
September 7, 1994

1

The Structured Data Type
Translator ‘pao2ao’

SILKE STORP
BERNARD STEPIEN

ACT ONE is an abstract data type language that is very flexible, because it allows to define
any function indepedently from any application. This advantage is unfortunatly undermined
by the fact that abstract data type has to be systematically constructed from scratch, thus
requiring sometimes considerable work and thus reducing its usability. Extensions to the lan-
guage have never taken place due to the objectives of stability defined by the various ISO
work group. Experience by various LOTOS community users has shown that some fre-
quently used concepts should be implemented in ACT ONE in a standard way. This has
resulted in several proposals [SS91] [UT92]. Both consisted in defining an extension to the
language with semantics to translate these extensions into traditional ACT ONE. The fol-
lowing work consisted in writing a translator that would take a LOTOS specification where
new Structured Data Types (SDT) are present both as definitions, but also as value expres-
sions in actions, process instances value actualizations and guards.

There were several strategies possible. The decision to build a stand alone translator was
based on several factors. Among them is the fact that several LOTOS tools exist, and a trans-
lator would have avoided to modify all of the existing tools. Also, the Structured Data type
are presently experimental and are not included yet in the standard. The translator is then
considered as allowing a user to reason in a higher level of abstraction independent from
ACT ONE itself. In this case the resulting ACT ONE translation is considered as strictly an
executable version similar to assembly language in traditional computer languages. (fig.1)



2 The Structured Data Type Translator ‘pao2ao’

FIGURE 1. Tool chain with SDT translation tool ‘pao2ao’

There are six structured data types that can be translated:

• enumerations: a finite set of constants is defined, which can be subdivided into
‘subclasses’

• sort unions: a new sort is built by unifying certain sorts, which can be subdivided into
‘subclasses’. Mapping- and selection-functions of the sorts are provided

• sets: a set over an element sort is defined, together with special value declarations

• sequences (strings): a list over an element sort is defined, together with special value
declarations

• arrays: an array over an element sort is defined, which has a fixed size and is one- or
multi-dimensional. It is possible to declare special values

• records: a record consists of various fields, which are selected by names and have vari-
ous sorts. Each field may be optional or may have an initial (default) value

To call the translator ‘pao2ao’ the shell variable $PATH has to contain the bin directory of
the SEM group:

/net/jupiter/usr85/SEM/bin

The specification with structured data types must be in a file have the suffix ‘.sdt’. The suffix
is different or there is no suffix, then the tool will look for a file ‘name.sdt’. The tool gener-
ates a file ‘name.lot’.Caution: the tool does not check whether there exists already a file
with that name.

LOTOS specification
containing SDTs

pao2ao
(SDT translator tool)

Any regular LOTOS
simulation or analysis
tool

LOTOS specification
with translated SDTs

STRUCTURED DATA TYPE
DESCRIPTION

USAGE OF ‘pao2ao’



The Structured Data Type Translator ‘pao2ao’ 3

A help message, saying how the tool is called and which options are possible, can be
obtained by using the ‘-h’ option:

> pao2ao -hef

usage: sdt2ao inputfile[.sdt] [-o outputfile] [-g]
 where [-g]: generation of visualisation annotations

and Demon graphic template program
or: sdt2ao -h

which prints this message

A successfull translation produces the following output. (Please notice that the file contain-
ing the specification with structured data types needs to have the suffix ‘.sdt’. The suffix can
be omitted):

> pao2ao test

 Gesellschaft fuer Mathematik und Datenverarbeitung
 Forschungszentrum fuer Offene Kommunikationssysteme
 Structured Data Type to Act One Translator

 (C) 1993

 Translation of file: test.sdt starts !

 Parsing and syntax checking start !
 Parsing and syntax ckecking were successful !

 Unparsing starts !
 Output is written to file: ‘test.lot’

 Unparsing successful !

 Translation of Structured Data Types was completely successful !!!



4 The Structured Data Type Translator ‘pao2ao’



September 21, 1994

5

Interpreting Error Reports of
the Static Semantic Checker

The translator ‘pao2ao’ only checks the correctness of the syntax of a specification. It does
not check the static semantic. This has to be done after the translation by using commonly
available LOTOS tools, like for instance TOPO that is distributed together with thelite tool.
The interpretation of the errors, reported by these tools, is sometimes a bit tricky because
they point to the translated specification.

In the following we will list some typical error messages and give guideline how to interpret
them. Of cause the list can not be complete and there are many, many other cases possible.
We have used the TOPO compiler for the static semantic check.

In most cases, the best strategy is look only at the errors reported at the first 1 or 2 lines and
try to correct them. The following are probably inferences of the first errors.

type “Set” not found at library
type “NaturalNumber” not found at library
type “String” not found at library

Library must be changed. The structured data types from the library. The library must pro-
vide these three types and order relation on the terms. For lite the mod-is library is necesary
(see annex for the required signature of the three types from above).

test.lot:165: lsa: sorts of value expressions are different
test.lot:165: lsa: undefined operation: array
test.lot:165: lsa: undefined operation: a

The operation ‘a’ is not defined.

TYPE NOT FOUND

sorts of value expression
are different /
undefined operation



6 Interpreting Error Reports of the Static Semantic Checker

test.lot:82: lsa: sorts of value expressions are different
test.lot:82: lsa: undefined operation: array

The number of arguments of the array is wrong.

ina.lot:1012: lsa: undefined operation: overlay

This message indicates that the record name might be wrong. Each record is translated into a
set of record fields which is overlayed over a set of initialization values.



September 7, 1994

7

Signatures of Translated
Structured Data Types

Structured data types use four library data types from the ‘mod-is ’ library: String, Set, Natu-
ralNumber, Boolean. These types are imported from the library, but only if a type is used,
and no type exists in the specification that has the same name. The translator tool also gener-
ates two other types:

1. DecimalNaturalNumber : enrichment of ‘NaturalNumber’ by functions which are
mapped on successors of 0 (used for the array indexes)
1, 2, 3, 4, 5, 6, 7, 8, 9: -> Nat
_ . _: Nat, Nat -> Nat

2. sequence_SDT : enrichment of ‘String’ by the functions
rpush, lpush: Element, String -> String (* add element to right *)

(* left end of sequence *)
rpop, lpop: String -> String (* right/left sequence with *)

(* one element removed *)
right, left: String -> Element (* right/left element *)
_lt_: String, String -> Bool (* compares elementwise *)

formal operation:
_lt_: Element, Element -> FBool

The syntax of the terms of the structured data types that can be used in the specification can
be found in the values definitions of the structured data types.



8 Signatures of Translated Structured Data Types

The enumeration type is used to introduce a finite set of constants. The constants of an enu-
meration type can be used directly by their name. The constants are ordered by the sequence
in which they are declared. The first one is the least. Constants are used in a specification

• as basic building elements, which have no finer structure, like for example in the OSI
environment the informations about the kind of connections (e.g. negotiated or not) or
the result of service invocations (e.g. ok or failure reason)

• asabstractions of complex data structures. In the initial stage of specification evolu-
tion, the internal structure of data elements is not important. The constants are later trans-
formed into complex types in implementation directed specifications. Furthermore
constants can be used instead of complex data structures to get clearer simulations of
process behaviour.

Constants can be grouped into subclasses of a type. For each subclass an additional predicate
is specified. These predicates have the form ‘is_subclassi(x)’, where x is a variable or a term.

ENUMERATION

subclassi
constantm

constant1

constantn

constanti

typename



Signatures of Translated Structured Data Types 9

enumtype typename
is

|{ constant1, constant2, …, constantn }|
subclass subclass1 |{ constantj, …, constanti }| (* OPTIONAL *)

subclass2 |{ constantl, …, constantk }| (* OPTIONAL *)
…
subclassn |{ constantm, …, constantm }| (* OPTIONAL *)

endtype

typename

NaturalNumber (Import)

typename

constant1: -> typename (* constructors *)
constant2: -> typename
…
constantn: -> typename

next: typename -> typename (* successor-operation *)

min_typename: -> typename (* minimum&maximum *)
max_typename: -> typename (* of enumeration *)

is_constant1: typename -> Bool (* predicates *)
is_constant2: typename -> Bool
…
is_constantn: typename -> Bool

_eq_: typename, typename -> Bool (* equality & order rel’s *)
_ne_: typename, typename -> Bool
_lt_: typename, typename -> Bool
_le_: typename, typename -> Bool
_gt_: typename, typename -> Bool
_ge_: typename, typename -> Bool

is_subclass1: typename -> Bool (* subclass predicates *)
is_subclass2: typename -> Bool (* constant is in *)
…, (* subclass
is_subclassn: typename -> Bool

Auxiliary Operations :

h: typename -> Nat (* mapping of constants *)
(* on Nat for order rel’s *)

Enumeration Scheme

Types

Library Types

Sorts

Operations



10 Signatures of Translated Structured Data Types

Union types construct a new data type as the union of given data types (called element
types). In contrast to the type combinations of standard LOTOS, they generate a new sort
that collects the data objects of the unified types. They also provide the necessary operations
to manage the union like test the type of an element, select an element and set the value of an
element. Usual applications of union types can be found in the field of specifying OSI-Com-
munications, where the protocol services are grouped according to their different functional-
ities.

LOTOS does not include hierarchical sorts / classes in its basic mathematical model. An
example of such sort hierarchies is the specification of natural numbers as a sub sort of inte-
gers. The integer sort is assignment compatible with the natural numbers, which means that
a natural value can be assigned to an integer variable. LOTOS can just simulate hierarchical
sorts by providing type conversion functions and predicates to test the subsort membership
of values. This is done by union types.

Union types could be seen as superclasses of other types. A superclass unifies data objects
that share some properties. Within a union of objects, the objects can be grouped into sub-
classes.

The operations that can be performed on unions are the selection of union elements and the
setting of the values of union elements. It is possible to test whether a union component is of
a certain type. The conceptual framework provides equality and type testing predicates and
order relations on unions.

UNION



Signatures of Translated Structured Data Types 11

uniontype typename
is import_type1, import_type2, …, import_typen

|{ constructor1: import_sort1,
constructor2: import_sort2,
…,
constructorn: import_sortn }|

subclass subclass1 |{ constructorj, …, constructori }| (* OPTIONAL *)
subclass2 |{ constructorl, …, constructork }| (* OPTIONAL *)
…
subclassn |{ constructorm, …, constructorm }| (* OPTIONAL *)

endtype

typename

Boolean (Import)

typename

constructor1: sort1 -> typename (* constructors: *)
constructor2: sort2 -> typename (* map import_sort to *)
… (* union_sort *)
constructorn: sortn -> typename

is_constructor1: typename -> Bool (* predicates *)
is_constructor2: typename -> Bool
…
is_constructorn: typename -> Bool

get_constructor1: typename -> sort1 (* selectors: *)
get_constructor2: typename -> sort2 (* converts union_sort *)
… (* back to import_sort *)
get_constructorn: typename -> sortn

_eq_: typename, typename -> Bool (* equality *)
_ne_: typename, typename -> Bool
_lt_: typename, typename -> Bool (* lexicographical order *)

is_subclass1: typename -> Bool (* subclass predicates: *)
is_subclass2: typename -> Bool (* term has one of the *)
… (* sorts described by *)
is_subclassn: typename -> Bool (* the constructor set *)

(* of that subclass *)

Union Scheme

Types

Library Types

Sorts

Operations



12 Signatures of Translated Structured Data Types

Sequences are, like arrays, ordered sequences of elements where all elements have the same
sort. All components of a sequence can be read but only the outermost component can be
modified. The modification of inner components is only possible by first removing one by
one all components before the component can be accessed.

Sequences are used in LOTOS specifications, in case the number of components is not fixed
from the beginning. An example for sequences in the OSI range are the sequences of
acquaintances.

The operations on sequences are append elements to the sequence, select its head or its tail,
select thenth element of a sequence concatenate two sequences and get the length of a
sequence. The conceptual framework provides equality and type testing predicates and order
relations on sequences.

SEQUENCE



Signatures of Translated Structured Data Types 13

seqtype typename
is import_type
elements sort
values constant1 = |( expressioni, …, expressionj )|; (* OPTIONAL *)

constant2 = |( expressionk, …, expressionl )|; (* OPTIONAL *)
…
constantn = |( expressionm, …, expressionn )|; (* OPTIONAL *)

endtype

typename

Auxiliary Types :

typename0, typename00

sequence_SDT (Actualized and Renamed)

typename

<>: -> typename (* constructors *)
_+_: typename, sort -> typename
_+_: sort, typename -> typename
typename: sort -> typename (* seq. of only one elem *)
rpush: sort, typename -> typename (* add element to right/ *)
lpush: sort, typename -> typename (* left end of sequence *)

rpop: typename -> typename (* right/left sequence *)
lpop: typename -> typename (* with one element *)

(* removed *)
right: typename -> sort (* right/left element *)
left: typename -> sort

_++_: typename, typename -> typename (* seq. concatenation *)

Length: typename -> Nat

Reverse: typename -> typename

_eq_: typename, typename -> Bool (* equality *)
_ne_: typename, typename -> Bool
_lt_: typename, typename -> Bool (* lexicographical order *)

constant1: -> typename (* constants for seq *)
constant2: -> typename (* values *)
…
constantn: -> typename

Sequence Scheme

Types

Library Types

Sorts

Operations



14 Signatures of Translated Structured Data Types

Sets are collections of elements where all elements have the same sort. Unlike sequences,
sets are not ordered.

The usual operations on sets the test of membership for values, the union and intersection of
sets and the test if one set is a subset of another one.

SET



Signatures of Translated Structured Data Types 15

settype typename
is import_type
elements sort
values constant1 = |{ expressioni, …, expressionj }|; (* OPTIONAL *)

constant2 = |{ expressionk, …, expressionl }|; (* OPTIONAL *)
…
constantn = |{ expressionm, …, expressionn }|; (* OPTIONAL *)

endtype

typename

Auxiliary Types :
typename0, typename00

Set (Actualized and Renamed)

typename

{}: -> typename (* constructors *)
Insert: sort, typename -> typename (* element in set, but *)

(* only if it is new *)

Remove: sort, typename -> typename (* remove element *)

_IsIn_: sort, typename -> Bool (* tests whether an *)
_NotIn_: sort, typename -> Bool (* element is in a set *)

_Union_: typename, typename -> typename (* union of 2 sets *)
_Ints_: typename, typename -> typename (* intersection of 2 sets *)
_Minus_: typename, typename -> typename (* substraction of 2 sets *)

_eq_: typename, typename -> Bool (* equality *)
_ne_: typename, typename -> Bool
_lt_: typename, typename -> Bool (* lexicographical order *)
_Includes_: typename, typename -> Bool (* set1⊇ set2 *)
_IsSubsetOf_: typename, typename -> Bool (* set1⊆ set2 *)

Card: typename -> Nat (* # of elements in a set *)

constant1: -> typename (* constants for set *)
constant2: -> typename (* values *)

…
constantn: -> typename

Auxiliary Operations :
Insert_1: sort, typename -> typename (* Implements a set as a *)

(* sorted sequence *)

Set Scheme

Types

Library Types

Sorts

Operations



16 Signatures of Translated Structured Data Types

An array is a finite sequence of fixed length with elements over the same type. The single
elements of an array are accessed by an index value, specifying the number of the desired
element in the array. The number of elements of an array is specified by the range of the
index values. Arrays can be nested. The depth of the nesting specifies the dimension of the
array, which is also called ann-dimensional array.

Array types are used in the specification for mathematical applications, like matrixes, as
coordinates of geometrical data elements, for the encoding of characters, for the control
information of low level devices, etc.

The operations that can be performed on arrays are the selection of array elements and the
setting of the values of array elements. The conceptual framework provides equality and
order relations on arrays.

The index range ‘[n..m]’ has a lower limit ‘n’ and an upper limit ‘m’. The number of array
elements is ‘m-n+1’. The lower border must always be less or equal to the upper one. Then-
dimensional array is specified byn index ranges (‘n..m’).

ARRAY



Signatures of Translated Structured Data Types 17

arraytype typename
is import_type [n .. m, … , q .. r]
elements sort
values constant1 = |〈 expressioni, …, expressionj〉|; (* OPTIONAL *)

constant2 = |〈 expressionk, …, expressionl〉|; (* OPTIONAL *)
…
constantn = |〈 expressionm, …, expressionn〉|; (* OPTIONAL *)

endtype

‘expression’ could be any term; it could be a regular ACT ONE term, a structured data type
term and especially also an array term. The only rule is that the array constant must corre-
spond with its definition, i.e. the nesting and the number of elements must be consistent with
the range definition. The last subrange specifies the range of the innermost array. An exam-
ple: an array with the nesting level one has a range [1 .. 2, 1 .. 4] with elementsort ‘nat’, and
could have this value: |〈 |〈2, 4, 6, 1〉|, |〈5, 2, 5, 2〉| 〉|

typename

Auxiliary Types : typename{_sub}*_sub, typename{_sub}*0, the number of ‘_sub’ is equal
to the nesting level
The types ‘typename{_sub}*_sub’ define the arrays of the respective nesting with select and
set operations and equality predicates. The types ‘typename{_sub}*0’ contain the definitions
of select and set operations with more than one index.

DecimalNaturalNumber

typename

Auxiliary Sorts : typename{_sub}+

array: typename_sub_sub*, ..., typename_sub_sub*-> typename_sub*(* constructor *)
array: sort, ..., sort -> typename_sub*(* for the depest nesting *)

nth: typename, Nat,...,Nat -> sort (* element selector *)
setn: typename, Nat,...,Nat, sort -> typename (* set value of array-elem
*)

_eq_: typename, typename -> Bool (* equality *)
_ne_: typename, typename -> Bool
_lt_: typename, typename -> Bool (* lexicographical order *)

constant1: -> typename (* constants for array *)
constant2: -> typename (* values *)
...

constantn: -> typename

Auxiliary Operations :
nth: typename_sub+, Nat -> typename_sub_sub+

setn: typename_sub+, Nat, typename_sub_sub+ -> typename_sub+

_eq_: typename_sub+, typename_sub+ -> Bool
_ne_: typename_sub+, typename_sub+ -> Bool
_lt_: typename_sub+, typename_sub+ -> Bool
nth: typename_sub+, Nat, ..., Nat -> sort
setn: typename_sub+, Nat, ..., Nat, sort -> typename_sub+

Array Scheme

Types

Library Types

Sorts

Operations



18 Signatures of Translated Structured Data Types

A records is a collection of a fixed number of components that may be written down in any
order. Each record component has its own type. The components of a record are accessed by
field selectors that are associated to them. Records can have optional components, this
means that these components might be omitted in the definition of a record. A field can have
a default value, which is used in case a component is omitted in the definition.

Records are used in a wide range of applications. They are useful in all applications where
multiple informations of different types are associated to one element. In OSI specifications,
the records are used for service primitives. An other example of records are files in a data
base.

Operations on records are the selection of record components and the setting of the values of
record components. It is possible to test whether a component of a record is set. This test is
useful before the selection of a component, because the operation is only defined if the
record component is set. Another available predicate gives information, about the complete-
ness of a record, i.e. tests whether all mandatory components are set. The conceptual frame-
work provides equality and order relations on records.

RECORD



Signatures of Translated Structured Data Types 19

recordtype typename
is import_typen, import_type2, …, import_type1
fields selector1: sort1,

selector2: sort2optional,
…,
selectorn: sortndefault = typename |{ selectorg(expressiong), …,

selectorh(expressionh)}|
values (* OPTIONAL *)

constant1 = typename |{selectori(expressioni), …, selectorj(expressionj)}|;
constant2 = typename |{selectork(expressionk), …, selectorl(expressionl)}|;
…
constantn = typename |{selectorm(expressionm), …, selectorn(expressionn)}|;

endtype

typename

Auxiliary Types (see next page for their definitions):
typename_sel, typename_component, typename000, typename00, typename0,
typename_set_interface

Boolean, NaturalNumber, Set

typename

init_typename: -> typename (* initializes a record with the *)
(* default setting *)

complete: typename -> Bool (* tests whether all non optional *)
(* fields are set *)

selector1: typename -> sort1 (* selects the value of a record *)
selector2: typename -> sort2 (* field *)
…
selectorn: typename -> sortn

set_selector1: typename, sort1 -> typename (* sets the value of a field *)
set_selector2: typename, sort2 -> typename
…
set_selectorn: typename, sortn -> typename

_eq_: typename, typename -> Bool (* equality*)
_ne_: typename, typename -> Bool
_lt_: typename, typename -> Bool (* lexicographical order*)

constant1: -> typename (* constants forrecord *)
constant2: -> typename (* values *)
…
constantn: -> typename

Record Scheme

Types

Library Types

Sorts

Operations



20 Signatures of Translated Structured Data Types

Auxiliary Types, Sorts, and Operations :

enumtype typename_sel
is

|{ selector1, selector2, …, selectorn }|
endtype

uniontype typename_component
is Boolean, typename_sel, import_typen, import_type2, import_type1

|{ selector1: sort1,
selector2: sort2,
…,
selectorn: sortn }|

endtype

settype typename00
is import_type
elements sort
endtype

type typename0
is typename00
renamedby
sortnames typenamefor  typename 00
endtype

type typename_set_interface
is typename0
opns sel: typename_component -> typename_sel

add: typename_component, typename -> typename
remove: typename_sel, typename -> typename
_overlay_: typename, typename -> typename
is_set: typename_sel, typename -> Bool
get: typename_sel, typename -> typename_component

endtype

Dependencies of
Generated Types



September 6, 1994

21

Formal Syntax Definition of
Structured Data Types

In this chapter the syntax of structurd data type specifications is defined. The syntax
definition shall be included into the syntax definition of the LOTOS standard
[ISO:8807]. The non-terminals ‘data-type-definition’ and ‘term-expression’ are rede-
fined.

A.1 data-type-definition = type-symbol type-identifier is-symbol
p-expression end-type-symbol
| structured-data-type-definition
| library-declaration.

A.2 structured-data-type-definition =  enumeration-type-definition
| union-type-definition
| sequence-type-definition
| set-type-definition
| array-type-definition
| record-type-definition.

A.3 enumeration-type-definition = enumeration-type-symbol
sort-and-type-identifier is-symbol
open-set-symbol
[ operation-identifier-list ] close-set-symbol
[ subclass-expression ] end-type-symbol.

A.4 union-type-definition = union-type-symbol sort-and-type-identifier
is-symbol type-union open-set-symbol
union-projection-list close-set-symbol
[ subclass-expression ] end-type-symbol.

DATA TYPE

STRUCTURED
DATA TYPE



22 Formal Syntax Definition of Structured Data Types

A.5 sequence-type-definition = sequence-type-symbol sort-and-type-identifier
is-symbol type-identifier
elements-symbol sort-identifier
[ initial-setting-expression ] end-type-symbol.

A.6 set-type-definition = set-type-symbol sort-and-type-identifier
is-symbol type-identifier
elements-symbol sort-identifier
[ initial-setting-expression ] end-type-symbol.

A.7 array-type-definition = array-type-symbol sort-and-type-identifier
is-symbol type-identifier
elements-symbol sort-identifier
open-bracket-symbol index-list
close-bracket-symbol
[ initial-settings-expression ] end-type-symbol.

A.8 record-type-definition = record-type-symbol sort-and-type-identifier
is-symbol type-union
fields-symbol [ record-projection-list ]
[ initial-settings-expression ] end-type-symbol.

A.9 subclass-expression = subclass-symbol subclass-list.

A.10 subclass-list = subclass [ subclass-list ].

A.11 subclass = operation-identifier open-set-symbol
[ operation-identifier-list ] close-set-symbol.

A.12 index-list = number range-symbol number
[ comma-symbol index-list ].

A.13 number = "1" | "2" | "3" | " 4" | "4" | "5" | "6" | "7" | "8" | "9" { digit }.

A.14 initial-settings-expression = values-symbol value-definition-list.

A.15 value-definition-list = value-definition [ value-definition-list ].

A.16 value-definition = operation-identifier equal-symbol value-expression.

A.17 record-projection-list = projection [ feature-expression ]
[ comma-symbol record-projection-list ].

A.18 union-projection-list = projection [ comma-symbol union-projection-list ].

A.19 projection = operation-identifier colon-symbol
sort-identifier.

A.20 feature-expression = default-symbol equal-symbol value-expression
| optional-symbol.

A.21 sort-and-type-identifier = identifier.

A.22 operation-identifier-list = operation-identifier
[ comma-symbol operation-identifier-list ].

SUBCLASS

ARRAY INDEX

INITIAL SETTING

RECORD PROJECTION

UNION PROJECTION

AUXILIARIES



Formal Syntax Definition of Structured Data Types 23

A.23 term-expression = value-identifier
| operation-identifier [ value-expression-list ]
| open-parenthesis-symbol value-expression

close-parenthesis-symbol
| set-expression
| sequence-expression
| array-expression
| record-expression.

A.24 set-expression = open-set-symbol [ value-expression-list ]
close-set-symbol.

A.25 sequence-expression = open-sequence-symbol [ value-expression-list ]
close-sequence-symbol.

A.26 array-expression = open-array-expression value-expression-list
close-array-symbol.

A.27 record-expression = operation-identifier open-set-symbol
record-assignment-list close-set-symbol.

A.28 record-assignment-list = operation-identifier open-parenthesis-symbol
term-expression close-parenthesis-symbol
[ comma-symbol record-assignment-list ].

A.29 enumeration-type-symbol = "enumtype ".

A.30 union-type-symbol = "uniontype ".

A.31 sequence-type-symbol = "seqtype ".

A.32 set-type-definition = "settype ".

A.33 array-type-symbol = "arraytype ".

A.34 record-type-symbol = "recordtype ".

A.35 subclass-symbol = "subclass ".

A.36 fields-symbol = “fields ”.

A.37 optional-symbol = "optional ".

A.38 default-symbol = "default ".

A.39 open-set-symbol = “|{“.

A.40 close-set-symbol = “|}”.

A.41 open-sequence-symbol = “|(“.

A.42 close-sequence-symbol = “)|”.

A.43 open-array-symbol = “|<“.

A.44 close-array-symbol = “>|”.

A.45 range-symbol = "..".

A.46 reverse-arrow-symbol = "<-".

SHORT VALUE
EXPRESSIONS

WORD SYMBOLS

SPECIAL SYMBOLS



24 Formal Syntax Definition of Structured Data Types



September 6, 1994

25

Installation of the Structured
Data Type Translation Tool
‘pao2ao’

‘pao2ao’ stands for ‘powerfull ACT ONE to ACT ONE’. The following files contain the
source code for the pao2ao tool:

makefile makefile to create translator
trans_main.c main function for translator
trans_main.h type declarations of variables and functions
trans_l.l lex file (token definitionen)
trans_y.y yacc file (syntax definition)
trans_decl.k kimwitu tree declarations
trans_array.k rewrite functions for array types and expressions
trans_lib.k functions to create the library types
trans_record.k rewrite functions for record types and expressions
trans_rw.k general rewrite function pool
trans_unp.k unparse functions to create text file of the kimwitu tree
trans_graph.k generation of graphical annnotations for visualization

with DEMON

The makefile shows which variables have to be defined and how the executable will be
build:

IT = trans_
KFILES  = ${IT}decl.k ${IT}rw.k ${IT}lib.k ${IT}unp.k ${IT}record.k\

${IT}array.k ${IT}graph.k
CC = cc
YOURFILES = ${KFILES} ${IT}y.y ${IT}l.l ${IT}main.c
ALLOBJS = k.o rk.o csgiok.o  unpk.o\

${KFILES:k=o} ${IT}y.o  ${IT}l.o ${IT}main.o
GENERATED_C = k.c rk.c csgiok.c  unpk.c ${KFILES:k=c}
GENERATED_H = k.h  rk.h  csgiok.h  unpk.h ${KFILES:k=h}

FILES

MAKEFILE



26 Installation of the Structured Data Type Translation Tool ‘pao2ao’

GENERATED_BY_KC = ${GENERATED_C} ${GENERATED_H}
YACC = bison
YFLAGS = -dyv
KC = /net/jupiter/usr85/SEM/kimwitu/kc-distr.V3_8/src/Gen/kc
GENERATED_LN = ${IT}decl.ln ${IT}rw.ln ${IT}lib.ln ${IT}unp.ln\

${IT}record.ln ${IT}array.ln ${IT}graph.ln\
k.ln rk.ln csgiok.ln unpk.ln ${IT}main.ln ${IT}y.ln ${IT}l.ln

new_${IT}: ${ALLOBJS}
${CC} ${CFLAGS} ${ALLOBJS}  -ll -o  $@

${GENERATED_BY_KC}: kctimestamp
kctimestamp: ${KFILES}

${KC} ${KFILES}; touch kctimestamp
${ALLOBJS}: k.h
${IT}main.o ${IT}l.o: x.tab.h
${IT}main.o ${KFILES:k=0}: ${KFILES:k=h}
${IT}main.o rk.o: rk.h
${IT}main.o csgiok.o: csgiok.h

${IT}main.o unpk.o: unpk.h

x.tab.h: y.tab.h
-cmp -s x.tab.h  y.tab.h || cp y.tab.h x.tab.h

lint: ${GENERATED_LN}
-@ lint -u -n -q -v ${CFLAGS} ${GENERATED_LN} 2>&1 |\
sed -e ‘/warning:/d’ -e ‘/malloc[,:]/d’ -e ‘/printf[,:]/d’\

-e ‘/scanf[,:]/d’ -e ‘/^free[,:]/d’

.c.ln:
lint -u -n -q -v -i $< 2>&1 | sed ‘/warning:/d’



October 4, 1994

27

Annex
Signatures of Library Types

The following signatures are provided for those that do not use the lite and TOPO tool set. It
provides the sorts, operations and equations of the three library types that are used.

(* This library is the IS 8807 Annex A standard libray, modified by LotosPhere WP2, and
recommended for use with tools. the changes are in types Set and SetElement.
Feb 1991

*)

type NaturalNumber
is Boolean
sorts Nat
opns 0 : -> Nat

Succ : Nat -> Nat
_+_, _*_, _**_ : Nat, Nat -> Nat
_eq_, _ne_, _lt_, _le_, _ge_, _gt_ : Nat, Nat -> Bool

eqns forall m, n : Nat
ofsort Nat

m + 0 = m;
m + Succ(n) = Succ(m) + n;
m * 0 = 0;
m * Succ(n) = m + (m * n);
m ** 0 = Succ(0);
m ** Succ(n) = m * (m ** n);

ofsort Bool
0 eq 0 = true; 0 eq Succ(m) = false;
Succ(m) eq 0 = false; Succ(m) eq Succ(n) = m eq n;
m ne n = not(m eq n);
0 lt 0 = false; 0 lt Succ(n) = true;
Succ(n) lt 0 = false; Succ(m) lt Succ(n) = m lt n;
m le n = m lt n or (m eq n);
m ge n = not(m lt n);
m gt n = not(m le n);

endtype

NaturalNumber



28

type String
is Boolean, Element, NaturalNumber
sorts String
opns String : Element -> String

_+_ : Element, String -> String
_+_ : String, Element -> String
_++_ : String, String -> String
Reverse : String -> String
Length : String -> Nat
<> : -> String
_eq_, _ne_ : String, String -> Bool

eqns forall s, t : String, x, y : Element
ofsort String

String(x) + y = x + String(y);
x + s + y = x + (s + y);
String(x) ++ s = x + s;
x + s ++ t = x + (s ++ t);
Reverse(String(x)) = String(x);
Reverse(x + s) = Reverse(s) + x;
String(x) = x + <>;
<> + x = x + <>;
<> ++ s = s;
(* new equation *)
s ++ <> = s;
(* end new equation *)
Reverse(<>) = <>;

ofsort Nat
Length(String(x)) = Succ(0);
Length(x + s) = Succ(Length(s));
Length(<>) = 0;

ofsort Bool
<> eq <> = true;
<> eq (x + s) = false;
x + s eq <> = false;
x eq y => x + s eq (y + t) = s eq t;
x ne y => x + s eq (y + t) = false;
s ne t = not(s eq t);

endtype

String



29

type Set
is SetElement, Boolean, NaturalNumber
sorts Set
opns {} : -> Set

Insert, Remove, Insert_1 : Element, Set -> Set
_IsIn_, _NotIn_ : Element, Set -> Bool
_Union_, _Ints_, _Minus_ : Set, Set -> Set
_eq_, _ne_, _lt_, _Includes_, _IsSubsetOf_ : Set, Set -> Bool
Card : Set -> Nat

eqns forall x, y : Element, s, t : Set
ofsort Set

Insert(x, {}) = Insert_1(x, {});
x lt y => Insert(x, Insert_1(y, s)) = Insert_1(x, Insert_1(y, s));
Insert(x, Insert_1(x, s)) = Insert_1(x, s);
y lt x => Insert(x, Insert_1(y, s)) = Insert_1(y, Insert(x, s));
Remove(x, {}) = {};
Remove(x, Insert_1(x, s)) = s;
x lt y => Remove(x, Insert_1(y, s)) = Insert_1(y, s);
y lt x => Remove(x, Insert_1(y, s)) = Insert_1(y, Remove(x, s));
{} Union s = s;
Insert_1(x, s) Union {} = Insert_1(x, s);
x lt y => Insert_1(x, s) Union Insert_1(y, t) = Insert_1(x, s Union Insert_1(y, t));
y lt x => Insert_1(x, s) Union Insert_1(y, t) = Insert_1(y, Insert_1(x, s) Uni on t);
Insert_1(x, s) Union Insert_1(x, t) = Insert_1(x, s Union t);
{} Ints s = {};
Insert_1(x, s) Ints {} = {};
Insert_1(x, s) Ints Insert_1(x, t) = Insert_1(x, s Ints t);
x lt y => Insert_1(x, s) Ints Insert_1(y, t) = s Ints Insert_1(y, t);
y lt x => Insert_1(x, s) Ints Insert_1(y, t) = Insert_1(x, s) Ints t;
s Minus {} = s;
s Minus Insert_1(x, t) = Remove(x, s) Minus t;

ofsort Bool
x IsIn {} = false;
x IsIn Insert_1(x, s) = true;
y lt x => x IsIn Insert_1(y, s) = x IsIn s;
x lt y => x IsIn Insert_1(y, s) = false;
x NotIn s = not(x IsIn s);
s Includes {} = true;
s Includes Insert_1(x, t) = x IsIn s and (s Includes t);
s IsSubsetOf t = t Includes s;
{} eq {} = true;
{} eq Insert_1(x, s) = false;
Insert_1(x, s) eq {} = false;
x eq y => Insert_1(x, s) eq Insert_1(y, t) = s eq t;
x ne y => Insert_1(x, s) eq Insert_1(y, t) = false;
{} lt {} = false;
{} lt Insert_1(x, s) = true;
Insert_1(x, s) lt {} = false;
x lt y => Insert_1(x, s) lt Insert_1(y, t) = true;
Insert_1(x, s) lt Insert_1(x, t) = s lt t;
y lt x => Insert_1(x, s) lt Insert_1(y, t) = false;
s ne t = not(s eq t);

ofsort Nat
Card({}) = 0;
Card(Insert_1(x, s)) = Succ(Card(s));

endtype

Set



30

type Boolean
is
sorts Bool
opns true, false : -> Bool

not : Bool -> Bool
_and_, _or_, _xor_, _implies_, _iff_, _eq_, _ne_ : Bool, Bool -> Bool

eqns forall x, y : Bool
ofsort Bool

not(true) = false;
not(false) = true;
x and true = x;
x and false = false;
x or true = true;
x or false = x;
x xor y = x and not(y) or (y and not(x));
x implies y = y or not(x);
x iff y = x implies y and (y implies x);
x eq y = x iff y;
x ne y = x xor y;

endtype

type FBoolean
is
formalsorts FBool
formalopns true : -> FBool

not : FBool -> FBool
formaleqns forall x : FBool
ofsort FBool

not(not(x)) = x;
endtype

type Element
is FBoolean
formalsorts Element
formalopns _eq_, _ne_ : Element, Element -> FBool
formaleqns forall x, y : Element
ofsort Element

x eq y => x = y;
ofsort FBool

x = y => x eq y = true;
x ne y = not(x eq y);

endtype

type SetElement
is Element
formalopns _lt_ : Element, Element -> FBool
endtype

Auxiliary Types


