
- 24 -

[TV] Tvrdy, I. Formal Modelling of Telematics Services Using LOTOS.Microprocessing
and Microprogramming, Vol. 25,1989, No. 1-5, 313-317.

[VL] Vissers, C. A., and Logrippo, L. The Importance of the Service Concept in the Design
of Data Communications Protocols. In Diaz, M. (ed.)Protocol Specification, Testing,
and Verification, V. North-Holland, 1986.

[VSV] Vissers, C. A., Scollo, G., and van Sinderen, M. Architecture and Specification Style
in Formal Descriptions of Distributed Systems. In: Aggarwal, S., and Sabnani, K.,
(eds.)Protocol Specification, Testing and Verification, VIII, North-Holland, 1988,
189-204

[VTZ] van Hulzen, W., Tilanus, H., and Zuidweg, H. LOTOS Extended with Clocks, to
appear in: Vuong, S., (ed.)Formal Description Techniques, North-Holland, 1990.

[VVD] van Eijk, P.H.J., Vissers, C. A., and Diaz, M. (eds.).The Formal Description Technique
LOTOS. North-Holland, 1989.

[Z] Zave, P. The Distributed Alternative to Finite-State-Machine Specifications.ACM
Trans. On Prog. Lang. and Systems, 7, No. 1, Jan. 1985, 10-36.

- 23 -

REFERENCES

[BO] Bochmann, G. V. A General Transition Model for Protocols and Communication
Services.IEEE Trans. Comm., 28(1980) 643-650.

[BR] Brinksma, E. On the Design of Extended LOTOS, A Specification Language for
Distributed Systems. Doctoral Dissertation, Universiteit Twente (NL), 1988.

[BR1] Brinksma, E. A Theory for the Derivation of Tests. In: Aggarwal, S., and Sabnani, K.,
(Eds.) Protocol Specification, Testing, and Verification, VIII, North-Holland, 1988, 63-
74.

[BH] Biebow, B. and Hagelstein, J. Algebraic Specification of Synchronization and Errors:
A Telephonic Example. Lectures Notes in Computer Science, Vol. 186, 294-308.

[FLS] Faci, M., Logrippo, L., and Stepien, B. Formal Specifications of Telephone Systems in
LOTOS. To appear in: Brinksma, E., Scollo, G., and Vissers, C.Protocol Specification,
Testing, and Verification, IX, North-Holland, 1990.

[GHL] Guillemot, R., Haj-Hussein, M., and Logrippo, L. Executing Large LOTOS
Specifications. In Aggarwal, S., and Sabnani, K., (eds.)Protocol Specification, Testing
and Verification, VIII,North-Holland, 1988, 399-410.

[GL] Guillemot, R., and Logrippo, L. Derivation of Useful Execution Trees from LOTOS
by Using an Interpreter. In: Turner, K. J. (ed.),Formal Description Techniques, North-
Holland, 1989, 311-325.

[ISO1] International Organization for Standardization, Information Processing Systems, Open
Systems Interconnection. IS 8807:LOTOS: A Formal Description Technique Based
on the Temporal Ordering of Observational Behavior (1988).

[ISO2] ISO/IEC JTC1/SC6 N4870. Formal Description of ISO 8072 (Transport Service) in
LOTOS (working draft), 1988.

[J] Jensen, K. Coloured Petri Nets,Lecture Notes in Computer Science, Vol. 254, 1987,
248-299

[M] Milner, R. Communication and Concurrency, Prentice-Hall, 1989.
[QA] Quemada, J., and Azcorra, A. A Constraint-Oriented Specification of Al’s Node. In

[VVD], 83-88.
[QF] Quemada, J., and Fernandez, A. Introduction of Quantitative relative Time in LOTOS.

In: Rudin, H., and West, C.H. (eds.)Protocol Specification, Testing, and Verification,
VII. North-Holland, 1987, 105-121.

[QPF] Quemada, J., Pavon, S., and Fernandez, A. Transforming LOTOS Specifications with
LOLA - The Parameterized Expansion. In: Turner, K. J. (ed.),Formal Description
Techniques, North-Holland, 1989, 45-54.

[SDL] CCITT Recommendation Z.100.Specification and Description Language, 1988.
[T] Turner, K. Constraint-oriented style in LOTOS. Proceedings BCS Workshop on Formal

Methods in Standards, Didcot, UK, April 1988.

- 22 -

Appendix B: Test Process Sample

The sample test process given below verifies that a number becomes busy once it has
executed the ring action.

process Test_Process [S_User, Relay]:noexit :=
 (
 S_User !1 !Offhook;
 S_User !1 !Gets_Tone;
 S_User !1 !Dials !2;
 S_User !2 !Rings;
 Relay;
 S_User !3 !Offhook;
 S_User !3 !Gets_Tone;
 S_User !3 !Dials !2;
 S_User !3 !Busy_Signal;

stop
)

endproc

The results of the execution is a unary tree whose root is the first action in the test process
and whose leaf is the last action. Predicates have been manually edited and replaced by their
evaluated value [true], to enhance readability. Line numbers of synchronized actions are given in
square brackets. The first number comes from either processCaller or processCalled, the second
from processController, the third from processUsers_List_Handler and the last from the process
Test_Process, which is not shown in the specification given in appendix A. For the Relay action,
the first number comes from the specification’s behaviour expression, the second from process
Users_List_Handler and the third from Test_Process.

S_User !1:DecDigit !Offhook:Signal [true] [127,156,197,239]
S_User !1:DecDigit !Gets_Tone:Signal [129,158,201,240]
S_User !1:DecDigit !Dials:Signal !2:DecDigit [130,159,204,241]
S_User !2:DecDigit !Rings:Signal [true] [145,161,208,242]
Relay [97,231,243]
S_User !3:DecDigit !Offhook:Signal [true] [127,156,197,244]
S_User !3:DecDigit !Gets_Tone:Signal [129,158,201,245]
S_User !3:DecDigit !Dials:Signal !2:DecDigit [130,159,204,246]
S_User !3:DecDigit !Busy_Signal:Signal [true] [132,165,221,247]

- 21 -

194
195 process Users_List_Handler [S_User](E : Set_Of_Pairs, B: DecSet) :noexit:=
196 (
197 S_User ?User:DecDigit !Offhook
198 [notin (Pair(User, Second_Element (User, E)), E)];
199 Users_List_Handler [S_User](add(Pair(User, None), E), B)
200 []
201 S_User ? Caller: DecDigit ! Gets_Tone;
202 Users_List_Handler [S_User](E, B)
203 []
204 S_User ? Caller: DecDigit ! Dials ? Called: DecDigit ;
205 Users_List_Handler [S_User]
206 (add(Pair(Caller, Called), remove(Pair(Caller, None), E)), B)
207 []
208 S_User ?Called: DecDigit !Rings
209 [not(isin(Pair(Called, Second_Element (Called, E)), E) or (Called IsIn B))];
210 Users_List_Handler [S_User](E, Insert(Called, B))
211 []
212 S_User ?User: DecDigit !Hangs_Up;
213 ([(User IsIn B)] ->
214 Users_List_Handler [S_User] (remove(Pair (User, None),E), Remove (User, B))
215 []
216 [(User NotIn B)] ->
217 Users_List_Handler [S_User] (remove(Pair (User,Second_Element (User, E)),E),
218 Remove(Second_Element (User, E), B))
219)
220 []
221 S_User ? Caller: DecDigit ! Busy_Signal
222 [isin(Pair(Second_Element (Caller, E), Second_Element
223 (Second_Element (Caller, E), E)), E) or (Second_Element (Caller, E) IsIn B)];
224 Users_List_Handler [S_User](E, B)
225 []
226 S_User ? Caller: DecDigit !Talks_To ?Called : DecDigit;
227 Users_List_Handler [S_User](E, B)
228)
229 endproc (* Users_List_Handler *)
230endspec

- 20 -

154 process Controller[S_User]:noexit:=
155 (
156 S_User ?Caller:DecDigit !Offhook;
157 ((
158 S_User ! Caller ! Gets_Tone;
159 S_User ! Caller ! Dials ? Called: DecDigit ;
160 (
161 S_User !Called ! Rings;
162 S_User ! Called ! Offhook;
163 Talk_To_Both[S_User](Caller, Called)
164 []
165 S_User !Caller !Busy_Signal;
166 stop
167)
168)
169 [> Controller_Hang_Up[S_User]
170)
171)
172 where
173
174 process Talk_To_Both [S_User](Caller, Called : DecDigit) :noexit:=
175 (
176 S_User ! Caller !Talks_To !Called;
177 Talk_To_Both [S_User](Caller, Called)
178 []
179 S_User ! Called !Talks_To !Caller;
180 Talk_To_Both [S_User](Caller, Called)
181)
182 endproc
183
184 process Controller_Hang_Up [Any_User] :noexit :=
185 (
186 Any_User ? User: DecDigit ! Hangs_Up;
187 Controller_Hang_Up [Any_User]
188)
189 endproc (* Controller_Hang_Up *)
190
191 endproc (* Controller *)
192 endproc (* Single_Connection *)
193 endproc (* Establish_Connections*)

- 19 -

111
112 process User_Talks [G_User] (This_Side : DecDigit) :noexit:=
113 (
114 G_User ! This_Side ! Talks_To ? That_Side : DecDigit;
115 User_Talks [G_User](This_Side)
116)
117 endproc (* User_Talks *)
118
119 process User_Hang_Up [Any_User](User : DecDigit) :noexit :=
120 (
121 Any_User ! User ! Hangs_Up;
122 stop
123)
124 endproc (* User_Hang_Up *)
125
126 process Caller[S_User]:noexit:=
127 S_User ?Caller:DecDigit !Offhook;
128 ((
129 S_User ! Caller ! Gets_Tone;
130 S_User ! Caller ! Dials ? Called: DecDigit;
131 (
132 S_User !Caller ! Busy_Signal;
133 stop
134 []
135 User_Talks [S_User](Caller)
136)
137)
138 [>
139 User_Hang_Up[S_User](Caller)
140)
141 endproc (* Caller *)
142
143 process Called [S_User] :noexit:=
144 (
145 S_User ?Called:DecDigit !Rings;
146 S_User ! Called ! Offhook;
147 (
148 User_Talks [S_User](Called)
149 [> User_Hang_Up [S_User](Called)
150)
151)
152 endproc (* Called *)
153

- 18 -

71
72 type signalis Boolean
73 sorts Signal
74 opns
75 Offhook,
76 Hangs_Up,
77 Talks_To,
78 Rings,
79 Dials,
80 Gets_Tone,
81 Busy_Signal :-> Signal
82 endtype
83
84 behaviour
85 (
86 Establish_Connections[S_User]
87 ||
88 Users_List_Handler [S_User](empty, {} of DecSet)
89)
90
91 where
92
93 process Establish_Connections[S_User]:noexit:=
94 (
95 Single_Connection[S_User]
96 |||
97 i ; Establish_Connections[S_User]
98)
99 where
100
101 process Single_Connection[S_User]:noexit:=
102 (
103 (Caller[S_User]
104 |||
105 Called [S_User]
106)
107 ||
108 Controller[S_User]
109)
110 where

- 17 -

31 type Set_Of_Pairsis DigitPair
32 sorts Set_Of_Pairs
33 opns
34 empty: -> Set_Of_Pairs
35 add: DigitPair,Set_Of_Pairs -> Set_Of_Pairs
36 remove: DigitPair,Set_Of_Pairs -> Set_Of_Pairs
37 isin: DigitPair,Set_Of_Pairs -> Bool
38 Second_Element:DecDigit,Set_Of_Pairs -> DecDigit
39 notin: DigitPair,Set_Of_Pairs -> Bool
40
41 eqns
42 forall x,y:DigitPair, s:Set_Of_Pairs, f1,f2,l1,l2:DecDigit
43
44 ofsort Set_Of_Pairs
45 add(x,add(x,s)) = add(x,s);
46 remove(x,add(x,s)) = s;
47 not(x eq y) =>
48 remove(x,add(y,s)) = add(y,remove(x,s));
49
50 ofsort Bool
51 isin(x,empty) = false;
52 isin(x,add(y,s)) = (x eq y) or (isin(x,s));
53 isin(x,remove(x,s)) = false;
54 not(x eq y) =>
55 isin(x,remove(y,s)) = isin(x,s);
56 notin(x,s) = not(isin(x,s));
57
58 ofsort DecDigit
59 Second_Element (f1,empty) = None ;
60 Second_Element (f1,add(Pair(f1,l1),s)) = l1;
61 f1 ne f2 => Second_Element (f1,add(Pair(f2,l2),s)) = Second_Element (f1,s);
62 endtype
63
64 type DecSetis Set
65 actualizedby DecDigit
66 using
67 sortnames DecDigit for Element
68 Bool for FBool
69 DecSet for Set
70 endtype

- 16 -

Appendix A: The LOTOS specification

In this appendix we show the complete POTS specification in LOTOS.

1 specification POTS_System [S_User]:noexit
2
3 librar y Set, Boolean, DecDigit, NaturalNumberendlib
4
5 type DigitPair is DecDigit, Boolean
6
7 sorts DigitPair
8 opns
9 None: -> DecDigit
10 None: -> Nat
11 Pair: DecDigit,DecDigit -> DigitPair
12 _eq_: DigitPair, DigitPair -> Bool
13
14 eqns
15
16 forall f1,f2,l1,l2:DecDigit, f3:Nat
17
18 ofsort Bool
19 f1 eq None = false;
20 None eq f1 = false;
21 Pair(f1,l1) eq Pair(f2,l2) = (f1 eq f2) and (l1 eq l2);
22
23 ofsort Bool
24 f3 eq None = false;
25 None eq f3 = false;
26
27 ofsort Nat
28 NatNum(None) = None
29 endtype
30

- 15 -

and others having the goal of describing implementation architecture as well. Implementors are
then presented with a validated and precise specification of the system’s behavior, which can
contribute greatly to the quality of the final product. In the final steps, the behavior of the
implementation can be compared with the behavior of the specification, by using formal or
informal testing methods. The LOTOS methodology will help in this respect as well [GL].

Acknowledgments. Funding sources for our work include the Natural Sciences and Engineering
Research Council of Canada, the Telecommunications Research Institute of Ontario (Design of
Validation Environments project), Bell-Northern Research, and the Canadian Department of
Communications. We are indebted to Raymond Aubin and Rezki Boumezbeur for preliminary
work leading to this paper. Also, we are grateful to the four referees whose comments led to
significant improvements in the style and content of this paper. Last, but not least, many thanks
to Jacques Sincennes for continuous technical assistance and useful discussions.

- 14 -

process is debugged separately, their parent processes are then debugged, and so on until reaching
the root, which is the specification itself. Space requirements do not allow us to show the execution
sequences of the specification. Exhaustive debugging was of course impossible, however many
important paths were tested. Note that test sequences are chosen according to our intuitive
understanding of how the specification is expected to behave.

5.2 Test Processes

Once the most obvious errors are removed, a more efficient way to detect errors in a
specification is to compose a non-branching test process in parallel with it, and then obtain the
execution tree of the resulting specification [GHL]. If the execution reaches the last action in the
test process, then the specification accepts the sequence of the test process. Appendix B shows one
such test process.

Note that the testing process cannot be a nondeterministic process as it should be by
LOTOS theory [BR1], because our interpreter is deterministic. Therefore the internal action that
guards the starting of a new connection (line 97) has been replaced by an additional gateRelay.

6. Conclusions

We have shown that LOTOS is appropriate for specifying the observable behavior of TSs.
Of course today’s TS are much more complex than the one described in this paper, however
features such as Call transfer, Hold, Conference call, Call forward, etc. can be treated by extending
the basic mechanism described here. In fact, this extension is the subject of our current research.

By writing and debugging LOTOS specifications of such systems during the design phase,
TS designers can give precise descriptions and validate their designs before the implementation
stage. Several types of specifications may exist, some having the goal of describing behavior only,

behaviour
 (
 Establish_Connections ...
 ||
 Users_List_Handler
)
 ||
 Test_Process
where

process Establish_Connections
process Users_List_Handler ...
process Test_Process ...

- 13 -

(1) Before the Dials event is executed. Then the called number is not identified yet, and therefore
removing the pair (Caller, None) from theEngaged_Set is sufficient (lines 216 to 217: note
that theRemoveof line 218 will have no effect in this case becauseNoneis not inBusy_Set).

(2) After theDials event is executed, but before the Rings event is executed. This case is similar
to case (1), except that the called is already identified and removing the pair (Caller, Called)
from theEngaged_Set is sufficient as well (lines 216 to 217).

(3) After theRings event is executed but before theOffhook (To Answer) event is executed. This
means that theCalled number associated with theCaller number which has hung up is already
in the Busy_Set and it is not sufficient to remove the pair (Caller, Called) from the
Engaged_Set, but we must also remove theCalled from theBusy_Set (line 218 takes effect).

(4) After theOffhook (To Answer) event is executed. This is similar to case (3) except that the
Called number appears three times in the two sets: as (Caller, Called) and(Called, None) in
theEngaged_Set and as a single element in theBusy_Set. Therefore, when(Caller, Called)is
removed from theEngaged_Set andCalled is removed fromBusy_Set (lines 217 to 218), there
is still an occurrence of(Called, None) in Engaged_Set, which guarantees that theCalled is
still busy.

 Note that some data type operators are overloaded. To help the reader, we have capitalized the
operators on the setB, namely Insert, Remove, andIsIn, whose definitions are to be found in the
standard library.

5. Debugging the Specification

LOTOS is based on formal semantics, by which specifications could be (in principle)
proven correct according to certain criteria. Unfortunately, however, the proof techniques
available today are of limited power and do not allow verification of specifications of this size.
Debugging is the other option.

LOTOS specifications, if written in an executable style, can be simulated by means of an
interpreter [GHL]. This allows debugging the specification to increase the designer’s confidence
that the specification reflects the requirements. The University of Ottawa LOTOS interpreter
allows the designer to execute a specification in two ways: step-by-step and composing test
processes in parallel with the specification.

5.1 Step-by-step Execution

In step-by-step execution mode the user can debug a specification by executing it one
action at a time. At each step, the interpreter presents the user with the list of all possible next
actions. Users are responsible for choosing the next action and providing appropriate data values.
When using this execution mode, one proceeds in a bottom-up fashion. In other words, each leaf

- 12 -

called number to be exchanged in the service interaction is theDial event. All other events are
associated with either the caller number or the called number. This has the advantage of
simplifying the three major processesCaller, Called,andController. But, on the other hand, it
complicates the data structure that has to be used. For instance, in order for a caller to receive a
Busy_Signal, we must check whether the called number is busy or not. Since the interaction
S_User? Caller: DecDigit ! Busy_Signal, at line 221, does not contain the number of the called,
we must keep this information inside the processUsers_List_Handler, by means of a set of pairs.

So, our first data structureEngaged_Set (or E for short, line 195) of sortSet_Of_Pairs (line
32), is a set of pairs which has the form: {(X, Y)| X in {Caller, Called} andY in {Called, None}
and(X, Y) is different from (Called, Called)}. In other words, the first element of a pair in the
set is a number which has executed theOffhook event (line 197). This could have occurred only
if the number was not already the first element of a pair inEngaged_Set (line 198). If the number
is a caller, then the pair (Caller, None) is added to the set (line 199). If it is a called, then the pair
(Called, None) is added to the set (again, line 199). The difference between these two pairs is that
the first one will be modified, to become (Caller, Called), when theDials event is executed (lines
204 to 206), while the second pair remains, in the set, in that form until it is removed as a result of
theCalled executing theHangs_Up event (lines 212 to 219).

 If several callers execute theDials event while attempting to call the same number, only
one of them will succeed to make theCalled ring. Therefore, we must remember which numbers
have executed theRings event so that they may not ring again for another caller. To do so, we
define a second data structureBusy_Set (or B for short, line 195) of typeDec_Set (line 64), which
is a set of phone numbers and has the form: {X| X in {Called}}. So, if the Called is not busy,
theRingsevent is executed and the associated phone number is added toBusy_Set (lines 208 to
210). However, if the called number is busy then the caller must receive a busy signal (lines 221
to 224). Again, a called number is busy if it has executed theRings event, as just stated, (it is then
in Busy_Set) or if it is the first element of a pair inEngaged_Set.

Finally, there is theHangs_Up event (line 212), for which several cases must be
distinguished.

First, if the event is associated with a called number (line 149) then both theRings event
and theOffhook (To Answer) event must have been executed. Consequently, the called number
must appear both inEngaged_Set as a pair (Called, None) and in theBusy_Set asCalled. The
called number is removed from both sets (lines 213 to 214).

Otherwise, if the event is associated with a caller number, we must distinguish the cases
where the caller may hang up

- 11 -

4.3.1 Establish_Connections

The global constraint is enforced by the composition of two processes,Users_List_Handler
andEstablish_Connections, shown in the top level of the specification’s structure (lines 85 to 89).
Users_List_Handler has exclusive use of the users’ phone numbers. It interacts with
Establish_Connections and its subprocesses(Caller, Called and Controller) for synchronizing on
the appropriate events.

4.3.2 Caller, Called and Controller

Local constraints are expressed as a sequence of events that must take place locally, either
at theCaller side or theCalled side. TheCaller (lines 126 to 141) insures that the sequence
Offhook (To Call), Gets_Tone, Dials, Talks_To (or Busy) is executed in that order for each instance
of theCaller. For example, theCaller cannot dial a number before the tone is received. In addition,
the eventHangs_Up, line 121, may disrupt anywhere afterOffhook has occurred. At the other end
of the connection,Called (lines 143 to 152) is responsible for enforcing its local constraints
consisting of the sequenceRings, Offhook (To Answer) and Talks_To (line 114). Again,Talks_To
may only be offered afterOffhook (To Answer) has occurred. The role of theController is to
enforce the end-to-end constraints. TheController (lines 154 to 191) combines the independent
sequences of theCaller and theCalled into a single ordered sequence of events:Offhook (To Call),
Gets_Tone, Dials, Rings (or Busy), Offhook (To Answer) and Talks_To. Similar to the previous
case, aHangs_Up event may occur anytime afterOffhook from theCaller and anytime after
Offhook from theCalled.

4.3.3 Users_List_Handler

The processUsers_List_Handler(lines 195 to 229) manipulates the data structures of the
specification. It synchronizes withEstablish_Connections in order to update the list of busy
numbers. The mechanics of updates are best described with respect to the data structure itself,
which is the subject of the next section.

4.3.4 The Data Structures: Engaged_Setand Busy_Set

There is a trade-off between how much information should be exchanged, through
processes synchronization, and how much of it should be kept as part of the abstract data types.
Choosing the "right" data structure is no simple task. For this specification, our choice is
influenced by our objective to focus the reader’s attention on the constraint-oriented style, by
keeping the processes simple while exchanging the minimum information required through the
service interactions. For example, the only event that requires both the caller number and the

- 10 -

4.3 Descriptions of Processes

In this section we first give the details of the four most important processes which make up
the specification. As mentioned earlier, these areCaller, Called, Controller, and
Users_List_Handler.And then we present the abstract data types used to maintain the system
users. It is important for the reader to keep in mind that every action, except the i at line 97, is a
multiway rendezvous, on the gateS_User, of three behaviors:

(Caller ||| Called), Controller andUsers_List_Handler.

 Establish_Connections

Controller

 POTS_System

 Establish_Connections Users_List_Handler

Single_Connection

Caller Called

Figure 2. A graphical representation of the specification’s top levels

S_User

- 9 -

number is already in use. Users_List_Handler, which we will describe later, enforces global
constraints by keeping track of free and busy numbers and synchronizing with
Establish_Connections to exchange values.

Process Establish_Connections is composed of two processes:Single_Connection
interleaved with the process Establish_Connections itself. This creates the desired effect of being
able to have an arbitrary number of connections existing simultaneously. Note the actioni (line 97
in the specification) before the recursive call toEstablish_Connections. This can be taken to mean
that the creation of a new connection follows internal actions by the system, such as allocation of
necessary resources (more technically, it should be considered that if no internal action was
specified at this point, the recursion would be unguarded [M], which would make the specification
impossible to execute on a simulator). The processSingle_Connection is viewed as the
composition of three processes:Caller, Called andController. The conceptual notion of modeling
the call initiator (Caller) side and theCalled side by two interleaved processes is quite natural; it
reflects the distributed nature of the architecture, in that local constraints apply to separate portions
of behavior.Caller (lines 126 to 141) andCalled (lines 143 to 152) exchange information by
synchronization with theController (line 154 to 191).

It would be possible to specify an upper bound on the number of possible simultaneous
connections, for example by using an additionalcounter and appropriate guards.

Specialists involved in implementation and simulation of TS might at first be taken aback
by this abstract structure. We should emphasize again that our primary objective is to produce a
clear and concise specification of the service provided, as made possible by the characteristics of
the specification language, and no attempt is made to reflect a possible implementation
architecture. A different specification style will have to be used for that purpose. And, the resulting
specification will be larger and less clear than the one provided here, one of the reasons being that
it will have to be dependent on a specific implementation architecture.

- 8 -

The top-level behavior is composed of two processes,Establish_Connectionsand
Users_List_Handler. These two processes synchronize through gateS_User. Stated informally, we
want to create as many connections as desired provided that neither the calling nor the called

84 behaviour
85 (
86 Establish_Connections[S_User]
87 ||
88 Users_List_Handler [S_User](empty, {} of DecSet)
89)
90
91 where
92
93 process Establish_Connections[S_User]:noexit:=
94 (
95 Single_Connection[S_User]
96 |||
97 i; Establish_Connections[S_User]
98)
99 where
100
101 process Single_Connection[S_User]:noexit:=
102 (
103 (Caller[S_User]
104 |||
105 Called [S_User]
106)
107 ||
108 Controller[S_User]
109)
110 where ...

Figure 1.
The top levels of the specification

- 7 -

4.2 The Structure of the Specification

LOTOS makes it possible to describe the behavior of systems in a stepwise fashion, moving
from one abstraction level to another. This is a powerful technique since, at each level, it is possible
to describe the level’s architecture completely. Using this method within the framework of the
constraint-oriented specification style, we were able to identify three types of constraints:

(1) Local constraintsare used to enforce the appropriate sequences of events at each
telephone, and are different according to whether the telephone is aCaller or aCalled.
Therefore local constraints are represented by the processesCaller and Called and an
instance of each of these is associated with each telephone existing in the system. Because
these two processes are independent of each other, they are composed by the interleaving
operator|||. Another possible choice at this level is to specify only one telephone process,
provided with a parameter indicating aCalleror a Calledrole for each instantiation [ISO2].

(2) End-to-Endconstraints are related to each connection, and enforce the appropriate sequence
of actions between telephones in a connection. For example, ringing at theCalled must
necessarily follow dialling at theCaller. ProcessController enforces these constraints.
Because they must apply to bothCallerandCalled, we have the structure(Caller ||| Called)
|| Controller.Thus the controller must participate in every action of theCaller, as well as
in every action of theCalled,separately.

(3) Global constraints are system-wide constraints. In our specification we identified one main
value constraint, which is the fact that at any time, a number is used at most once. This
constraint is enforced by the processUsers_List_Handler. Because global constraints must
be satisfied simultaneously over the whole system, represented by process
Establish_Connections, we have the structure Establish_Connections ||
Users_List_Handler.

The notions of local, end-to-end and global constraints are well-known in the area of
service specifications [BO][ISO2][VSV]. As in [ISO2], the top level architecture of the
specification is obtained by composing in parallel the processes representing the constraints.

The top levels of the LOTOS specification are shown in Fig. 1. A graphical representation
is shown in Fig. 2. Intuitively, interleaved processes are drawn on top of each other, such asCaller
and Called; parallel processes are drawn next to each other, such asUsers_List_Handler and
Establish_Connections; and subprocesses are drawn inside the processes by which they are
invoked. Dashed lines represent parentheses.

- 6 -

Our specification allows for an arbitrary number of users to access the TS and communicate
with each other. The TS works in the following manner. The first user, theCaller, picks up the
handset. If no other extension for the same number is in use, the network responds by sending a
tone signal to the user. TheCaller is now in a position toDial the number of the second user, the
Called. When theCaller completes dialling the number, the telephone network checks if theCalled
number is free, and if so, a Ring signal is sent to the second telephone. Otherwise, aBusy_Signal
is sent to theCaller. If the Called user does not pick up the handset to answer, theCaller will
eventually hang up and both telephones are free. However, if theCalled picks up the handset, the
telephone stops ringing and the two parties engage in a conversation. When the conversation is
finished, either party may hang up. The first user who hangs up makes his telephone free to make
or receive other calls. The second telephone remains busy until the user hangs up.

1 Caller Offhook
| 1 Caller Gets_Tone
| | 1 Caller Dials Called
| | | 1 Caller Gets_Busy_Signal
| | | | 1 Caller Hangs_Up
| | | 2 Caller Hangs_Up
| | | 3 Called Rings
| | | | 1 Caller Hangs_Up
| | | | 2 Called Offhook
| | | | | 1 CallerTalks_To Called
| | | | | 2 CalledTalks_To Caller
| | | | | 3 CallerHangs_Up
| | | | | 4 CalledHangs_Up
| | 2 CallerHangs_Up
| 2 CallerHangs_Up

| | | | | |Time

- 5 -

For further refinement of this diagram we add more information, resulting in a timing
diagram that shows all possible interactions, from a user’s point of view. Only two users are
considered. Alternatives are shown at the same level of indentation.

 Caller Called

Offhook (call)

Gets Tone

Dial number

 Ring

Offhook (answer)

Talk Talk

POTS
Service
Provider

Time

- 4 -

If it is desired to produce an implementation of the specification presented below, it would
be appropriate to translate the specification into some combination of resource-oriented and/or
state-oriented style.

The constraint-oriented style is the most abstract specification style, since it focuses on
event sequencing and logical constraints as seen from the external interaction points. In this style,
processes identify constraints and usually have little or no relation with implementation processes.
This style, therefore, is useful for implementation-independent specification [T]. One can identify
two main types of constraints:event sequence constraints andvalue constraints. The former are
expressed by mechanisms ofpure LOTOS, while the latter require predicates as well. The two
main operators used to express process (i.e. constraint) composition in our specification are ||| and
||, i.e. theinterleave andsynchronization operators. That is,(A|||B)||Cmeans thatA andB can freely
interleave, while synchronizing withC. For example:

(a; b; stop ||| c; d; stop) || (a; d; stop ||| c; b; stop)
is equivalent to (in monolithic style)

(a; c; (b; d; stop [] d; b; stop)) [] (c; a; (b; d; stop [] d; b; stop))
where the latter expression is theexpansionof the former.

4. The Specification

In this section, we present the design method of our specification, explain its structure, and
discuss our solutions to some key design decisions. But first, an informal description of POTS is
in order. The complete LOTOS specification is presented later in Appendix A.

4.1 The Informal Description

First, we introduce the terminology that will be used throughout this paper. System refers
to the local telephone branch exchange. Atelephone consists of aCaller side andCalled side. Each
telephone is identified by a unique number, which we call thetelephone number (or simply
number). A number may be connected to more than one telephone extension. Each extension has
a handset which the user picks up before dialing the number of another user, or answering a ring.
This is the case where we may find one telephone extension in the kitchen, another one in the
bedroom, and possibly a third one in the garden. Only one extension may be used at a time.
Intuitively, telephone users communicate with each other through a black box (POTS). They
interact with POTS by using a well defined set of primitives.

The following diagram reflects a scenario where the caller establishes a connection with a
non-busy called. This is the kind of diagram that can be found to be useful as a first step in the
design process. The diagram is not complete, at this stage, becausehang ups andbusy signals are
not shown. They will be added in the next design stage.

- 3 -

Another element that cannot be dealt with completely in LOTOS at the present stage is
timing aspects. For example, it would be impossible to exactly portray a specification element such
as: “the telephone can only be off hook for a maximum of 20 seconds, after which it will be
disconnected”, although a similar result might be obtained by specifying disconnection after an
unspecified amount of time. Some research has been done in this area, and some proposals exist
[QF][BR][VTZ]; however in this paper we wanted to use only standard LOTOS. We are looking
forward to progress in this important issue. However, from a pragmatic point of view it should be
recognized that timed LOTOS will be a more complex language than the existing LOTOS, and that
for many purposes it is not necessary to formally specify exact time delays.

3. Issues of Specification Style for TS Specifications

Vissers, Scollo and van Sinderen [VSV] identify four main styles for writing LOTOS
specifications, viz. the monolithic style, the state-oriented style, the resource-oriented style and the
constraint-oriented style. Each one of these styles has its own uses in TS specifications, and they
can be mixed (although of course arbitrary mixture can be counterproductive).

The monolithic style gives explicitly all possible sequences of actions allowed by a
specification. The main operator ischoice [], and the specification is shown as a tree of choices.
Therefore, this style is useful for debugging the specification and generating test sequences. A
well-known basic result in LOTOS theory is the expansion theorem [M][ISO1], by which any
LOTOS specification can be transformed into a (possibly infinite!) monolithic one. Although
expansion may not terminate, it can yield finite initial subtrees of an infinite monolithic
specification equivalent to the given one. Such subtrees can be used for the purposes mentioned
above. This “partial expansion” process can be carried out by an interpreter (see the “symbolic
execution trees” of [GHL][GL]) or by specialized tools [QPF]. Symbolic execution trees were used
in the design process of our specification.

In the state-oriented style, explicit system states are identified, e.g. by using state variables.
Although the state-oriented style is quite tedious if used throughout a specification, it may
occasionally be useful to introduce state variables that identify the state of some devices. This may
lead to increased readability of the specification in cases where the informal specification uses the
state concept, as is quite common for telephone devices. It may also lead to LOTOS specifications
which can be implemented directly. In this work, we avoided the state-oriented style because we
wanted to produce an abstract specification, without explicit reference to device states.

In the resource-oriented style the processes are chosen in such a way as to represent
resources, which means implementation modules. This style is useful for implementation
specification.

- 2 -

CCITT has been studying LOTOS as a more advanced technique than its Specification and
Description Language (SDL) [SDL], which today is the most commonly used language for the
formal specification of standard telephony procedures.

Over the years, our research group has produced a number of TS specifications using
different styles. The example system chosen for this paper is a simple Plain Old Telephone System
(POTS). It covers all features of POTS, but only from a service point of view. The intention here
is to separate the service description from the details of internal functioning of the POTS system.
In other words, the specification describes only the end-to-end service provided to users, in an
abstract, concise and implementation-independent fashion. Most notably, no attempt was made to
describe the switching function, for which we refer to [QA]. The size of our specification is kept
intentionally small, to make it possible to explain it in the paper. Since the concept of POTS
service is generally well understood, the example can be used as an introduction to LOTOS. A
somewhat different LOTOS specification of the POTS service can be found in [FLS].

The subject of formally specifying TSs is attracting increasing attention from the research
community. Zave [Z] has written a well-known paper presenting a formalism for describing
distributed systems, especially protocols and TSs. Jensen [J] discusses POTS specifications using
the formalism of colored Petri nets. Biebow and Hagelstein [BH] have shown how such
specifications can be written by using algebraic abstract data type formalism. Tvrdy published an
early paper on the application of LOTOS to telephone system specification in [TV].

2. Specification of Telephone Systems in LOTOS

A predictable observation that we made at the beginning of our work was that several
concepts originally developed for the description of data communications protocols and services
are also very appropriate for the description of TSs. One such concept is that of service provider
[VL]. In a service specification, only the external behavior of the system is captured, that is,
describingwhat does the system do for the user and not howdoes it do it.

There are, however, important differences between TS service specifications and OSI
service specifications, especially of the type that have been specified in LOTOS so far. For
example, more than OSI service specifications, TS specifications are dominated by the connection
and disconnection phases, where the connection is established or released and a number of
housekeeping functions is performed, such as the functions of maintaining the list of busy numbers,
of checking whether the telephone is in use or not, and of generating busy signals. The “data
exchange” phase has a minimal importance, and in fact it is even impossible to portray faithfully,
because in POTS data is not discrete.

- 1 -

 Formal Specification of Telephone Systems in LOTOS:
The Constraint-Oriented Style Approach

Keywords: Telephone Systems, Formal Specification, LOTOS

1. Introduction and Motivation

LOTOS [ISO1][VVD], the Language of Temporal Ordering Specifications, has been
conceived in the framework of OSI standardization as a tool for the formal description of OSI
services and protocols. In fact, most examples of LOTOS specifications found in the literature
today relate to this type of application. We claim, however, that the concepts of LOTOS are general
enough to make the language useful for a wide range of applications.

In this paper we show that LOTOS is appropriate for telephone systems (TS) specification.
We feel that this is practically important, given the greater market importance of telephone
networks with respect to packet-switching networks, and the fact that, in the long range, these two
types of networks are expected to become integrated. In this context, it is also important that the

A preliminary version of this paper was presented at the IX IFIP WG 6.1 Symposium on Protocol
Specification, Testing, and Verification (June 1989).

Mohammed Faci, Luigi Logrippo, Bernard Stepien

University of Ottawa
Protocols Research Group

Department of Computer Science
Ottawa, Ontario, Canada K1N 6N5

E-mail: lmlsl@uottawa.bitnet

Abstract. The LOTOS constraint-oriented style allows the design of well-
structured, implementation-independent specifications of distributed systems. As
an example, we provide a small, didactically-oriented specification of a simple
telephone service. The design of the specification is based on three types of
constraints, i.e. global constraints, end-to-end constraints and local constraints. The
structure of the specification, as well as its design method, are described in some
detail. We conclude with a discussion of the specification debugging method.

