
Challenges of Cost Estimation for Software Testing

Bernard Stepien, Liam Peyton
School of Engineering and Computer Science

University of Ottawa
Ottawa, Canada

Email: {bstepien | lpeyton}@uottawa.ca

Abstract—Cost estimation for software testing is a complex
process due to a great variety of testing strategies and factors
to consider. In current practice, some of these are often
overlooked. The subject has been well researched all the way
back to the early stages of software development but always
within the specific context of a single application. As a result,
managers and researchers have created application-dependent
solutions to the problem rather than general solutions. As a
first step towards development of a general solution, we
provide a summary of cost estimation for software testing
using a taxonomy of testing strategies and factors.

Keywords: software testing; cost estimation; taxomomy.

I. INTRODUCTION

Cost estimation for software testing is a complex process
due to the difficulty in determining precisely the factors
affecting costs. One of the most difficult tasks consists in
separating adequately software development costs from
software testing costs especially since they are inter-related.
This is especially true when both tasks are performed by the
same person, which is often the case.

Historically, cost estimation for software testing used
macroeconomic models based on empirical studies and
produced only approximate cost estimations. Unfortunately,
one interesting characteristic of those models is that they
only estimate the combined software development and
testing cost without a clear indication on the cost share
allocated specifically for testing. Boehm started it all with
the Constructive Cost Model (COMOCO) [7] at a time
when software development models themselves, such as
structured programming, were being addressed. The concept
of testing at that time was limited and based mostly on test
plans for manual testing that would be approved by upper
management without any quantitative evaluation of costs or
benefits. They were based on a strong belief that there could
be only a finite set of bugs in a piece of software and that
most of the bugs could be caught in the early stages of
testing. Later research based on automated test case
generation proved the opposite mostly for state based
software with unpredictable traversal of state transitions.

More recently, Holzmann [4] pointed out that no single
system of metrics exists to measure costs or to measure
benefits of testing. A major effort on understanding cost
estimation for testing was achieved by the National Institute
of Standards and Technology in an extensive report [3]. Hu
et al. [2] came up with economic projection models to

quantify testing results. Ellims et al. [8] studied the
economics of unit testing and compared it to code reviews,
which were a prevailing substitute to testing at the time.
Tables showing the relative benefits of software testing and
models for cost estimation were produced by Tawileh et al.
in [5].

Application specific solutions came in the early ‘80s
with the development of a test specification language for the
telecommunication industry that was based on formal
description techniques that was later extended by the
European Telecommunications Standards Institute as
Testing and Test Control Notation version 3 (TTCN-3) [11].
TTCN-3 is now used in many different domains in addition
to telecommunications. It is particularly efficient when
applied to testing applications that use parallelism
intensively. Others addressed the testing of web application
and started comparing the performance of the solutions in
this domain [13].

Another interesting aspect of testing is the variety of
metrics for testing without any clear preference or even
understanding of their values. They include fault density,
requirement compliance, test coverage and mean time to
failure. As well, some, like in [3], differentiate between
technical metrics and economic metrics. Also, the basic unit
of measurement is traditionally the number of lines of code.
This applies for both the actual piece of software being
tested and the test software in case of test automation. For
example, in one industry we worked in, there was a de facto
standard that one would develop only 7 lines of codes per
day including testing for a given project that comprised 3
million lines of code. In all the literature cited above, we
have never found a concept of measuring the complexity of
a piece of software that would make two different pieces of
software with an equal number of lines radically different
from a costing point of view both for development and
testing. This results in biased comparisons and questionable
precision of decisions.

Interesting is the fact that recent literature, Keshta in [9],
attempts to summarize the research on software costing over
a 30 years period but again without talking about testing.

The awareness of the difficulty of estimation for
software testing costs is expressed by Wagner et al in [6].
They propose an approach that structures the factors of costs
for an optimization of fault detection techniques. They also
distinguish between minor and major faults and propose a
priority system for handling them. In any case, the

33Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

application of solution blurs the picture further due to the
fact that faults detected and corrected in previous steps no
longer exist in the subsequent stages. Ideally, one should
start from scratch every time a new technique is applied.
This is both unrealistic and no manager would approve a
budget around such an approach. Finally, most studies are
empirical rather than following a rigorous model as in [14].

II. THE REALITY OF TESTING STRATEGIES

Personal experience in industry has shown there is a
great variety of testing strategies. A good collection of
strategies, including the fundamental black box and white
box testing strategy, can be found in [1] but with no
associated costing theories other than the financial
consequences of unsatisfied customers. Brill et al [12]
decomposes the software development life cycle and
proposes enhancements. A similar taxonomy can be found
in [15].

A. Testing and test personnel configurations

1) Testing as a way to learn a software
Testing is performed by novices to learn how a piece of

software functions. The tester is thus a temporary position
towards the more glamorous position of software developer.
One may discover that this approach increases testing costs,
however, this is also a kind of training session for the same
persons once they become developers, thus potentially
reducing development costs afterwards, as shown on Figure
1. This is a typical case of tradeoff between the two
complementary activities.

Figure 1. Relationship between development and testing costs

2) Developer is also tester
Testing is performed by the software developer. This

approach has proven to be less efficient because the
behavior of the developers involved has a tendency to be
highly predictable. This results in always testing the same
paths that they know and making all kinds of assumptions
about their system. Whereas, an external tester, would try
event sequences that the developer did not anticipate and
uncover more bugs.

3) Independent team of testers approach
Testing is performed by an independent team devoted

only to testing that develops test suites from the same
requirements that the developers use. This approach has

proven to be more efficient because it reveals the most
unsuspected bugs. Testers are independent from developers
and thus are not influenced by development activities and
thus test unsuspected combinations of inputs. Also, from an
economics perspective, testers were cheaper than developers
since their activity was considered simpler than software
development. However, this is not always true for testers
who use sophisticated testing techniques, based on formal
descriptions, with dedicated test specification languages,
which require specialized knowledge and training.

4) Automated testing and test specification languages
When Object Oriented (OO) languages became

common, software development languages were used as test
specification languages to reduce testing costs mostly based
on savings for personnel training costs and testing tools.

5) Reducing the number of programming languages
In the ‘80s, there was a proliferation of programming

and test specification languages that required high training
costs and recruitment difficulties that drove personnel costs
up. This resulted in decisions to reduce considerably the
number of programming languages for software
development used in an organization especially in the light
of the new object oriented approaches.

6) The software user is the tester
It is increasingly the fashion for widely publicly used

software to use the end users as unsuspecting testers. By
this, we mean the typical approach that consists upon a
crash of the software when used by a user to ask the user if
they want to report the problem. It is very economical for
the software vendor but poses fundamental security
problems since nobody knows nor controls the amount of
user data that is sent to the software vendor. However, in a
way, some of the testing cost is transferred to the end-user.

B. The use of Testing tools and frameworks

Some tools are application oriented while others are
more general. However, the reality is that tools are often
costly but reduce the cost of personnel because tools
increase productivity as shown on Figure 2. Increased
productivity results in a shallower total cost curve
comprising cost of the tool and training the testers.

Figure 2. Testing cost savings when using tools

34Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

1) Manual testing
At the beginning, all tests were performed manually.

This proved to be both expensive and difficult to reproduce
especially in the case of personnel turn over. Thus, the
concept of test automation using test software was
introduced. These tests were either using General
Programming Languages (GPL) or dedicated testing
languages and later frameworks of all kinds.

2) Unit testing
Unit testing uses an open source framework (e.g. JUnit)

that provides for ways of specifying the test as assertions on
results from methods or functions. Unit testing consists
mostly in testing applications functions or methods, one at a
time and independently from each other. It verifies that
given certain inputs, it correctly returns some specific
output. It is an extension of traditional OO software testing
languages and thus can be easily integrated in the software
development process. Unit tests are developed first before
software development itself. Initially all tests fail but as
development progresses, tests pass. A special Graphical
User Interface (GUI) that reports the failures or successes is
provided by the framework, thus saving some test software
reports development costs.

3) Application specificity of testing tools
Application specific tools are widely used for web

application testing. Frameworks, such as Selenium, among
others [13] feature the principle of record and replay based
on the belief that the same input will always produce a
unique result. In other words, there are no alternative
software behavior considerations. This is mostly not the
case and also test software is hard to maintain.

4) Automated test case generation
Test case generation derived from models, like finite

state machines, can be very efficient if not running into state
explosion problems. In this case, heuristics are used to
choose a subset of test cases that would provide enough test
coverage. Also, models allow testing the requirements
themselves even before they are attempted to be
implemented especially if they are specified in an
executable language.

III. TAXONOMY OF TESTING COSTS

A. Categories of testing costs

There are many categories of testing cost:
 Tangible costs like the cost of manpower and

equipment including testing tools to perform
testing.

 Tangible costs of training personnel to a given
testing technology.

 Intangible cost like traveling costs to the
customer premises

 Intangible cost like loss of business due to lack
of customer satisfaction.

However, it has been observed in industry that the cost
of testing tools is considered as highly tangible while
manpower to perform the tests is not in the sense that testing
tools can be used only for a class of applications while
manpower can be reassigned to other tasks or even projects,
thus, not subject to a seemingly tangible loss.

B. Areas of difficulty in testing

1) Application making intensive use of parallelism
Applications making intensive use of parallel activities

cannot be tested using unit testing alone because parallel test
components need to be well coordinated. This is the case of
most frameworks that are derivatives of unit testing. Also
parallel testing is considered as very complex and most
testers avoid it altogether. Testing tools, such as TTCN-3
are particularly efficient at testing parallel applications
because of native features that enable to control several
instances of parallel components easily and efficiently and
provide methods to explore test logs efficiently. These cover
applications based on Service Oriented Applications (SOA)
and more recently Business Process Management (BPM).
Both making extensive use of web applications as a front
end that can be easily tested using TTCN-3.

2) Computation testing
Computation testing consists in testing software that

depends solely on computation activities that upon an input
are expected to return a predictable output. These are best
tested using unit testing. This is particularly the case when
the software is autonomous, i.e., it does not interact with
other software components. It is, in a way, the benchmark in
testing methodologies.

3) State testing
State testing consists in putting a system into different

states and observing correctness of the transition to another
state. A state can be represented by specific output values of
a set of variables that the software manipulates. In this case,
we do not only test the final value of the output but also any
of the intermediary states to obtain it. This is often referred
to as grey or white testing depending on the granularity.

C. Heterogeneous testing costing data

In theory, comparing testing approaches, strategies and
supporting tools should be achieved on a specific
application or groups of applications. The reality is that no
one actually does that because having the same software
developed several times using different approaches is highly
counter-intuitive and no one would actually budget such a
strategy. The solution that comes closes to that concept is
found in [10] where an attempt to verify this theory is
applied to past software development projects. This model
also includes a technology factor. Consequently,
comparisons are performed between different and
heterogeneous applications on radically different domains
and thus, results are not totally comparable. However, this
has been achieved in a specific domain of GUI testing in
[13] and in the transportation and financial sectors in [3].

35Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

D. Industrial behavior on testing

Most software is developed around a set budget. The
same applies to testing with the difference that when
budgets are overrun, it is the development budget that is
allowed to do so while the testing budget is capped. Thus,
we could say that testing is budget centric rather than
application centric. Here, the most typical behavior consists
in hiring testers without any performance consideration. The
cases we have observed in industry include purchasing
expensive testing tools and their related personnel training.
Here, the costs are very tangible and require approval from
upper management but these situations always resulted in
the upper management requiring proof that there are
benefits to do so. Again, decisions were guided by intuition
and not by precise economic models.

As well, personnel turnover increases the cost of testing
tools training costs because as people moved on, their
expertise disappears with them. New personnel have to be
re-trained. This has the result of reducing the benefits of
dedicated testing tools as can be shown on Figure 3. Here
the break-even point has moved up both in cost and time.

Figure 3. Incidence of personnel turnover on training costs

However, this is a false problem since most of the
problem lies in the organization of testing tool usage. The
most efficient way has been to create a pool of testing tool
experts that train and mentor the testers along the testing life
cycle. This is no different than the issues with the turnover
of software developers that requires new developers to learn
the software developed by their predecessors.

One case is particularly interesting: testing critical
systems that require certification of tests. Here, changing
test approaches regardless of the lack of efficiency of
existing automated testing software is a major problem.
Effectively, besides the cost of redeveloping test software
using the new approaches, the certification process has to be
redone from the start.

IV. CONCLUSION

Despite its long history, cost estimation of testing is
mostly an ad hoc activity and still needs to explore new

avenues. The great number of factors of cost makes it
difficult to come up with an optimal solution to the problem.
Also, a key factor, complexity of software, is missing
completely from the literature. The available literature
shows that tackling the problem is difficult and no final
solution has been found as yet.

ACKNOWLEDGMENT

The authors would like to thank NSERC for funding this
research.

REFERENCES

[1] G. J. Myers, C. Sandler and T. Badgett, The Art of Sotftware Testing,
3rd Edition,Wiley Pubishing, 2011, ISDN 978-1-118-03196-4

[2] Q. Hu, R. T. Plant and D. B. Hertz, “Software Cost Estimation Using
Economic Production Models”, Journal of Management Information
Systems 15, no. 1, 1998. pp. 143-163.

[3] M. P. Gallaher and B. M. Kropp. “Economic impacts of inadequate
infrastructure for software testing”, Technical report 7007.011, RTI
International, National Institute of Standards and Technology, 2002.

[4] G. J. Holzmann, “Economics of software verification”, Proceedings
of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering (PASTE 01), pp. 80-89.
ACM, 2001.

[5] A. Tawileh, S. McIntosh, B. Work and W. Ivins, “The Dynamics of
Software Testing”, proceedings of the 26th international Conference
of the System Dynamics Society, 2007.

[6] S. Wagner. “Towards software quality economics for defect-detection
techniques”, 3rd Workshop on Software Quality, 29th Annual
IEEE/NASA, pp. 265-274, 2005. pp. 1-6.

[7] B. Boehm. Software engineering economics. Englewood Cliffs,
NJ:Prentice-Hall, 1981. ISBN 0-13-822122-7

[8] M. Ellims, J. Bridges, and D. C. Ince, “The economics of unit
testing”, Empirical Software Engineering 11, no. 1,2006: pp 5-31.

[9] I. M. Keshta, "Software Cost Estimation Approaches: A Survey."
Journal of Software Engineering and Applications 10, no. 10, 2017.

[10] K. Pillai and V. S. S. Nair. "A model for software development effort
and cost estimation." IEEE Transactions on Software Engineering 8
(1997): pp 485-497.

[11] ETSI ES 201 873-1, The Testing and Test Control Notation version 3
Part 1: TTCN-3 Core Language, May 2017. Accessed March 2018 at
http://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.09.
01_60/es_20187301v040901p.pdf

[12] C. Brill and A. Olmsted, “Security and Software Engineering:
Analyzing Effort and Cost”, SOFTENG 2017, pp110-114. Accessed
December 6, 2018 at
https://www.thinkmind.org/download_full.php?instance=SOFTENG+
2017.

[13] P. Sabev and A. Kanchev, “A Comparative Study of GUI automated
Tools for Software Testing”, SOFTENG 2017, pp7-16. Accessed
December 6, 2018 at
https://www.thinkmind.org/download_full.php?instance=SOFTENG+
2017.

[14] L. P. Kafle, “An Empirical Study On Software Test Effort
Estimation”, International Journal of Soft Computing and Artificial
Intelligence, ISSN: 2321-404X, vol. 2, issue 2, Nov. 2014.

[15] K. R. Jayakumar and A. Abran, “A Survey of Software Test
Estimation Techniques”, Journal of Software Engineering and
Applications 6, no. 10, 2013. pp. 47-52.

36Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

