Manage Risk by Risk-Driven Continual Regression Testing

Yanping Chen
School of Information Technology and Engineering, University of Ottawa
Outline

- Risk and risk-based testing
- Regression testing and risk-based continual regression testing
- Risk-based regression test case selection
- Risk-based end-to-end scenario selection
- Real experience to date
- Summary and recommendations
- Reference
Risk and Risk-based Testing

- Risk: event that has some probability of happening, and that if it occurs, will result in some loss
- Risk-based testing: do heavier testing of those parts that may bring higher risk
- Risk-based testing actions
 - Identify risk for functions or features
 - Quantify risk and create ranked list of functions or features
 - Design test cases based on ranked list
Why Risk-based Testing?

- All testing is motivated by risk: Tester’s job is finding high-priority problems to avoid risk
- Traditional testers have always used risk-based testing, but in ad hoc fashion based on their personal judgment [4]
- Using risk to measure quality of test suite is reasonable

“Risk-based testing” vs. “Food-based living” [Air]
Questions to asked for risk-based approach

- Which areas are significant?
- How much testing is enough for average area?
- What are risks involved in leaving certain bug unresolved?
- At what point can product be considered adequately tested and ready for market?
Continual Regression Testing

- *To ensure that new or modified features do not cause current release to regress after incorporating fixes into product -- ensure customer’s business won’t be at risk*
- Essential to ensure software quality
- In software maintenance: validate modified software
- In O-O software development
 - Ensure quality of successive increments
 - Assess quality of re-used components
- Continual regression testing: execute regression tests every day or on every new build
Typical Regression Test Selection

Test Suite T

T'': New test cases

T': Regression test cases selected from T

Regression Test Suite T'''

Program P

New Features

Changed Features

Program P'
A Simple Risk Model [2]

- Two elements of Risk Exposure (RE_f):
 - Probability of fault
 - **Cost** (consequence or impact) of fault in corresponding function if it occurs in production

- $RE_f = P_f \times C_f$
 - RE_f: Risk Exposure of function f
 - P_f: probability of fault occurring in function f
 - In our model, we consider severity of defects to assess probability
 - **Note:** $P(f)$ is extended to severity probability
 - C_f: cost if fault occurs (in production) in function f
Risk-based Regression Testing Approach

Model-based Tests Selection Method:
Step 1. Assess cost C_t for each test case
Step 2. Derive severity probability P_t for each test case
Step 3. Calculate Risk Exposure RE_t for each test case
Step 4. Select test cases with top RE_t as regression test cases
Assess Cost C_t

- **Two kinds of costs**
 - $C_t (c)$: Consequences of fault as seen by customer, i.e., losing market place
 - $C_t (v)$: Consequences of fault as seen by vendor, i.e., high software maintenance cost

- C_t is categorized on 1~5 scale (1- low, 5 - high)
 - Weight $C_t (c)$ and $C_t (v)$ equally
 - $C_t = (C_t (c) + C_t (v))/2$
Assess Cost C_t (Cont’d)

- $C_t (c)$
 - Test case takes one, specific control flow and includes some data
 - Create questionnaire with questions for both control flow and data
 - Score each test case based on answers for questionnaire as $C_t (c)$, on 1~5 scale (1- low, 5 - high)

- $C_t (v)$
 - Cost to fix bugs is dependent on system complexity
 - Use proper questionnaire in assessment
 - Measure $C_t (v)$ on 1~5 scale (1- low, 5 - high)
Derive Severity Probability P_t

- Summarize number of defects opened for each test case after running full test suite
- Calculate average severity of defects for each test case
- *Use result of Number of Defects (N_t) times Average Severity (S_t) $N_t \times S_t$ to assess severity probability*
- P_t falls into 1~5 range (1 - low, 5 - high)
 - Test cases without any defects in full testing, $P_t = 1$.
 - Test cases with the top 25% estimate $N_t \times S_t$, $P_t = 5$
 - Test cases with the bottom 25% estimate $N_t \times S_t$, $P_t = 2$
Calculate *Risk Exposure* RE_t

Step 1:

<table>
<thead>
<tr>
<th>Test Case</th>
<th>C_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>t0010</td>
<td>5</td>
</tr>
<tr>
<td>t0020</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>t_n</td>
<td>3</td>
</tr>
</tbody>
</table>

Step 2:

<table>
<thead>
<tr>
<th>Test Case</th>
<th>N_t</th>
<th>S_t</th>
<th>P_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>t0010</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>t0020</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>...</td>
<td>.....</td>
<td>.....</td>
<td>.....</td>
</tr>
<tr>
<td>t_n</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

$$RE_t = P_t \times C_t$$
Select Test Cases with Top RE_t

- Choose test cases with highest value of RE_t
- Reach pre-defined coverage target (e.g., 30% of full test suite)

<table>
<thead>
<tr>
<th>Test Case</th>
<th>Full Test Suite</th>
<th>Regression Test Suite (30%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t0010</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>t0020</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>t0030</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>t0040</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>t0050</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>t0060</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>t0070</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Risk-based End-to-end Regression Test Scenario Selection

- **Test Scenario**
 - Simulate common user profiles of system use
 - More customer-directed
 - Highly effective at finding regression faults
 - Covers sequence of test cases -- *Traceability*

- **Selection rules**
 - Select scenarios that contain most critical test cases
 - Have test suite of scenarios cover as many test cases as possible
Risk-based Regression Test
Scenario Selection

End-to-end Test Scenario Selection Method

To start: Create traceability matrix between scenarios and test cases

Step 1. Calculate Risk Exposure RE_s for each scenario

Step 2. Select scenario with highest RE_s as regression tests

Step 3. Update traceability matrix and re-calculate RE_s

Step 4. Repeat Steps 2 and 3 until out of time and resources
End-to-end Test Scenario
Selection Method with Example

Step 1. Calculate Risk Exposure
RE_s for each scenario

$RE_s = \sum RE_{t_i}, \{1 \leq i \leq n | \text{test case } t_i \text{ is covered by this scenario}\}$

Step 2. Select scenario with highest RE_s for regression testing
<table>
<thead>
<tr>
<th></th>
<th>s001</th>
<th>s002</th>
<th>s003</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>t0010</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>t0020</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>t0030</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>t0040</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>t0050</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>t0060</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>t0070</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Scenario

<table>
<thead>
<tr>
<th>Scenario</th>
<th>RE<sub>s</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>s001</td>
<td>985</td>
</tr>
<tr>
<td>s002</td>
<td>463</td>
</tr>
<tr>
<td>s003</td>
<td>732</td>
</tr>
<tr>
<td>s004</td>
<td>213</td>
</tr>
<tr>
<td>s005</td>
<td>195</td>
</tr>
<tr>
<td>s006</td>
<td>127</td>
</tr>
<tr>
<td>s007</td>
<td>70</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Table (excerpted):

<table>
<thead>
<tr>
<th></th>
<th>C<sub>f</sub></th>
<th>P<sub>f</sub></th>
<th>RE<sub>f</sub> = P<sub>f</sub> × C<sub>f</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>t0010</td>
<td>5</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>t0020</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>t<sub>n</sub></td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
Step 3. Update traceability matrix and re-calculate RE_s

- When running chosen scenario, some test cases will be covered – not necessary to cover again
- Thus, after chosen scenario has been executed
 - Delete column for chosen scenario
 - Delete rows for all test cases that have been covered by this scenario
- Based on updated relation table, re-calculate RE_s for rest scenarios and re-build Risk Exposure table

Step 4. Repeat Steps 2 and 3 until out of time and resources

- Size of test suite is dependent on time and resources
<table>
<thead>
<tr>
<th>t0010</th>
<th>s001</th>
<th>s002</th>
<th>s003</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>t0020</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>t0030</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>t0040</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>t0050</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>t0060</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>t0070</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>...</td>
</tr>
</tbody>
</table>

Next choice -- s003

<table>
<thead>
<tr>
<th>Scenario</th>
<th>REs</th>
</tr>
</thead>
<tbody>
<tr>
<td>s002</td>
<td>356</td>
</tr>
<tr>
<td>s003</td>
<td>611</td>
</tr>
<tr>
<td>s004</td>
<td>176</td>
</tr>
<tr>
<td>s005</td>
<td>180</td>
</tr>
<tr>
<td>s006</td>
<td>96</td>
</tr>
<tr>
<td>s007</td>
<td>68</td>
</tr>
</tbody>
</table>

...
Case Study with historical data of IBM WebSphere

- Three components of IBM WebSphere with different characters
 - Component One: Focus on functionality
 - Component Two: Focus on data
 - Component Three: Both functionality and data are important
- Each component was owned by one experienced tester
- 306 test cases in total
Real Experiences to Date

- High Risk Exposure coverage and average Risk Exposure
- Acceptable specification coverage not our focus
- Only requires straightforward calculation – *can be automated*
- Systematic – *not subjective*!
- Powerful in selecting effective test cases and finding defects
 - Caught all defects
 - Omitted fewer test cases that failed in execution

<table>
<thead>
<tr>
<th></th>
<th>Risk-based Test Suite</th>
<th>Manual Test Suite</th>
<th>Compared Well</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defects Detected (%)</td>
<td>100%</td>
<td>84.1%</td>
<td>√√</td>
</tr>
<tr>
<td>Defect-revealing Test Cases Selected (%)</td>
<td>93.9%</td>
<td>83.1%</td>
<td>√</td>
</tr>
</tbody>
</table>
Summary

- New risk-based regression test technique
 1. *Risk-based* regression test case selection
 2. *Risk-based* regression test scenario selection
- New objective selection criteria that has good potential to guide regression test selection, even for new or less-experienced test personnel – SYSTEMATIC APPROACH!
- An EFFECTIVE means of QUANTIFYING quality of test suite
Recommendations for Adoption in Process

- Highlight & motivate **RISK**
 - Analysis
 - Planning
 - Results

- Collect risk data
 - Test plan
 - Cost of test cases
 - Scenarios vs. test cases
 - Test profile
 - Number of defects by test case
 - Defect severity

- Measure efficiency & effectiveness
 - % defect detection
 - % defect-revealing test case coverage
Reference

