Bell Canada's
Generic
Network Element Control
Technology

Authors:
Bernard Stepien, Protocol Standards
Corporation(PSC)
Carl Ward, Bell Canada
Date:
April 4th 1991
Abstract:

The NEC software development project is put into context in its operational environment at Bell
Canada. The NEC controls many network control functions of Bell's Special Services Digital
Network. Special purpose languages have been designed for application development in the
SSDN. At the heart of the software lies the Inferencing Connection Engine (ICE). Its overall
architecture is described along with the linguistic mechanisms which drive it.

Bell Canada's Generic Network Element Control Technology p. 1

Introduction and Overview of the NEC

Bell Canada is implementing a control architecture to centralize the operations, administration and
maintenance of a Special Services Digital Network (SSDN) . The control architecture is being achieved
through the creation and deployment of the Network Element Controller (NEC) which centralizes access
to Digital Cross Connects (DCC) and Intelligent Channel Banks (ICB). The NEC is a software application
which defines and uses advanced concepts of computer languages. It has its own proprietary languages
(ICE, FDL) developed by Kylain Technologies Inc. It has its own set of compilers for these languages. It
currently runs on a VAX platform and uses Ingres as it data base server. The NEC has three main
objectives:

1) secure, partitioned access to Bell Canada's DCC and ICB.

2) consistent interface for all accesses to SSDN Network Elements (NEs) including provisioning
and testing

3) protocol mediation between NEs (to/from: PDS, MML, TL1, ASN.1)

The NEC concept enables the representation, (using an abstract model) of any network element
machine. The model is defined through the use of individual transactions in the area of:

* provisioning

* testing

* surveillance

» configuration
» administration

The NEC is a centralizing system. The notion of centralization is more about the centralizing of
network information rather than centralizing the provisioning (or testing...) activity. Intervention on the
network is performed by geographically scattered independent users through user friendly interfaces that
are connected to a central NEC system.

Bell Canada's Generic Network Element Control Technology p. 2

The variety of equipment used to perform the DCC and ICB functions naturally generates two basic
requirements for such a software environment:

« flexibility in dealing with multi version controlling software of existing NEs
» adaptability to future generations of NE equipment and services.

There are four main components to the NEC system:

* a user interface

* a communications manager
* an operating system

* a database system

The basic flow of data consists in

OUTGOING: (to the elements)
transactions (commands) flowing:

a) from the user interfaces to the network elements in order to perform some provisioning action
and

b) to the database to record that action for audit and administrative purposes, and

INCOMING: (from the elements)
all the messages that will come back from the network elements

a) responses to the user interface

b) acknowledgement of command acceptance,
¢) echoing in case of full duplexes

d) alarms

all this through the communications manager component..

Bell Canada's Generic Network Element Control Technology p. 3

An Example

If one would want to establish a cross-connect between two in-service digroups, a cross-connection
provisioning transaction of the following form would be issued (after filling in the information on a user
interface screen(s)):

connectDNX-TOR23 digrou®25 channeb
to digroup73 channeb
signal bits10010011pcm bitsGF
disconnect signd@1011101pcm60 <cr> <If>

This format of command is not understandable by the target DNX (the DNX is a DCC manufactured
by Northern Telecom), and has to be converted. In the conversion process, one has to know first of all
what to convert (identify the class of command), and then find the equivalent format for the same class of
command in the target machine and perform the appropriate conversion.

The above command will be ultimately be converted to the following Man Machine Language
command:

CON-TW-DS0:25-6,73-5:b'10010011,GF,b'01011101

Once this command is processed by the target DNX, the DNX will respond with the appropriate
responses such as '"ACCEPTED' or 'REFUSED' depending of the actual state of the DNX when receiving
this command.

This however is not the only function of the NEC system. So far, the above example has only
achieved a remote access function. For system administration, one needs to record the new state of the
DNX, if the cross-connection has succeeded, or to undo successful connections in a circuit where some
connection attempts have failed.

This is achieved by storing all successful provisioning results in a database. This in turn generates a
family of database administration functions. Since manual operation of a DNX still remains possible in
case of failure of the NEC and for emergencies, a misalignment between the true state of a DNX and its
database image may occur. Consequently, from time to time, one has to realign the stored information.
This is an on-going background task of the NEC.

Bell Canada's Generic Network Element Control Technology p. 4

Currently the system has been implemented on a VAX 6420 with a back-up 6420 on standby for
switchover in case of failure. It controls NT's DNX-100 Digital Cross Connects and AT&T's D5
Intelligent Channel Banks for the T1 network from either user terminals or another existing DCC access
device. (figure 1). Future releases will control NT's DE4-E-Smart ICB and future NT FibreWorld products
(integrated DCC and ICB).

network DCC ACCESS
managemen DEVICE
system
ALARMS
(MML)
NEC
users
O @)
- VAX - g N—a
=] 6410 -
commands
and
responses
(MML)

where MML stands for Man Machine Language

figure 1

We shall now discuss the various features of the NEC and its technology.

Bell Canada's Generic Network Element Control Technology p. 5

Application Specification Languages
There are four description languages in the NEC:

» Format Description Language (FDL)

* Protocol Description Language (PDL)
 Language for User Interface (LUI)

+ Data Definition Description Language (DDDL)

These languages are described using an augmented Backus-Naur form (ABNF) that provides both the
syntax and the semantic constructs required for execution. The semantic construct are based on reusable
primitives that can be assembled into any appropriate combinations to perform a function described by the
syntactic element. These languages are compiled by the Language Specification Mechanism compiler to
produce a compiled version of the language specification. The compiled version is then used along with
an application specification source code by a compiler-compiler to produce a compiled version of the
application. (see figure 2)

Bell Canada's Generic Network Element Control Technology p. 6

ABNF

language grammar

syntax + semantics

high-level application

specification
source code

.

' language compiler

compiled grammar

application
compiler

application
micro code

figure 2

5

Bell Canada's Generic Network Element Control Technology

p.

ABNF Example

The following example shows the ABNF for a protocol specification in the Protocol Definition
Language :

:protocol:
(
"protocol” [set][lit][break_address][MAXINT]
[reset][self_describing]
[reset][transport_descriptor]
protocol_name
[set][val]
[program_name][*protocol_name*]

(I "using" "transport" "descriptor”

descriptor_name [set][val][transport_descriptor]
[*descriptor_name*]
| "self" "describing” [set][lit][self_describing][TRUE]
)
T [protocol]
< (1:0) transaction

>

T

On the left hand side we find the usual BNF grammar definition, while on the right hand side we find
the semantics associated with each production that will be the resulting token stream upon compilation of
an application definition.

This approach has the benefit of saving considerable time on re-programming. Adding a new
language element merely consist of adding the necessary few lines of ABNF definition.

The following example shows how one obtains a token stream from a protocol definition using the
above ABNF for the protocol production:

Bell Canada's Generic Network Element Control Technology p. 8

specification source:

protocol DNX
using transport descriptor mmitransport

[

transaction prov_trans of type con_tw
using descriptor dnx_con_tw_b
when exists(Type_connect_b)

[

method provision("second_half");

|

|

resulting token stream:

token token token meaning corresponding
sequence value (primitive) specification
number source
#205 78 set protocol
#206 79 lit
#207 58 break_address
#208 31 2147483647
#209 80 reset
#210 35 self_describing
#211 80 reset
#212 42 transport_descriptor
#213 78 set
#214 81 val
#215 33 program_name
#216 0 index of generic names array "DNX"
#217 78 set using
#218 81 val transport
#219 42 transport_descriptor descriptor
#220 1 index of generic names array "mmltransport”
#221 82 protocol
etc ...

The above protocol example reveals the use of data descriptors called Format Descriptors (FD).

Bell Canada's Generic Network Element Control Technology p. 9

Format Description Language

A format descriptor is composed of structural information that defines the hierarchy of fields and
their lengths but it also gives all the alternative formats a record may have. For example the mmltransport
descriptor (Man Machine Language transport) that is used in the above DNX protocol will show the
format of the various commands that one can send to a DNX.

record mmltransport; (length _RECORD_LENGTH,;
format cs_ASCII;)
[
field RECORD_LENGTH,; (context;)
field ERROR,; (context;)
field clli; (length 11;)
field sequence; (length 4;)
field _command,; (length RECORD_LENGTH - 15;)

[

case _command;

{ ="DISPL-FWREL"; field Type_querywho; (length 1;) }

{ ="DISPL-DGSTAT"; field Type_queryport; (length 1;) }

{ ="DISPL-TW"; field Type_querycross; (length 1;) }

{ ="DISPL"; field Type_query_2; (length 1;) }

{ ="CON-TW" field Type_connect; (length 1;) }
{ ="CON-TW" field Type_connect_a; (length 1;) }
{ ="CON-TW" field Type_connect_b; (length 1;) }
{ ="DISC-TW"; field Type_disconnect; (length 1;) }
{ ="PROV-FAC"; field Type_prov_fac; (length 1;) }

{ ="DISC-FAC"; field Type_disc_fac; (length 1;) }
etc...

In this example thecommandfield is depicted through a case statement that gives the alternative
ways this field appears. In this case, a given string value representing the MML commands determines the
field type.

Bell Canada's Generic Network Element Control Technology p. 10

Protocol Description Language

It is a declarative and procedural language. The basic data being exchanged between the various
communicating entities is represented by a transaction which will contain commands to network element
or responses from these same network elements. The transaction is consequently the main carrier of
information in the NEC system. The transaction is also the basic source of information to drive the
inferencing connection engine.

Each protocol has a name that is used to invoke it. It then has two main parts: a transaction definition
statement and a method statement. The transaction definition describes how the system can identify this
transaction, and upon proper identification trigger a set of actions that are described separately in a
method definition block. The format descriptors are used to detect the appropriate transaction. A
transaction is always associated with a format descriptorwhka exists(field_name}ytatement allows
the identification of the transaction.

In the above example, we see that a transaction is a prov_trans transaction if it contains a field type:
Type_connect_b, which is a command that starts with the string "CON-TW" according to the
mmltransport format descriptor.

Once the appropriate transaction is identified, we can execute the actions associated with it, in this
case the method provision.

A method is a way to further structure a protocol description. It is parametric, and resembles a "C"
switch statement.

Bell Canada's Generic Network Element Control Technology p. 11

define method provision (function)
[
case
[
arg(function) == "normal"
[
forward transaction prov_trans
to :prov_trans:clli
window factor 1;

arg(function) == "second_half"
[
forward transaction prov_trans
to :prov_trans:clli
window factor -1;
return; |

]

expect transaction acknowledgement
of type acknowledgement
within 180 seconds
with location(transaction acknowledgement)
== :prov_trans:clli
etc...

There are various action statements:

* the send statement creates a new transaction and forwards it to the specified location.

» the forward statement forwards an existing transaction to the specified location.

* the expect statement specifies that a transaction of the given type should arrive within a
specified period of time.

Bell Canada's Generic Network Element Control Technology p. 12

The Execution Environment

The system is decomposed into modules that are dedicated to specific functionalities. The core of the
system is the Inference Connection Engine (ICE) that executes protocols. The execution of a protocol will
result in transactions being sent to or from Network Elements, users or other access devices. Some of the
functions involved in this process have been separated into these modules:

There are three main modules:

* the system control module, that is a supervisor, starting up or shutting down other modules
(PCP).

» the Generalized Driver Framer that handles the communication aspect of the system (GDF).

» the Inference Connection Engine that executes the various protocols.

We have mentioned earlier that this system has been designed to be generic. This aspect has been
extended further than merely executing protocols. It is used to further break down the various
functionalities of the system. Consequently, there are four copies of the same Inference Connection Engine
running in parallel, each of them handling a specific segment of the communication destinations.

Consequently, there is an instance of ICE strictly handling users interfaces, another handling
database operations, another handling alarms and finally one handling the network element via the
Generalized Driver Framer. The reason for this architecture is of course to take advantage of the
asynchronous nature of the various events occuring through the system.

The overall software architecture is depicted in figure 3.

Bell Canada's Generic Network Element Control Technology p. 13

INGRES
& flat
files

DATABASE
SERVICES

an instance of ICE

Auxiliary

Services
reporting
an instance of ICE

USER
INTERFACE

an instance of ICE

program
control
process

Inference
Connection
Engine

transaction
processing

Generalized
Driver
Framer

Network
Elements

other
access
machines

figure 3

Bell Canada's Generic Network Element Control Technology p. 14

The Inference Connection Engine

The two main functions of the Inference Connection Engine are to execute protocols and process user
interface events. As we have seen above, protocols are specified using the Protocol Description Language
and are compiled in executable micro code. The execution of a protocol is performed through processes
that are created every time a protocol is used to drive the interaction flow with various Network Elements.

A Process Status Block (PSB) is created for each instance of a protocol execution. The PSB is very
similar to the Program Control Block concept of operating systems. It has its owns stacks, registers and
program counter to execute a given protocol. A virtual machine is created for each PSB.

The execution of a PSB is dependant of its status

* runnable,

* running,

* holding,

» Scheduled execution is pending,

* cancelled,

* Original transaction exists,

» Expected transaction exists,

» Cancellation of subprocesses required,
» Transmit type transaction,

* Receive type transaction.

Processes are queued, and the ICE system will check this queue to find a runnable process and run it
until it enters a new state where it will be holding to expect a response from a communicating party, etc...

The execution of the compiled protocol is performed using an object oriented approach. Each token of
the compiled protocols token stream is a primitive that is dispatched to a given C function that handles
only one primitive at once.

Bell Canada's Generic Network Element Control Technology p. 15

The selection of the appropriate protocol to execute is determined by the location (network element or
user). The normal life cycle of processes consists usually of:

* a process being created when a user logs in to the NEC system,

» this user will eventually trigger the creation of a transaction corresponding to a provision action,
» this transaction will be converted to a new transaction in a format appropriate to the destination,
* a new process to execute the protocol of the destination is created.

This process will receive a response from the location that will generate a response transaction that
will be converted back into the user interface format and forwarded to the user interface.

Example 4 shows such a transaction flow. Protocols are re-entrant and are loaded as required by the
various events occuring in the life of the system. A table will give which protocol to use when talking to a
given location. The control processes that are created have limited life cycles. There are also numerous
processes that could be created using the same protocol when for example many users are performing
various provisioning activity on the same network element. When the life cycle of a process is completed,
it will merely die out, and all its related data structures will be freed.

Bell Canada's Generic Network Element Control Technology p. 16

Inference Connection Engine process control
and transaction flow

user interface network element
process process
user . " . -
- |rECEIVE provision receive provision
command event o command
— ,&(\Q’O" & ¢ transaction from
provision user
command forward
transaction transaction to '—>
GDF/NE GDF
transactions | format) transactions | receive NE
conversion acceptance -—
) from GDF/NE
receive
acceptance issue
transaction acceptance
transaction
created when user logs in . created when user issues
figure 4 a provision command
Conclusion

The NEC system is in line with the latest concepts of system integration that require systems to be
generic and intelligent. The current system is however based on the transaction concept and relies on
declarative description languages. While the current system has enabled Bell Canada to explore the
realities of Network Element Control and prove its benefits, it became clear that some improvements in
the design could be achieved by using more standard description languages such ASN1 for data formats
and Formal Description Techniques such as Estelle, LOTOS and other ISO standards for Protocol
descriptions.

Bell Canada's Generic Network Element Control Technology p. 17

