A Bottom-Up Abstract Data Type Editor

by Bernard Stepien
Telecommunications Software Engineering Research Group
University of Ottawa

Motivation

Formal description techniques enable to specify communications protocols in very con-
cise and unambiguous ways. However, this implies learning yet another language with its syntax
and semantic. This learning curve may actually prevent some uninitiated potential users to use
such languages and revert to simpler but less powerful description methods. This has been widely
the case for LOTOS (Language Of Temporal Ordering Specification) mostly due to its data
description part that uses the Abstract Data Type language (ADT) Act One. For the same reason
there has been a wide resistance to use the ADT language of the SDL tools that are however
widely used for the procedural part of specifications.

The ADT languages Act One and its SDL equivalent
are however relatively simple and are based on some object oriented principles such as inherit-
ance and polymorphism. This means that one may construct a new data type by re-using elements
of an inherited type. Usually for complex specifications of more than 200 lines, users will get lost
in these networks of inheritances. First of all, the user needs to remember all the details of the
already defined data types and see how to integrate them in the new data type she is building. A
very simple solution to this problem is to provide the user with a tool that presents what elements
are available to build a new data type. This process varies at every level of a data type definition,
inherited type selection, sorts definition, operations definition and finally equations definitions.

This method of ADT construction is using the bottom-up approach. This implies that one
is not allowed to use something that has not been already defined. Other editors use the top-down
approach and display error messages when an undefined element has been used. The bottom-up
approach is with the help of this tool also usable in a step by step top-down oriented approach.
The user need merely to build the skeletons of her intended data types and gradually complement
them as more details are progressively defined. More research is currently undertaken to integrate
the top-down with the bottom-up approaches as a result of the benefits of this tool.

Abstract Data Type language description
An abstract data type is composed of four components:
- the inherited data type reference
- the sorts definitions

- the operations definitions
- the equations definitions

April 14, 1995 4:37 pm 1

an example:

type Bit is Boolean

sorts Bit
opns

0, 1: -> Bit

eq: Bit, Bit -> Bool
eqgns

ofsort Bool

forall X:Bit

Xeq X =true;

0 eq 1 = false;

1 eq 0 = false;
endtype

More complex data types can be constructed by renaming the elements of an existing data type or
by actualizing a parametric data type.

The Abstract Data Type editor tool
This Xwindow tool is composed of a number of interfaces:

- the main menu interface containing the list of already defined types
- the data type kind selection interface

- the data type definition interface

- the inherited data types selection interface

- the sorts definition interface

- the operation definition interface

- the equation definition interface

- the text translation viewing interface

The main menu interface

\\\\\\\\\\\\\\\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\\\\\\\\

zzzzzzzzzzz

Translate A0Ts | .

:| VIEW all Data Types ” Load an ADT Spec |

| Octets
| Hessage

Haturaliumbers

April 14, 1995 4:37 pm 2

The data type kind selection interface

Crenling & New [aks Type

(s e e |
L
[Kirad of Data Type|

racmal

oaremedd
| marusliesd

E:::ui

The data type definition interface

This is the master interface for a basic data type that is neither renamed or actualized. The user
can invoke the appropriate interfaces pertaining to the four components of a data type by clicking
on a text line to select an item to modify or clicking on the various buttons.

The inherited data types selection interface

This interface can be invoked by clicking the “Add an Inherited Type” button.

iy Selecting a New Inherited Type

Inherited Data Types|

Boolean

Bit

Octets
Message
Natural¥umbers

The user can pick her desired inherited data type by clicking on one of the type names available in
the list that has been generated by the software.

The sorts definition interface

The sorts definition interface is merely a text widget where the user enters a sort name.

Creating a Now Son

:t:',_

Fastd

The operation definition interface

This interface can be invoked both for a new operator definition and an existing operator
modification. The user enters a name in the text edit widget, clicks on one of the available opera-
tor kinds, clicks on the modify range button to obtain a list of available sorts to choose from. The
same list of available sorts will appear when clicking the “add a Domain” button.

April 14, 1995 4:37 pm 3

Building a New Data Type

o s

o s

o s

o s

~

-

R Y T T T L L S
s) 7+

L R T R S S R R R

Eit P

Add a Sort

|Remove a Sort

-
L
-

o -» Bit
11 : -» Bit
“leg : Bit ,Bit -» Bool

Add an Inherited Type HRemnve an Inherited Typ

Add an Dpnsl Remowve an Dpnsl

Duplicate an Dpns}\

=
[u]
(=9
o
h
-

L T T T T S S Y

eq (X,) = True;

-

Add an Eq‘ns”Duplicate an Egns H Modify an Eqgn }\

LY

: N
1 1 - - - - - - - - - -
[Build Type [[view Type[- o o oo oo oo

~

~

~

~

Creating & hew Bperator

April 14, 1995 4:37 pm

Range selection interface

Gelecting o Rasge

o BrmL lut s H::ll i

jBi
I Enl
v

Range selection interface

Selecting n bamain

[TR T
Jhvaklakle sselef .

fmt
|Beal

Equation definition interface

The most useful interface in this tool is the equation definition interface. Very complex
equations can be built gradually by merely picking available operators that are displayed in list
boxes.

Il:-u.ul.l. Em:”:l.rl::r:hl.lwml-'-' A

First the user must pick an operator from the operations list box of the Data type interface. Then

April 14, 1995 4:37 pm 5

she must click on the “Add an Eqgns Button” to invoke the Building a New Equation interface. Ini-
tially, the tool displays the Equations interface filled with the name of the selected operator and
the sorts of the domain and range of this operator that will appear as left and right hand side of the
equation. The two list boxes “Available Operators” and “Available Variables” will display the
available operators and variables or the domain or range sort that is framed. Clicking on one of the
available sort names will automatically fill the framed domain element and move the frame to the
next undefined element.

" Bullding & Mew Enuation
| %[
1
Faft Flamd Side .00 L
| gLl !!
Right Mend Sicde AL

P IS P B S S SR Se SN T S A Y e g e e e =

[ired

|i Bit L Bit -3 Bool
Falws » Beo

|
; ||":r-n||- % Marishls

Coxmm k :m:”hl::lr:l. tle Eq'r.ll

Complex equations that appear repeatedly with minor modifications can be duplicated in
the Type definition interface and merely modified, thus saving even more efforts as for example
for bits selectors in an octet:

Bit1(Octet(b1,b2,b3,b4,b5,b7,b8) = b1;
Bit2(Octet(b1,b2,b3,b4,b5,b7,b8) = b2;
etc. for the remaining six selectors.

Equation variable definition interface

Croating & hkow Varlable
Variahle Moane,:
[t

[cceate]

April 14, 1995 4:37 pm 6

The text translation viewing interface

This type of interactive bottom-up tool can sometimes also confuse the user because the
information becomes scattered in individual interfaces. A text translation interface can be invoked
in various parts of the tool to display the full translation of the constructed abstract data type using
either the LOTOS Act One of the SDL notation.

las pitting & Data Type

cipe Hiolean Ls
porcs Foel
opa
Trus Banl
False =7 Hesa]
ardbype

tvpe Hit ds Hooles
sorks Eik

rpnz
1] -3 HLE
L -5 HLE

erelbype

Eyps dczais 1 Bat
gorks Oekek
pous

Ictak ik Wb, e, Tat, Bat, Hat, Bak, fek -
Batl: Ictet Bk
s
Forsll X HEat, ¥ dctsk
cfaocrk Hat
BEELIY} = 1
BaELITE = 1
e ————

2102 |

Three levels of translation can be generated:
- for a given type only
- for a given type and all its inherited types
- for all data types present in the module

T Inspecting a Data Type

J|newtype Octets

operators
Octet: Bit, Bit, Bit, Bit, Bit, Bit, Bit, Bit -» Octet;
EBitl: Octet -» Bit;

axioms

for all ¥ in Bit, ¥ in Octet, bl in Bit, b2 in Bit, b3 in Bit, b
ofsort Bit

R Bitl({Octet(bl, b2, b3, b4, b5, be, BT, b)) == k1 ;

| endnewtype Octets;

The text translation interface is also interactive. After browsing the text, the user can click
on any line of that text and automatically invoke the full hierarchy of interfaces that leads to the
interface required to modify that line.

April 14, 1995 4:37 pm 7

Renamed data type interface

Bullding & Kenamed Dss Typa

Dot Type to be Rermued: P4

Select Typa ta ba Elnl.l.l:dl

crigial Sorte Renauind Sors

Hit Flip_flap

Add » Benmmsd Sork

e Oyt

(B n Fewnmed 'p.'-'.

Comma b Faramed Ouks Tyza II'-".HI :I"'.-:-ll

TSI T TR WO T TR I T WY

Actualized data type interface

April 14, 1995 4:37 pm

Building a Actualized Data Type

Future developments

Extensions of the ADT language Act One are currently under study and have been subject
to some experiments at GMD-FOKUS in Berlin. These extensions will be integrated in this tool.
There is also a need to be able to manipulate architectural concepts in data type building.

Full extention to the SDL ADTSs.
Contacts:
Bernard Stepien

183 Crestview Road

Ottawa, ON K1H 5G1

tel. (613) 733-3196

fax (613) 733-6783

E-mail: bernard@csi.uottawa.ca

Luigi Logrippo

University of Ottawa

Telecommunications Software Engineering Research group
Ottawa, ON K1M 6N5

tel. (613) 564-5450

fax (613) 564-9486

E-mail: luigi@csi.uottawa.ca

April 14, 1995 4:37 pm 9

