automaton), and
coupling external inputs and external outputs into labels of transitions between stable states.

The feedback composition of FSMs shown in Figure 1a generalizes the cascaded composition
of two machines considered in the previous work (Petrenko, Yevtushenko and Dssouli, 1994).

Fault Models for Testing in Context 167

In particular, the context machine for the serial composition of two FSMs is transparent either to
actions X (the component is the head machine) or to actions Z (the component is the tail
machine).

Example. Consider an example system of deterministic context and component machines,
shown in Figure 2. The initial states are a and 1. The composed machine SpeceC obtained from
the product machine (not shown here) has initially five states (Figure 3a), among which states
(a2) and (a3) are equivalent states. Merging these two states, we obtain the reduced form of the
composed machine (Figure 3b).

Wl 2l zlul @
xl/u x1/u2
72/u2 ‘o.o zl/yl

x2/y2 z2/y1

Figure 2 The context C (a) and component Spec (b) machines.
x2/yl

Figure 3 The composed machine (a) and its reduced form (b).
We will use this system to illustrate our discussion on testing an embedded component.

3 LOCAL TESTING OF A COMPONENT MACHINE

In a number of situations, it is possible to assume that, for testing purposes, the component of
interest can be tested locally, before being integrated with the context or, equivalently, by taking
it out of a composite system. Such a local testing of implementations of a given component
machine reduces to the classical black-box testing in isolation. In this paper, we assume that no
fault in the embedded component can increase the number of states compared with its _
specification. A number of test derivation methods can directly be applied to local testing. In this i
gection, we expose some hidden problems of local testing of the component which is intended to t
be used within the given context.

:Ip.l Testing for equivalence to the specification
iven a specification machine Spec and the set 8,(U,Z) of its possible implementation machines f
the fault domain), the equivalence relation is a natural candidate for the conformance relation. b
ereinafter n is the number of states of Spec. We have thus the classical black-box fault model |l
Spec, =, Sn(U,Z)>, as in Section 2.2. Based on this fault model, a complete test suite can be [
erived by employing any known method. _
Example. The machine Spec (Figure 2b) can completely be tested in isolation with seven test i
Lases of a total length of 35, obtained by applying the Wp-method (Fujiwara et al, 1991). The 5
test suite is complete w.r.t. the fault model <Spec, =, 33(U,2)>. It detects any machine with at I'_
{most three states that is not equivalent to the FSM Spec. ; ‘
When we derive a test suite complete w.r.t. the fault model <Spec, =, Sn(U.Z)>, we ignore I
the context which may not require that all the facets of the specification are implemented exactly "‘] i

as described. Intuitively, this is the case when certain features of the implemented component
cannot be exercised at all (there is no need to test them) or the context is tolerable to certain
faults. The conclusion is that the equivalence relation is too strong for the embedded machine

| - —

168 Part Three FDT-Based System and Protocol Engineering

and there may exist a shorter complete test suite than that derived w.r.t. the black-box fault

model <Spec, =, Sn(U.Z)>. We use our example system shown in Figure 2 to illustrate the
redundancy of tests based the above fault model.

Example. Consider the machine Jmp in Figure 4a. The FSMs Spec and Imp are not equivalent.
However, the machine ImpeC is equivalent to SpecoC (Figure 3), that is, embedded in the
context, Imp provides the same externally visible behavior as Spec. One may view the FSM Imp
as a mutant of Spec representing certain faults that are tolerated by the context machine. From
this viewpoint, any complete test suite for the Spec in isolation may be redundant. A test case
distinguishing such an Imp from the Spec can be deleted from any given test suite.

Figure 4 A machine Imp non-equivalent to Spec (a) and the FSM G (b).

3.2 Testing for equivalence in context

To avoid this redundancy of tests we can refine the fault model by relaxing the conformance
relation. The idea is to treat as conforming any implementation machine that combined with the
given context leads to a composed machine equivalent to SpecaC.

We say that the Imp is a conforming implementation in a given context if and only if
(1) the composed machine ImpoC exists and .

i | (2) the two composed machines ImpoC and SpecoC are equivalent (Petrenko, Yevtushenko,
| Bochmann, and Dssouli, 1996).

\ Assume (1) holds, then the equivalence in context, written Imp=cSpec, is defined as follows:
| Imp=c Spec iff ImpoC=SpecoC.

We write Imp#cSpec if Imp and Spec are not equivalent in the context C. Obviously,
equivalent FSMs are also equivalent in any context, that is Imp=Spec implies Imp=cSpec for
any context C, but the converse is not true.

We will also use a weaker relation, the V-external equivalence for a given VCX*. It is
defined based on the V-equivalence of the composed machines:

Imp=c,y Spec iff ImpeC=y SpeceC.

Tn fact, all machines equivalent to Spec in context can be captured by a single machine.
Specifically, we consider the equation GoC=SpeceC with G being a free variable. The general
solution to the equation is a nondeterministic FSM G (Petrenko, Yevtushenko, Bochmann, and
Dssouli, 1996). Any deterministic reduction of the FSM G that together with the context gives
! the composed machine is equivalent to Spec in context, i.e. it is a conforming implementation
' machine.

! This leads us to the following fault model. The reference machine is the machine G, the fault
[| domain is the set S,(U,Z) and the conformance relation is the reduction relation. The fault model

<G, £, Sn(U,Z)> is, however, not accurate. There may exist a deterministic reduction of the
machine G such that the corresponding product machine exhibits livelocks, i.c. no composed
i machine exists.)

i Assume that the fault domain S,(U,Z) has no machine of this kind. This is usually the case,
' for example, for compositions without feedback. Under this assumption, local testing provides
I complete fault coverage if tests complete w.r.t. the fault model <G, <, S.(U,Z)> are used.
There exists a systematic method for deriving tests complete w.r.t. this fault model (Petrenko,

e t— =
e —— . e TR

Fault Models for Testing in Context 169

Yevtushenko, and Bochmann, 1996). A test suite complete w.r.t. <G, <, S,(U,Z)> avoids the

redundancy of tests complete w.r.t. <Spec, =, S,(U,Z)> by excluding test cases used in the
latter to detect FSMs that are not equivalent to Spec in isolation, but equivalent in context.

Example. For our working example the FSM G representing the general solution to the
equation is shown in Figure 4b. Here a black hole corresponds to a so-called trap state that
produces all the outputs for all the inputs (Petrenko, Yevtushenko, Bochmann, and Dssouli,
1996). Intuitively, it indicates that any behavior of the component trapped to this state is
conforming in context since it cannot be exercised. To derive a complete test suite w.r.t. the fault

model <G, <, 83(U,Z)>, we follow the approach (Petrenko, Yevtushenko, and Bochmann,
1996). The resulting tests contain five test cases with the total length of 28. Recall that the test

suite complete w.r.t. the fault model <Spec, =, 93(U,Z)> obtained in Section 3.1 has 35 test
events. As expected, a less stringent conformance relation requires a shorter complete test suite.

+ In the case where the fault domain includes an implementation machine that falls into livelocks
with the given context, local testing based on the above outlined approach is insufficient. To
ensure the correct external system behavior, integration testing has yet to be performed. Another
possible solution to the problem is to identify the implemented reduction of the FSM G and to
check whether or not the identified machine may have livelocks when it is combined with the
given context.

3.3 Using local tests for testing in context

As discussed in the previous section, tests derived for local testing can ensure complete coverage
of faults in the embedded component. The above tests are expressed in terms of the actions of
internal inputs U and outputs Z. We call them internal tests. A natural question arises on whether
internal tests can be reused for testing in context, i.e. in the case where local testing itself is
unfeasible. We have no access to the internal interface, so we need external tests, i.c. tests
expressed in terms of external actions X and Y. An internal test should be translated into an
appropriate external test such that the internal test is applied to the component under test and
moreover the effect of an internally detected fault is propagated through the context. The general
answer to the question is negative.

Example. Consider the FSM G of Figure 4b. Assume that the input u; is applied to the initial
state 1. Any conforming implementation should produce the output zj. Assume, however, that
there is a fault, and an implementation produces the internal output z; instead of z;. The context
(Figure 2a) in the state b outputs just y;, no matter which internal signal comes from the
component. The fault is latent, though. The context moves to a wrong state a and in response to
the next external input x; it eventually propagates an error on the external output. Such a latent
fault is detected internally by a simple internal test case u, but can be externally observed when
a longer external test case xx; is applied.

As this example shows, translation of test cases does not necessarily preserve the length of
tests. Moreover, different implementations may require distinct external test cases to excite the
same internal test, since the same external input sequence causes various sequences of internal
actions for different implementation machines in the presence of feedback signals, unlike serial
compositions of FSMs (Petrenko, Yevtushenko, and Dssouli, 1994). There is even no
guarantee that the translation problem is decidable at all. It may well happen that no external test
can excite a required internal test for an implementation in context.

The test translation problem is thus obscure and local tests are not easy to reuse for testing in
context. There is a need for fault models tuned for testing in context.

4 EXPLICIT FAULT MODEL FOR TESTING IN CONTEXT

Testing in context is based on the test architecture shown in Figure 1b. It can be considered as a
detailed view of the one described in (ISO, 1995). An IUT is the component that needs to be
tested for conformance to its specification through the context. Further we assume that a given

\

170 Part Three FDT-Based System and Protocol Engineering

composite specification consists of deterministic components, moreover their implementations
are deterministic, as well. The verdict machine compares every pair of actions in the observed
traces. If actions are identical then the machine produces the verdict pass which also indicates
that a next test event can be executed. As soon as a discrepancy occurs, the machine produces
the verdict fail, terminating further test execution. We also require that the verdict machine
produces the verdict fail when the system under test falls into livelock. A timeout mechanism
can be used to detect such behavior (tests related to timed behavior are not considered here).
Based on the test architecture (Figure 1b), we now can define what constitutes a fault of the
embedded component, i.e. a fault model for deriving complete test suites. Since our tester is
equipped with a proper timer for detecting livelocks, we further assume that S,(U,Z) denotes the
set of machines with at most # states such that ImpoC exists. Given two FSMs Spec and C, the
composed machine SpeceC is the reference system RS. Similarly, the composed machine
ImpoC=IS models the system under test (implemented system). Outputs of the two composed
machines are compared and a corresponding verdict is produced by the verdict machine.
Producing the verdict fail, the verdict machine indicates that the two composed machines IS and

RS are not equivalent.
Similar to the case of an isolated FSM, we can use the fault model consisting of the reference

machine RS, the equivalence relation as conformance relation and the fault domain {Imp=C'|

Impe 3,(U,Z)}=3,(U,Z)=C, in other words, the triple <RS, =, 3,(U.,Z)oC>. We call it the
explicit fault model since all possible implemented systems are explicitly included within the fault

domain 3,(U,Z)C.
With respect to the fault domain 8,(U.Z)C, there are two possible cases. In the first case, a

given context is dummy and the fault domain 3,(U,Z)oC is the universal set of possible
deterministic FSMs over X and Y within a certain number of states. Testing in such a context is
nothing more than black-box-based testing in isolation. In the second case, a given context is not
trivial and the fault domain may be a proper subset of the universal set. We need to derive a test

suite complete w.r.t. the fault model <RS, =, 3,(U,Z)oC>, however, we are unaware of any
systematic method except for a brute force search. Nevertheless, it is worth to outline such a
straightforward approach.

Assume that we could enumerate all machines in the set 3,(U,2) while not taking into
account isomorphic machines. For each FSM we construct a composed machine. Comparing the
result with the FSM RS=SpeceC, we can derive at least one input sequence that distinguishes
them whenever they are not equivalent. The union of distinguishing sequences for all machines

-in 8,(U,Z)=C gives a desired test suite. We may try to minimize it, since a single sequence can
distinguish several composed machines from the FSM RS. The last problem reduces to a
classical set cover problem (Johnson, 1974).

Because of its complexity, such a solution is feasible only for a small number of faults to be
detected by testing in context, for example for single output faults of the embedded component.

All the machines of the set 3,(U,Z)=C are simply not possible to explicitly construct in a realistic
situation. Since we have no other method for deriving tests complete w.r.t. the above fault
model, we shall look for another fault models.

5 FAULT MODELS BASED ON THE COMPOSED MACHINE

5.1 Classical black-box fault model

The straightforward approach to the problem of deriving a test suite for an component embedded
within a system, as discussed above, faces a potential explosion of the number of possible
mutant composed machines. An attempt to avoid the necessity of enurnerating all these machines
could be made based on the fact that they constitute a subset of all machines over the alphabets X
and ¥ with a certain number of states. An upper bound on the number of states in any composed

Fault Models for Testing in Context 171

machine can be, in fact, established as follows. The product of the number of states of Spec and
the number of states in the context gives the upper bound m on the number of states in any

composed machine. The fault domain becomes 3,,(X,Y) = D-sub(Chp(X,Y)). Now any
complete test suite w.r.t. the fault model <RS, =, D-sub(Chyy(X,Y))> is also complete w.r.t.

the explicit fault model. The reason is that the fault domain 3,(U,Z)oC is a subset of 3,,(X,1).
The latter fault model is used in a number of existing test derivation methods for an FSM in
isolation, so test derivation is feasible. Such an approach has, however, several drawbacks.
First, the bound m may not be tight, in other words, the question is whether there exists a
faulty implementation machine Imp such that the composed machine ImpoC has exactly m states

in its reduced form. It is well-known that the size of a test suite required to test a machine with m
states with respect to a specification machine with k states (k<m) grows exponentially as (m-k)
increases (Vasilevski, 1973), (Chow, 1978), (Fujiwara et al, 1991). Any overestimation of the
increase in the number of states due to faults results in a huge redundancy in the obtained test
suite. We are unaware of any systematic method that can establish the least upper bound for the
problem.

+ Second, the set of all machines with up to m states includes machines that do not correspond
to any system with the given context. We call such machines unfeasible for a given context. The
context is a fault-free machine in any implemented system by our assumption. A complete test
suite w.r.t. the above mentioned fault model even for a tight bound m, is redundant.

Example. To illustrate the results of treating the system as a black-box, we derive a complete
test suite for the composed machine (Figure 3b) with four states w.r.t. all FSMs with at most six
states (m=6). The Wp-method (Fujiwara et al, 1991) delivers a test suite containing 41 test cases
of total length 294. Completeness of the obtained test suite means that it detects non-equivalence

of any out of (6x2)(6%2) = 1212 possible machines with two inputs, two outputs and up to six
states. These are exactly all submachines of the chaos machine Chg(X,Y).

To decrease the size of a test suite required to test the component in context, unfeasible
machines should somehow be excluded from the fault domain.

5.2 Deleting unfeasible machines

It is in fact possible to exclude at least some of the unfeasible machines from the fault domain

represented by all D-submachines of the chaos machine Ch,,(X,Y). The idea is to combine a
iven context machine C with a compressed representation of all possible implementations of a

component machine Spec. As mentioned in Section 2, the chaos machine Ch(U,Z) contains all

machines of the set §,(U,Z) as its D-reductions. Intuitively, this chaos machine can be seen as
She loosest description of the behavior of an embedded component. Using such a compressed

representation of the set S,(U,Z) of deterministic machines, we can obtain a composed machine
that describes the external behaviors of all possible implementation machines with the given
context. Unlike the straightforward method of Section 4, the necessity of processing
deterministic machines one by one is now avoided. Specifically, we construct the product
machine Ch(U,Z)oC in a usual way. As discussed before, constructing the composed machine
from the product machine we can neglect livelocks, as they are detected by the tester equipped
with a timer. The resulting composed machine Ch(U,Z)>C becomes nondeterministic and any
feasibie composed machine is its reduction. We use our working example to illustrate the idea of
constructing such a nondeterministic composed machine.

Example. The chaos machine Ch(U,Z) has a single state as shown in Figure 5a. The context
machine (Figure 2a) has two states, the composed machine Ch(U,Z)oC shown in Figure 5b has
two states, as well.

ul,u2/z1,22 () ®) XLx2y1 xoy2

> G LD

x1, x2/y1 XTiy1 xl/yl
Figure 5 The chaos machine Ch(U, Z) (a) and the composed machine Ch(U,Z)-C (b).

172 Part Three FDT-Based System and Protocol Engineering

Intuitively, the machine Ch(U,Z)oC describes the external behavior of any implemented
system of the component machine Spec with the given context C, no matter how many states a
component Imp has. The reference system RS = SpeceC is a D-reduction of Ch(U,Z)eC.
Speaking more formally, we have the following fact.

Proposition 5.1. For any implementation machine Impe S,(U,Z), the composed machine
ImpoC is a D-reduction of Ch(U,Z)-C.

Among all D-reductions of Ch(U,Z)oC there are machines with more than m states, where m
is the upper bound on the number of states in any implemented system. In our example, m=6.
The chaos machine Chg(X,Y) used in the previous section contains 1212 D-submachines. Now
we estimate the number of D-reductions of Ch(U,Z)oC (Figure 5b) with up to six states. Any D-
reduction of this machine may have an outgoing transition to any of six states, for any particular
state and any input, provided that an output equals to that of Ch(U,Z)C. The total number of
such machines is 612. We conclude that in our example, approximately 1212 - 612 unfeasible
machines are removed when the fault domain is represented by the set D-redg(Ch(U,Z)oC)
instead of D-sub(Chs(X,Y)).

We define the following fault model <RS, =, D-red,,(Ch(U,Z)C)>.
Proposition 5.2. A complete test suite w.r.t. the fault model <RS, =, D-red;,(Ch(U,Z)oC)>
is a complete test suite w.r.t. the explicit fault model <RS, =, Sp(U,Z)oC>.

In an extreme case, the two machines Ch(U,Z)oC and Ch (X,Y) become equivalent.
Intuitively, it means that the context is dummy. In cases where Ch(U,Z)C and Ch(X.Y) are not
equivalent, the machine Ch(U,Z)oC is 'less nondeterministic’ and thus more precisely represents
the fault domain than Ch,,(X,Y).

The question arises now on how a test suite satisfying Proposition 5.2 can be constructed.
This is an open problem, since in general, not much is yet known about complete test suites for
nondeterministic machines. The solution of this problem may have various applications,
however, in the context of this study, we refrain from further elaborating this approach because
of the following reason.

Take our example system, there exist (3x2)(3*2) = 66 possible component machines with two
inputs, two outputs and up to three states. At the same time, the set D-reds(Ch(U,Z)oC) has 62
machines. This means that the set D-redg(Ch(U,Z)oC) is not the best possible approximation of

the fault domain, since it contains, along with the interesting machines, as much as 612 - 66
unfeasible FSMs that are superfluous and should be further excluded from the fault domain.

5.3 Further refinement of the fault domain

It is known that the set of D-submachines of an FSM often is a proper subset of the set of its D-
reductions with the same number of states (Petrenko, Yevtushrenko, Lebedev, and Das, 1993).
It is therefore worth to use D-submachines instead of D-reductions. The idea is then to replace
the chaos machine with a single state by another chaos machine with several states. It is known

that every FSM of S,(U,Z) is isomorphic to a D-submachine of the chaos machine Ch,(U,Z).

Similar to the approach of the previous section, we combine the nondeterministic FSM
Chp(U,Z) and the deterministic context machine C into the composed machine Chp(U,Z)C.
Example. The chaos machine has three states, as the component machine Spec (Figure 2b).
The composed machine should have six states, as the context has two states. Table 1 gives the
state table of Ch,(U,Z)-C. Bold symbols in the table label transitions of the composed machine
RS shown in Figure 3a. Faults cannot alter outputs, but can change the tail state of nine
transitions, as shown in this table.

Intuitively, the machine Ch,(U,Z)=C describes all possible deviations in the behavior of the
composed machine due to potential faults in any implementation of the machine Spec with the
given context C. Speaking more formally, we have the following fact.

BT B ——. S

Fault Models for Testing in Context 173
Table 1 The nondeterministic composed machine Ch,(U,Z)-C.
input 1 2 3 4 5 6
x] 3/y1 Siy1 3/y1 2/y1 2/y1 6/y1
1,2,4,5,6 1,23,4,6 | 1,2,4,56 | 1,3,4,56 | 1,3,4,5,6 | 1,2,3,4,5
X2 2/y1 4/y, 1/yy 3/y1 3/ Slyy
1,3,4,5,6 1,2,4,56 | 1,2,4,5,6

Proposition 5.3. For any implementation machine Impe S,(U,Z), the composed machine
ImpoC is isomorphic to a D-submachine of Chp(U,Z)oC.

The machines Ch(U,Z)°C and Ch,(U,Z)oC are equivalent but have different sets of

submachines. If the set of D-submachines of Ch,(U,Z)C is a proper subset of the set of its D-
reductions up to m states then the set D-sub(Ch,(U,Z)oC) contains fewer unfeasible machines
than the set D-red,,(Ch(U,Z)C.
Example. The FSM Ch3(U,Z)-C (Table 1) has 62 D-submachines, since there are nine cells in
the state table each of which contains six different transitions. Recall that the fault domain based
on the machine Ch(U,Z)oC contains 6!2 machines. Thus, approximately, 612 - 69 machines are
further excluded as unfeasible.

Based on the obtained fault domain, the fault model can now be defined as <RS, =, D-
sub(Chp(U,Z)C)>.

Proposition 5.4. A complete test suite w.r.t. the fault model <RS, =, D-sub(Chn(U,Z)oC)>
is a complete test suite w.r.t. the explicit fault model <RS, =, S,(U,Z)-C>.

To derive a complete test suite w.r.t. this fault model we can now apply the FF-method (fault-
function-based method) developed in (Petrenko and Yevtushenko, 1992), since the
nondeterministic machine Chp(U,Z)oC containing the reference machine RS can be interpreted
as a fault function of the FSM RS. The method is proven to deliver a complete test suite.
Example. We use the FF-method to derive a complete test suite for the composed machine RS
(Figure 3) and the fault function in Table 1. The resulting complete test suite w.r.t. the fault

model with the fault domain D-sub(Ch3(U,Z)=C) has 32 test cases of the total length 235. Recall
that the test suite complete w.r.t. the fault model considered in Section 5.1 has 294 test events.
A more accurate description of the fault domain decreases the length of a necessary test suite.
Unfortunately, the machine Ch,(U,Z)oC may still contain some D-submachines that do not
correspond to any composed machine with a faulty component machine. In our example, the set
93(U,Z) contains 66 possible machines. It indicates that in the worst-case situation, the machine

Chy(U,Z)=C has 69 - 66 unfeasible D-submachines. A complete test suite for testing in context
may yet be redundant.

5.4 Discussion

Summarizing this section, we note that based on the composed machine RS = SpecoC, four
different fault models can be devised. All of them have the same reference machine, the same
conformance relation and only differ in their fault domains. Specifically, we have

D-sub(Chp(X.Y)) 2D-redyn(Ch(U,Z)oC) 2D-sub(Chp(U,Z)oC) 23,(U,Z)<C.

In this case, we say that one fault model refines the other if strong inclusion between their fault
domains holds. For a non-trivial context, the fault model based on D-sub(Chn(U,Z)<C) is the
best approximation of the explicit fault model among the three considered so far. Moreover, it

seems to be nearly impossible to exclude all the unfeasible machines from any fault domain with
a reference machine defined only over external input and output alphabets.

- T
. i
' : E l 174 Part Three FDT-Based System and Protocol Engineering
|
| !

6 FAULT MODELS BASED ON THE APPROXIMATION OF THE
COMPONENT

We wish to come up with a fault model such that the reference specification represents
component's properties controlled and observed through the context and the fault domain is the

set Sp(U,Z) of all possible implementation machines of the component Spec augmented by an
external inputs and an output null. In other words, we make the additional assumption that the

SM Spec as well as all its possible implementation machines ignores all external inputs x by
Eroducing the null output while maintaining its current state. This is similar to a particular
, ompleteness assumption widely used in the context of protocol conformance testing. We refer
!' I to an Imp augmented in this way as to an X-augmentation of Imp and denote it as Imp4. The set

of all augmented machines of 3,(U,Z) is denoted by Sa(U,Z). The idea of determining a
orresponding reference specification is to find the loosest behavior of any embedded
omponent keeping the information on the correctness of external outputs produced by a given
ontext in response to every external input sequence. Depending on the current stable state and
xternal input x, the context and a component at hand may involve in various interactions
enerating an internal /O sequence before an external output is produced. All sequences which
an be produced by any Imp conforming to Spec w.r.t. x at the current stable state result in the
ame expected external output y. Once internal sequences leading to a wrong external output are
iscarded, it is possible to exclude actions ¥ from our description. The loosest description of the
onforming behavior of a component in context w.r.t. all possible external input sequences is
alled the approximation of the specification machine Spec in context C (Petrenko,
evtushenko, Bochmann, and Dssouli, 1996). It is in fact, a nondeterministic machine defined

ver the input alphabet XUU, the output alphabet Zu{null, fail}. We use [[Spec]]c to denote
e approximation of the specification.

.1 Construction of approximation of the embedded component in context
The method for constructing the approximation is based on the test architecture shown in Figure
{Ib. Assume that an IUT is replaced by a chaos machine that does whatever any feasible
implementation can. The first verdict fail produced by the verdict machine Ver in response to a
given external input sequence simultaneously applied to the system under test containing the
[chaos machine and to the reference system indicates that a certain output produced by the chaos
i machine is an error. The current external input x is paired with the null output when there exists
i | . 4 at least one machine Imp externally equivalent to Spec with respect to the accepted input
i sequence. An internal input u to the component should then be paired with all internal outputs z
[IEH that do not force the context to produce a wrong external output. By doing this we can obtain the
A I loosest description of the conforming behavior of the component in context in response to each
[external input sequence. When an external input sequence becomes longer, fewer
il fr implementations remain conforming, i.e. externally equivalent to Spec with respect to this
i sequence. To handle this situation, the current input x should be paired with a designated output
signal fail informing us that an expected output can no longer be produced. It means that a
| conforming behavior of any possible implementation is no longer possible. Intuitively, an
' external input sequence resulting in the output fail can later be used as a test that reveals certain

faulty implementations.

' We note that some internal I/O sequences cannot be excited at the input of any implementation
- machine in response to a given external input sequence. Nonexecutable sequences correspond in
| /] a sense to 'unfeasible’ machines. The trap state, as in Section 3.2, accepts all nonexecutable

sequences. Separating executable internal /O sequences from nonexecutable ones we eventually
tune our fault model to the explicit fault model.

Now we demonstrate how the approximation can be constructed. Given a specification
machine Spec and a context machine C, the reference system is RS =SpecoC. Let Ch be a chaos

machine with a single state in alphabet U and Z. We construct first a product machine ChXCXRS

Fault Models for Testing in Context 175

XVer. The machine [[Spec]]c is then derived from the product machine in alphabets XUU and

ZU{null, fail}. In other words, constructing [[Spec]]c we hide in ChXCXRS xVer all actions ¥
and verdicts pass. The chaos machine is nondeterministic, therefore for a particular input u it
produces all possible outputs z. Some of them result in the verdict fail, while others result in
pass. The former actions are deleted and the input u is paired with the remained actions. A
current external input x is coupled with fail only when all internal actions result in fail. The
input x is coupled with the output null otherwise. We illustrate the constructions on our working
example system. For more details, the reader is referred to (Petrenko, Yevtushenko, Bochmann,
and Dssouli, 1996).

Example. To obtain the approximation [[Spec]]c¢ of the FSM Spec in context C (Figure 2) we

have to first construct the product machine ChxCXRS xVer. Figure 6 shows the approximation
[[Spec]]c obtained from the product machine. Here a black hole is a trap state that has incoming
transitions from all states labeled with an input not specified at a particular state with
corresponding outputs: u1 or uz with outputs z1, zp, or x1, xp with the output n (null). These
transitions are not shown in this figure. As an example, the initial state 1 has additional
transitions to the trap state labeled with u1/z1,z3 and ua/z1,2, and state 2 has three transitions
labeled with x1/n, xa/n and us/z1,22. Stable states 1, 5, 6, 8, 9, 13, 14 are depicted in bold
circles, thick lines represent their outgoing transitions.

|[Figure 6 The approximation [[Spec]]c.
The approximation in context enjoys the following nice properties.
'Proposition 6.1. Given the approximation [[Spec]]c of the specification Spec in context C,

we have Imp=cSpec iff Impa<[[Spec]]c for all Impe 3,(U,Z).

The proof is given in (Petrenko, Yevtushenko, Bochmann, and Dssouli, 1996).

Moreover, for every implementation machine that is not a reduction of the approximation,
there exists an external input sequence that distinguishes the angmented implementation from the
specification in the given context. For a given ae (XUU)* we denote a* projection of & onto
the alphabet X (X-projection).

176 Part Three FDT-Based System and Protocol Engineering

Proposition 6.2, Given an implementation machine Impe 8,(U,Z) and the approximation

[[Spec]]c of the specification Spec in context C, there exists a Sequence ae (XUU)* such that
Impag allSpec]lc iff Imp#c ox Spec.

For the proof we refer again to (Petrenko, Yevtushenko, Bochmann and Dssouli, 1996,

6.2 Fault models
Proposition 6.2. indicates that the approximation in context of the specification can serve as a
proper characterization of faults of the Component in context. This leads us to propose the fault

model <{[Spec]]c, <, Sz(U,Z)>. The fault model seems to be precise since Proposition 6.2
establishes both, necessary and sufficient conditions,

Proposition 6.3, The X-projection of a complete test suite w.r.t, the fault model <[[Specl)c,
<, S, 2)> is a complete test suite w.r.t. the explicit fault mode] <RS, =, 8,(U.2)oC>.

Once a test suite complete w.r.t. the fault model <[[Specllc, <, S:(U,Z)> is obtained, it can
easily be converted into a corresponding external test suite by making the X-projection of every
test sequence. Unfortunately, the problem of deriving tests complete w.r.t. this fault mode]
remains open.

that for testing in context since several external input sequences may be needed to deliver a
single internal test case to different implementations and to propagate an internally detected faut
to the external output, as we have demonstrated in the Section 3.

Replacing the fault domain S:(U,Z) by the universal set Sn(XUU,Z) of deterministic
machines over the alphabets XUl and Z, we can obtain the fault model <[[Spec]]c, <,

Sn(XUU,Z)>. Clearly, Sn(XuU,Z)Dsz(U,Z). For this fault mode] there exists a suitable test
derivation technique (Petrenko, Yevtushenko, and Bochmann, 1996).

Example. The test suite derived for our working example based on the above fault model has
21 test cases of length 120,

Unlike S:(U,Z), the fault domain In(XUU,Z) contains unfeasible machines, therefore a test
suite complete w.r.t, <[[Spec]c, <, 3,,(XuU,Z)> may be redundant, as it js in our example.

7 COMPARING FAULT MODELS

The following models of faults in an embedded component are proposed in this paper:
- <RS, =, 8,(U,2)eC>, the explicit fault model;

-<RS, =, D-sub(Chm(X,Y))> that is based on a black-box representation of an implemented
system;

-<RS, =, D-redm(Ch(U,Z)oC)>, based on deterministic reductions of the chaos machine with a
single state;

-<RS, =, D-sub(Ch,,(U,Z)oC)>, based on deterministic submachines of the chaos machine
with n states;

- <[[Specl]c, <, Sﬁ(U, Z)>, based on the approximation in context of the specification Spec and
the fault domain S:(U,Z) of all X-augmented implementations of the component;

Fault Models for Testing in Context

177
- <[[Specl]c, <, 3,,(XuU,Z)>, using the universal set Sn(XuU,Z) as the fault domain,
Table 2 Characteristics of the fault models.
RS conf. relat. fault domain any method? accuracy [TS length
RS = 3(U.2)eC - + 67
RS = D-5ub(Ch (X, 7)) n - 294
RS = D-red,,,(Ch(U,Z)oC) - - ?
RS = D-sub(Ch,(U,Z)oC) + - 235
[[Specllc < SH(U, 2) - + 67
([Speclic < 3n(XUU,Z) + - 120

8 CONCLUSION

We have considered jn this paper the problem of modeling faults located in a given component
embedded with

in a composite system. Various fault models appropriate for test derivation in
context have been elaborated, All of them rely on the assumption that faults do not increase the
number of states of the specification bu

t can easily be adjusted to the case when the number of
states in any implementation of the embedded

component machine exceeds that of the
specification. The existing FSM-based methods ca

n be applied to derive test suites complete
W.L.L. some fault models. Devisin

g fault models appropriate for testing in context is the first step
towards systematic methods for deriving test suite

with guaranteed fault coverage. A lot of work
remains to be done in this direction.

Acknowledgments. This work was partly supported by the NSERC Strategic grant and by
the Russian Found for Fundamental Research,

models, in Protocol Test Systems VII, Chapman & Hal
Bochmann, v.G., and Sunshine, C.A. (1980) Formal

methods in communication protocol

design. IEEE Trans. on Comm., 28, 624-31.

Brand, D., and Zafiropulo, P. (1983) On communicating finite state machines. Journaj of ACM,
30, 2, 323.42,

Chow, T.S. (1978) Testing software design modeled by finite-state machines. IEEE Trans. on
Soft. Eng., SE-4, 3, 178-87.
am, v.H., Kloosterman, H., and Kwast, E. (1992) Test der

ivation for standardized test
methods, in IFIP Transactions Protocol Test

Systems IV, North—Ho]land.

ontext, in I5th IFIP International
Symposium on Protocol Specification, Testing, and Verification, Chapman & Hall.
ISO/IEC JTC1/SC21 WG7. (February 1995) Formal methods in conformance testing, Working
Draft Project 1.21.54, ISO.

Johnson, D.§. (1974) Approximation algorithms for combinational problems. Journal Comput,
Syst. Sci., 9, 256-78.

s o et

A A

d
'S
g
s

Formal Description
Techniques I1X

Theory, application and tools

IFIP TC6 / 6.1 International Conference on Formal
Description Techniques I1X/Protocol Specification,
Testing and Verification XVI, Kaiserslautern, Germany,
8-11 October 1996

Edited by

Reinhard Gotzhein

and

Jan Bredereke

Department of Computer Science
University of Kaiserslautern i
Germany |

Published by Chapman & Hall on behalf of the
International Federation for Information Processing (IFIP)

m CHAPMAN & HALL
London - Weinheim - New York - Tokyo - Melbourne - Madras

