
An Efficient Formal Testing Approach for Web Service with TTCN-3

Pulei Xiong, Robert L. Probert, Bernard Stepien
University of Ottawa

(xiong | bob | bernard)@site.uottawa.ca

Abstract: Web service is considered as a prevailing integration
technology on Internet/Intranet due to its language and
platform-independence. The language and platform-
independence characteristics bring difficulties on testing. In this
paper, we propose a distributed testing process based on TTCN-
3 which intends to solve the difficulties. The approach
distributes test activities on both server and client sides. It
ensures a systematic testing process. In addition, by specifying
test suites at an abstract level in TTCN-3 the test suites are
language and platform-independent, and can be reused by
diverse types of clients. We demonstrate it via a case study.

1. INTRODUCTION

A web service (WS) is a kind of Internet application
framework based on SOAP and XML technology. Two
significant attributes of web services are standards-based
architecture and XML-based messaging. Web service relies
on a family of protocols to describe, deliver, and interact with
each other, such as the Web Service Description Language
(WSDL), the Universal Description, Discovery and
Integration (UDDI) protocol or the Web Service Inspection
Language (WSIL), and the Simple Object Access Protocol
(SOAP). WSDL, UDDI, WSIL, and SOAP are all based on
XML.

Due to the natures of standards-based architecture and
XML-based messaging, web service is vendor-neutral,
language-agnostic, and platform-independent. Therefore,
developers of a web service are not able to assume which
type of clients will consume the web service, and vice versa,
developers at the client sides are not aware of which
language and platform are used at the server side. A web
service and its clients can be developed in totally different
programming languages including Java, C#, VB, Perl or
Python on different platforms.

2. CURRENT ISSUES AND PRATICEs IN WEB
SERVICE TESTING

Testing web services is different from testing traditional

software. From the client sides perspective, a web service
client is not an actual final user; instead, it is a component of
another software system. To ensure the quality of the system,
the developers at the client side need to perform testing on
the web service client, just as what they will do on other

components in the system. However, the information
available about the web service to the developers is quite
limited since the web service is usually out of the boundary
of the system, even if both the web service and the client are
developed in the same organization. Most of the time the
only information available to the developers is a service
interface in the form of a WSDL file. The service interface is
insufficient for functional testing. For example, it does not
tell which is the expected response against a set of input data,
and it does not tell if there are any boundary value limitations
imposed by business rules. It even does not provide any
useful clues for non-functional testing such as performance
and stress testing. Therefore, it is quite difficult, if it is not
impossible, to conduct systematic testing on web service at
client sides, e.g. with respect to coverage analysis. On the
other hand, from the aspect of the server side, systematic test
case analysis and design can be achieved since the
developers at server side have comprehensive knowledge of
the web service. However, at the server side it is quite
difficult to conduct client-oriented tests due to diverse
possibilities of languages, platforms and applications at client
sides.

Obviously, either server side or client sides cannot take
full responsibility of testing a web service. In a complete test
process, client sides are weak at systematic test case design,
while the server side is weak at test implementation and
execution. To ensure systematic test case design and to ease
test implementation and execution, it is appropriate to
distribute the responsibility to both server and client sides:
test case design and specification are conducted at server side
and then the test specification is published to all client sides,
and test implementation and execution are performed at
client sides based on the test specification. Furthermore, at
server side tests must be specified at an abstract level ---
Abstract Test Suite (ATS), which means they should be
language and platform-independent, since only an ATS can
accommodate all varieties of client types.

There are both research and tools from industry to
facilitate web service testing. In [1], the authors introduced a
Java and XML based test harness for web services. In [2] and
[3], the authors presented testing approaches based on
tools/framework on .NET platform. In [4], the author
presented how to use WebSphere WSDK v5.1 to generate a
JSP page for client sides from a WSDL file to test the web
service. WSDL2Java, a java tool in AXIS [5], can generate
web service proxy from a WSDL file that makes it easier to
develop client side applications. However, these tools and

approaches do not guarantee any systematic test. In addition,
they are language-specific, either for Java or C#, which
makes no sense to those client sides where applications are
programmed in other languages. Unfortunately, web service
intends to be consumed by diverse languages.

In short, due to the natures of language and platform-
independency, web service testing is different from
traditional software testing. Current testing process and tools
do not work well on web service. In the next section, we will
discuss a formal testing approach based on TTCN-3, which is
deemed to solve the above issues.

3. A FORMAL TESTING APPROACH WITH TTCN-3

3.1 TTCN-3 and Internet/Web Application Testing

TTCN-3 is an international standard test specification and
implementation language. It has been developed by ITU and
ETSI (European Tele-communication Standards Institute).
TTCN-3 intends to support black box testing for reactive and
distributed systems. Typical areas of application for TTCN-3
are protocols, services, APIs, and software modules [6].
TTCN-3 specifies test suites at an abstract level [7]. In
[8][9][10], we discussed how to apply TTCN-3 to web
application and web content testing. In [11], the authors
presented how to generate TTCN-3 scripts from XML DTD
or schema to automate web service testing. In this paper, we
illustrate how to build a systematic testing process for web
service that distributes test activities to both server and client
sides, how to facilitate the process by specifying ATS in
TTCN-3, and how to implement ATS at client sides by
utilizing third-party TTCN-3 and web service tools.

3.2 Distributed Testing Process

In this distributed testing process, both server side and
client sides should be involved in testing activities (see figure
1). Test case analysis and design that is based on models
and/or source code of WSs, and ATS specification that is
based on WSDL files and test cases, are conducted at server
side. The ATS will be published via Internet/Intranet, and
then it will be retrieved at client sides. The ATS compiling
and implementation by developing Test Adapter (TA) and
Encoder/Decoder (CoDec) in a native language are
performed at client sides. Finally, the test is executed at client
sides.

The testing process brings the following outstanding
advantages. First, test case design can be conducted
systematically by applying proper methods at server side.
The quality of the test cases should be much better than those
developed ad hoc at client sides. Second, comparing to
developing executable tests, specifying ATS is simpler since
all language and platform-specific details are exempt from

consideration. Testers can focus on specifying test logics
such as test steps and test result verification, without
considering how to implement them. Third, test case design,
ATS specification and maintenance are all done at server side
and shared at client sides. Obviously, this is much more
efficient than developing tests at every client side
individually. Fourth, accordingly, testers at client sides only
need to compile ATS to a native language and develop TA
and CoDec for the ATS since all server side-specific test
information is included in the ATS.

Figure 1: Process of Testing Web Service with TTCN-3

4. CASE STUDY

4.1 Introduction

We conducted two functional tests and two stress tests on
the web service “getQuote”. "getQuote" is a sample web
service deployed on AXIS, which is a web service engine
built in Java. The test process includes four steps: (1) Test
Case design, (2) ATS specification, (3) Test implementation,
and (4) Test execution. The first two steps are assumed to be
accomplished at server side, while the last two steps assume
to be accomplished at client sides.

4.2 Test Case Design

We can conduct test case analysis and design based on
models and source code that are available at the server side,
which is just the same as we do on a regular component. For
example, we can derive test scenarios from use cases, and
then create concrete test cases from the test scenarios. We
can do test coverage analysis against the test cases. We can
assign priorities to the test cases based on risk and yield
analysis. The web service “getQuote” accepts parameters
including user ID, password and stock symbol. If the user
and password are valid and the stock symbol is correct, it
returns the quote of the stock (normal scenario). If the user
and password are valid but the stock symbol does not exist, it
returns –1.0 (alternative scenario). We did two functional
tests on the web service: one is for testing the normal
scenario (#1 in table 1); another one is for the alternative

scenario. In addition, we did two stress tests: we simulate
invoking “getQuote” concurrently with 50 and 100 clients
(#2 in table 1) to see if the server could accommodate the
request flux.

Table 1 Test Case Specification
Test
Case

Input Expected
Output

#1 User ID = user1,
Password = pass1,
Symbol = XXX

55.25

#2 User ID = user1,
Password = pass1,
Symbol = XXX
Number of concurrent clients = 100

More than
95%

requests
success

4.3 ATS Specification

This step is also conducted at server side. At this step, we
do not need to consider how these test suites are implemented
at client sides. No client side environment information is
required. ATS is built only based on test cases and the
WSDL file for a web service.

One property of ATS is language and platform-
independency. Therefore, when we specify ATS in TTCN-3,
we should be very careful not having any language or
platform-specific information in it. On the other hand,
however, we have to include all test logic information that is
sufficient to implement the ATS at client sides, including
data types and concrete data related to test input and expected
result, test steps, test structure, etc.

We build an ATS for “getQuote” based on the test case
specification in Table 1 and the WSDL file for the web
service. A WSDL file is a XML document that describes the
interface to a web service in a language and protocol
independent way. Two elements in the WSDL are used to
invoke the web service: the URL of the web service and the
Qualified Name (QName) of the web service.

4.3.1 ATS for Functional Tests

The steps to specify ATS in TTCN-3 are as follows. A
typical program style can be found in [12].

First, a record type is defined to specify URL, QName and
input data:

 type record wsRequestType {
 charstring protocol,
 charstring host,
 charstring portNum,
 charstring path,
 charstring nameSpace,
 charstring opName,
 charstring user,
 charstring passwd,
 charstring symbol }

Second, using the previously defined data type, we can
define test data templates that specify test input (request) and
expected result (response):

 template wsRequestType wsRequest-Valid := {
 protocol := "http://",
 host := "localhost:",
 portNum := "8080",
 path := "/axis/services",
 nameSpace:= "urn:xmltoday-delayed-quotes",
 opName := "getQuote",
 user := "user1",
 passwd := "pass1",
 symbol := "XXX" }

 template charstring wsResponseValid := "55.25";

Third, a test configuration is defined that specifies

communicatin ports and components to construct a test
structure:

 type port wsPortType message {
 out wsRequestType;
 in charstring; }
 type component ptcType {
 port wsPortType wsPort;
 timer localTimer := 3.0; }
 type component systemType {
 port wsPortType wsPort; }
 type component mtcType {}

Fourth, a function is created to specify the behavior of the

ptcType test component as a sequence of sending a WS
request followed by an alternative of receiving a normal
response and various abnormal responses:

 function ptcBehaviour(in wsRequestType wsRequest,

charstring wsResponse) runs on ptcType {
wsPort.send(wsRequest);

 localTimer.start;
 alt
 { [] wsPort.receive(wsResponse) {
 localTimer.stop;
 setverdict(pass); }
 [] wsPort.receive {
 localTimer.stop;
 setverdict(fail); }
 [] localTimer.timeout {
 setverdict(fail); } }
 }

Fifth, a test case is created to test the normal scenario for a

single test using the previously defined function:

 testcase GetQuoteTest_Valid() runs on mtcType system

systemType
 { var ptcType ptc;
 ptc := ptcType.create;
 map (ptc:wsPort, system:wsPort);
 ptc.start(ptcBehaviour(wsRequestValid,

 wsResponseValid));
 ptc.done; }

Finally, execute the test case at the control section:
 execute(GetQuoteTest_Valid());

4.3.2 ATS for Stress Tests

Only minor modifications on the ATS for the functional
tests are necessary to make it usable for stress testing. All
that is needed is to make an array of parallel test components.

 type component systemType {

port wsPortType wsPort[NUMBER_OF_PTCS]; }

Each parallel test component, refered by its index, is
created and executed indepently by the TTCN-3 test
platform:

 for (i:=0; i<NUMBER_OF_PTCS; i:=i+1) {
 ptc[i] := ptcType.create; }
 for (i:=0; i<NUMBER_OF_PTCS; i:=i+1) {
 map (ptc[i]:wsPort, system:wsPort[i]); }
 for (i:=0; i<NUMBER_OF_PTCS; i:=i+1) {
 ptc[i].start(ptcBehaviour(wsRequestValid,
 wsResponseValid)); }
 for (i:=0; i<NUMBER_OF_PTCS; i:=i+1) {
 ptc[i].done; }

4.4 Test Implementation

Test implementation is performed at client sides based on
ATS. Since ATS provides all necessary test logic information
at server side, testers at client sides can focus on ATS
implementation. They will not feel frustrated about test case
design due to lack of knowledge on web services.

To get Test Executable (TE) from ATS, a TTCN-3
compiler is required to translate ATS to program in a native
language at client sides. In our case, we used TTthree, a
TTCN-3 to Java compiler developed by Testing
Technologies IST GmbH, to translate ATS to Java code [12].

Except for generating TE from ATS, we need to
implement a TA and CoDec, which are standard entities in
the test architecture defined in [13], to make TE run on a
specific platform with System Under Test (SUT). A TA deals
with any aspects that cannot be concluded from information
being present in ATS, such as test system user interface, test
execution control, test event logging, communication with
SUT, and timer implementation [12]. Encoder translates
TTCN-3 data to real world data, while Decoder translates
real world data to TTCN-3 data.

TTthree runtime environment provides default
implementation for TA and CoDec. In our case, two
important methods need to be overwritten: triSend in TA and
encode in CoDec.

triSend constructs a SOAP message and sends it out to
request for “getQuote” web service, then listens to the
returned SOAP message, and parses the message. We can
code triSend using standard Java API, or using any third-
party web service tools for clients. In our case, we used
AXIS client API that makes programming much simpler: we
do not need to know any details about WSDL file and SOAP
message, and we do not need to construct and parse SOAP
message. Sending out requests and receiving responses are
all done by calling several AXIS APIs as shown below:

 //set up connection
 Service service = new Service();
 Call call = (Call) ser-vice.createCall();
 call.setTargetEndpointAddress(new URL(url));
 call.setOperationName(new QName(nameSpace,opName));
 call.addParameter("symbol",
 XMLType.XSD_STRING,ParameterMode.IN);
 call.setReturnType(XMLType.XSD_FLOAT);
 call.setUsername(user);
 call.setPassword(passwd);
 //invoke web service
 Object ret = call.invoke(new Ob-ject[] {symbol});

It is worth to mention that the functional tests and the

stress tests use the same TA and CoDec. This shows how
ATS increases the reusability of the test implementations.

4.5 Test Execution

Figure 2 is the screenshot of test execution result for test
case #1. In this particular case it passed.

Figure 3 is the screenshot for test case #2. From it we can
see 17 out of 100 clients failed to access “getQuote”
successfully due to connection time-out. The test case is set
to fail. This means the server side cannot accommodate 100
concurrent clients. Although from the point of view of client
sides, it is unnecessary for us to analyze why the server
cannot support more than 100 concurrent clients and how to
improve it, the test result does help us to consider how to
improve the system at client sides: e.g. limit the number of
concurrent requests to avoid connection time-out; and once
there are failed connections, set up reconnections in a
reasonable time frame. This may bring a friendly interface to
users, rather than showing them failed connection
information.

Figure 2: Screenshot for Test Case #1

Figure 3: Screenshot for Test Case #2

5. CONCLUSION

In this paper, we proposed a formal testing approach for

web services with TTCN-3, which distributes the test
activities to both server and client sides. This facilitates the
web service testing while the traditional testing approaches
failed due to the difficulities on testing brought by the
language and platform-independence characteristics of web
services. It ensures systematic testing and increases the
reusability of the test implementations. In the future, we may
consider developing a prototype tool to automatically
generate an ATS in TTCN-3 from WSDL files and test case
specifications. Besides, it is also worthwhile to discuss how
to extend web service publish/discover protocols such as
UDDI or WSIL to make possible the delivery of an ATS with
a WSDL file.

ACKNOWLEDGEMENTS

The authors would like to thank Testing Technologies IST

GmbH for providing us the necessary tool --- TTthree to
carry out this research. As well, we are grateful to NSERC
and OCE for supporting this research.

REFERENCES

[1] Rajesh Sumra, R. Venkatvaradan, “Web Service's Test
Harness: A Functional, Load, and Performance Testing
Framework for Web Services”, June 2005,
http://www.developer.com/services/article.php/2229161,
[2] Roger Jennings, “Test Web Services Without Writing a
Client”,
http://www.fawcette.com/xmlmag/2002_05/online/webservic
es_rjennings_05_03_02/default.aspx, June 2005
[3] James McCaffrey, “Automate Your ASP.NET Web
Services Testing”,
http://msdn.microsoft.com/msdnmag/issues/05/03/TestRun/d
efault.aspx, June 2005
[4] Ron Ben-Natan, “Building Web Services, Part 1: Build
and Test”, IBM WebSphere Tutorials, Jan 2004
[5] AXIS project, “AXIS User‘s Manual v1.2”,
http://ws.apache.org/axis/java/userguide.html, June 2005
[6] TTCN-3 Home Page,
http://www.etsi.org/ptcc/ptccttcn3.htm, June 2005
[7] ETSI ES 201 873-1, “The Testing and Test Control
Notation version 3, Part1: TTCN-3 Core Language, V2.2.1”,
Feb. 2003
 [8] Pulei Xiong, Robert L. Probert, “A Multi-Method
Testing Approach in TTCN-3 for Web Applications”, Proc.
of the 14th IEEE Intel. Symposium on Software Reliability
Engineering (ISSRE), pp. 261-262, Nov. 2003
[9] Robert L. Probert, Pulei Xiong, Bernard Stepien, “Life-
cycle E-Commerce Testing with OO-TTCN-3”, Proc. of 1st
Intel. Workshop on Theory Building and Formal Methods in
Electronic/Mobile Commerce (TheFormEMC), pp. 16-29,
Oct. 2004
[10] Robert L. Probert, Bernard Stepien, Pulei Xiong,
“Formal Testing of Web Content using TTCN-3”, TTCN-3
User Conference 2005, June 2005
[11] B.Stepien, I.Schieferdecker, “Automated Testing of
XML/SOAP based Web Services”, Proc. of the 13th.
Fachkonferenz der Gesellschaft f¨ur Informatik (GI)
Fachgruppe KiVS, Feb. 2003
[12] Testing Technologies IST GmbH, “Using TTthree:
Users Manual and Programming Guide”, August 2004
[13] ETSI ES 201 873-5, “The Testing and Test Control
Notation version 3, Part5: TTCN-3 Runtime Interface (TRI),
V1.1.1”, February 2003

