Life-cycle E-Commerce Testing with
OO-TTCN-3 *

Robert L. Probert!, Pulei Xiong!, and Bernard Stepien?®

! School of Information and Technology Engineering, University of Ottawa 800 King
Edward Avenue, Ottawa, Ontario KIN 6N5 Canada
bob, xiong@site.uottawa.ca
2 Bernard Stepien International Inc.
bernard.stepien@sympatico.ca

Abstract. E-Commerce systems have become ubiquitous. However, it
is a challenge to create high quality e-commerce systems respecting time
and budgetary constraints. In this paper, we present a life-cycle testing
process for e-commerce systems by adapting OO-TTCN-3, an object-
oriented extension of a formal test language TTCN-3, to enable the ef-
ficient specification of tests in object-oriented, e-commerce development
environments. This extension is meant to ease life-cycle testing, facili-
tate test case reuse between different test phases, and provide a unified
Abstract Test Suite (ATS) interface to test tools. A case study shows
how to apply the approach to a typical e-commerce system based on a
high-yield, risk-directed strategy.

1 Introduction

Web techniques have grown very fast in recent years. Electronic Com-
merce (E-Commerce) systems, which facilitate the conduct of business
over the Internet with the assistance of Web techniques, have been adop-
ted by more and more companies as the architecture of their enterprise
information systems. It is a challenge to build a quality e-commerce sys-
tem under the constraints of time and budget. Software testing is an
essential and effective means of creating quality e-commerce systems.
Software testing is a life-cycle process which parallels the software de-
velopment process [1, 2]. Generally, a complete software testing life cycle
includes the following phases: test planning, verification and validation
(V&V) of system analysis and design (AD) models, unit testing, inte-
gration testing, functional testing, and non-functional system testing. In
these testing phases, we need to build and test various AD models, as
well as the implementation, by applying multiple testing methods and
utilizing multiple testing tools.

* This work was partially supported by Communications and Information Technology
Ontario (CITO) in a collaborative project with IBM, and by Testing Technologies
IST GmbH. The authors are grateful for the comments of the anonymous refer-
ees,which improved the paper considerably.

Life-cycle testing, however, does not guarantee testing software thor-
oughly. In the real world of software projects, software should be tested
in a cost-effective way: executing a limited number of test cases, but still
providing enough confidence. A high-yield, risk-directed test strategy in-
troduced in [3] is a cost-effective approach of test case design: test cases
that are high-yield (that have the highest probability of detecting the
most errors) and high-risk-directed (that have the most serious conse-
quences if they fail) are developed and executed with high priorities.

In this paper, we propose a life-cycle e-commerce testing approach based
on a high-yield, risk-directed strategy by specifying test cases at an ab-
stract level in OO-TTCN-3. The paper is organized as follows. In section
2 we discuss briefly the nature and architecture of web applications, and
discuss related work on web application modeling and testing. In section
3 we introduce a life-cycle testing approach, and propose a useful object-
oriented extension to TTCN-3. In section 4 we present a case study in
which we apply the proposed testing approach. In section 5 we present
a summary and discuss possible future work.

Web application, a term similar to e-commerce system, is also used in
this paper. There is no essential difference between these two terms.
Informally, we consider that e-commerce system is a term with broader
scope than web application: an e-commerce system may consist of several
relatively independent web applications.

2 Testing E-Commerce Systems: Background
and Related Work

2.1 The Nature and Architecture of Web Applications

Generally, web applications are a kind of thin-client Client/Server (C/S)
system. However, compared to traditional C/S software systems, web
applications have natures which make them more complex to design and
test: (1) server-based application architecture such that no special soft-
ware or configuration are required on client side (2) navigation-based
interaction structure (3) n-tiered system architecture such that the com-
ponents of each tier may be distributed and run on heterogeneous hard-
ware and software environments (4) independent of types, brands, and
versions of web servers and browsers (5) the web server may concurrently
process tens of thousands of requests from client applications (6) code
contains a blend of object-oriented and procedure-oriented programming.
Today, most e-commerce systems are running on the 4-tiered architec-
ture, that is, client tier, web tier, business tier, and Enterprise Informa-
tion System (EIS) tier. Each tier is built on component-based techniques.

2.2 Web Application Modeling and Testing

There has been much research into web application modeling and testing.
UML (Unified Modeling Language) is suited to modeling web applica-
tions, but needs some extensions to describe web-specific elements. Some

extensions to UML were proposed in [4] to represent web-specific com-
ponents, such as client pages, server pages, forms, hyperlinks, and Java
Applets. The authors of [5] discussed how to apply extended UML to
build a business model, navigation model and implementation model.
Several approaches have been proposed to support web application test-
ing. In [6], an object-oriented architecture for web application testing
was proposed which contains several analysis tools that facilitate the
testing of web-specific components. In [7], the authors presented a test-
ing methodology for web applications based on an object-oriented web
test model, which captures test artifacts from three different aspects:
the object aspect, the behavior aspect, and the structure aspect. In [8],
the authors proposed a definition of unit and integration testing in the
context of web applications. The testing approaches discussed above fo-
cus on testing web applications after they have been built. Alternatively,
in [9], the authors presented a formal method which integrates testing
into the development process as early as the system analysis and design
phases. The paper demonstrated how to use the Specification and De-
scription Language (SDL), Message Sequence Charts (MSCs), the Tree
and Tabular Combined Notation (TTCN), and industrial-strength sys-
tem design tools such as Telelogic TAU to develop and test a CORBA-
based e-commerce system.

These testing approaches contributed to the improvement of web applica-
tion quality. However, they only applied to part of development life-cycle:
either in the analysis and design phases or the implementation phase. In
addition, the test cases developed in a testing approach are written in a
specific script language and depend on proprietary or specific industrial
tools. These test scripts can not be reused by other testing approaches.
In this paper, we intend to propose a life-cycle testing approach which
leverages multiple testing methods in a life-cycle testing process. Further-
more, we integrate all the testing phases by specifying test cases on the
abstract level with Object-Oriented TTCN-3. These abstract test cases
can be easily reused in the whole testing process, and are independent
of specific testing tools.

3 A Life-cycle Testing Approach with
OO-TTCN-3

3.1 A Life-cycle Testing Process

Life-cycle e-commerce testing is a process of applying multiple testing
methods to AD models and implementations in different testing phases,
with assistance of various test tools, as shown in Figure 1. In this pro-
cess, we specify all test cases in OO-TTCN-3. The dashed lines in Figure
1 indicate the possible ATS reuse. The ATS expressed in OO-TTCN-3
provides a unified interface. This makes test scripts independent from
specific test tools. This also facilitates ATS reuse between different test
phases: e.g., test scripts for unit testing can possibly be reused by inte-
gration testing without any modification, and different test tools may be
used for the unit testing and integration testing.

Test TestCase | TestCase
Methods | Specification | Execution

1| Hackbex ATSm 3 oT

Analysis & Design Models I_# Mu‘.;u;&[wm't'i"t'] T ooTTCN.3

——
Inglementstion ft—gd Unit Testing

Test Models Test Phases

MO = om— = —

Bukbox || PF| ATSm

Fig. 1. Life-cycle Testing Process Model with OO-TTCN-3 for E-Commerce Systems

3.2 Introduction to TTCN-3

TTCN-3 has been developed and standardized by ITU and ETSI (Eu-
ropean Telecommunication Standards Institute) for general testing pur-
poses. An ATS specified in TTCN-3 is independent of languages, plat-
forms, and testing tools. TTCN-3 is built from a textual core notation
on which several optional presentation formats are defined, such as the
tree and tabular format (TFT) and the Graphical Presentation Format
(GFT) [10,11]. Complex distributed test behavior can be specified at
an abstract level in TTCN-3 flexibly and easily in terms of sequences,
alternatives, loops and parallel stimuli and responses. Practical applica-
tions of TTCN-3 were introduced in [12-15]. In addition, an extension
for TTCN-3 were proposed in [13] to handle specific issues in testing
real-time systems.

3.3 Object-Oriented TTCN-3

In this paper, we do not intend to make TTCN-3 fully object-oriented.
Instead, our extension only focuses on specifying inheritance hierarchies
and aggregation relationships between test modules.

Inheritance When we test an object-oriented system, if an inheritance
relationship in the system is introduced during design in accordance with
the Substitution Principle, an inheritance relation also will hold for the
test cases for this inheritance hierarchy [16]. As shown in Figure 2, class B
is derived from class A in accordance with the Substitution Principle, and
TM_A and TM_B are test modules for class A and B, respectively. There
exists an inheritance relationship between TM_B and TM_A. The allowed
ways of introducing inheritance as required by the Substitution Principle,
and corresponding test case design considerations are as follows [16].
— A new operation, say b_opl, is added to the interface of B and pos-
sibly a method is created to implement the operation. In this way,
specification-based test cases will now be required for the operation

in TM_B. If the operation has an implementation, implementation-
based test cases need to be added to comply with coverage criteria.

— If an operation in B, say a_opl which is inherited from A, has not
changed in any way, either in specification or in implementation, the
test cases for this operation in TM_A still apply to TM_B, which
means the test cases do not need to be rerun in TM_B if they have
passed in the execution of TM_A.

— The specification of an operation in B, say a_op2 which is inherited
from A, has changed. In this case, new specification-based test cases
are required for the operation in TM_B, which will satisfy any weak-
ened preconditions and check outputs for the new expected results
from any strengthened postconditions. The test cases for this oper-
ation in TM_A must be re-run. If the expected results need to be
revised according to the strengthened postcondition, the test cases
in TM_B need to be overridden.

— An operation in B, say a_op3 which is inherited from A, has been
overridden. In this case, all the specification-based test cases for
the operation in TM_A still apply in TM_B. The implementation-
based test cases need to be reviewed. Some test cases need to be
overridden, and new test cases need to be added to meet the test
criteria for coverage.

Clage A
+a_op1()

+a_op2()
+a_op3()

\ o

‘ Class B ‘

TestModule TM_A()

TestModule TM_B()

va_op2(int)
+b_op1()

Fig. 2. Class Inheritance Hierarchy and Corresponding Test modules

In short, test cases in TM_A can be reused in TM_B. TTCN-3 provides
a way to reuse definitions in different modules by using the import state-
ment. However, as a procedure-oriented language, TTCN-3 is incapable
of specifying the inheritance relationship between TM_A and TM_B.

Therefore, we extend TTCN-3 with a fundamental object-oriented mech-
anism, namely inheritance (extend and override), to make it capable of
specifying derived test modules. The extension helps to specify the in-
heritance hierarchies in test modules clearly, and it eases the reuse of
test case definitions in unit testing at the class level. For example, for
a simple inheritance hierarchy shown in Figure 3, we can develop test
cases based on the specification and implementation (if any) of an ab-
stract class Account, and specify them in OO-TTCN-3 in test module
AccountTest, even before the creation of two subclasses: EXAccount and
BankAccount. After the two subclasses have been designed and imple-
mented, the test cases in AccountTest are ready to be reused for test
module EXAccountTest and BankAccountTest which are inherited from
AccountTest. In addition, if any subclass is derived from the class Ac-

count in the next development iteration, the test module for the new
subclass can also benefit from the existing testing module hierarchy.

In section 4.3.3, we show how to use OO-TTCN-3 to specify a derived
test module.

Account

AccouniTest

BarkAccounTest

Fig. 3. Partial Class Diagram for Account, EXAccount and BankAccount

Extending TTCN-3 with an Inheritance Mechanism To ex-
tend TTCN-3 for specifying inheritance relationships between test mod-
ules, we investigate which elements in a test module are likely to be
reused, and which elements can be extended or overridden in its derived
test module. The result is shown in Table 1. From the table, we see that
almost all of the elements can be reused directly, and some elements can
be reused by means of an extend or override mechanism.

Table 1. Element reuse in a test module in TTCN-3

Elements Reuse|Extend|Override

Definition| Type Built-in N N N
Definition User-defined Y N N

RP Signature Y N Y

Test Data Constant Y N N

Data Template Y N N

Signature Template Y N Y

Test Communication Port| Y Y N
Configuration|Component Y Y N

Behavior Function Y N Y

Named Alternatives Y N Y

Test Case Y N Y

Control N N N

We extend TTCN-3 by adding two key words: private and public, to
indicate if an element is ready to be reused in a derived test module,
and we assume that if an element is not specified explicitly with the key
word private, the element is defined to be public by default. We also

propose to add a key word extends, which is used to specify that a test
module is inherited from another test module. The modified TTCN-3
syntax in BNF form is as follows (the sequence numbers correspond to
those defined in Annex A in [10]):

1. TTCN3Module: :=TTCN3ModuleKeyword TTCN3ModuleId[extends TTCN3ModuleId]
BeginChar

[ModuleDefinitionsPart] [ModuleControlPart]

EndChar

[WithStatement] [SemiColon]
52. PortDefBody::=PortTypeldentifier[extends PortTypeIdentifier] PortDefAttribs
73. ComponentDef: :=ComponentKeyword ComponentTypeldentifier

[extends ComponentTypeIdentifier]

BeginChar [ComponentDefList] EndChar

Aggregation There may also exist an aggregation relationship be-
tween test modules, e.g. between test modules for functional testing
and those for unit testing. In Figure 4, a functional test scenario
derived from the User Login use case consists of four steps. Each
step corresponds to one test case defined in the test module for unit
testing. The functional test scenario can be realized by executing
these test cases. This relationship can be expressed as an aggrega-
tion relationship in UML. In section 4.5, we show how to specify
a test module for a functional test scenario by reusing test cases
defined in unit testing.

Functional Test Scenario Unit Test odules & Test Cases
Use Case User Logn Test Modue Tes! Case

UserLaginTest

Step 1: open mdex page: index page | hyperimkCheck | Hyparini_lc
Isplays

Step 2; click “login’ Ayperinic; login Hyparink_tc
page dispays
Step 3; inpul “user 10" and LognServietTest | Logn tc

“password, clck “login’ button:

logonSuccess page displays

Step 4: click Jogout” hyperink logout | hyperfinkCheck | Hyperink_te
page displays

hyperfinkCheck LoginServietTest

Fig. 4. Aggregation Relationship between Test Modules

4 Case Study

In this section we present part of a case study in which we apply
our life-cycle testing approach with OO-TTCN-3 to a typical e-
commerce system based on a high-yield, risk-directed strategy. The
complete case study can be found in [17].

4.1 Overview of EX System

The EX system is an on-line currency exchange system which acts
as a broker to provide customers the best exchange rate between

Canadian Dollars (CND) and U.S. Dollars (USD) among its linked
banks at remote sites. The entire EX system can be divided into
three subsystems: EX web application subsystem (EAS), bank sub-
system (BS), and post office subsystem (PS). EAS obtains quotes
from banks and presents the best one to web clients (WC).

4.2 Verify and Validate the System Analysis and Design
Models

During the system AD phases, the AD models, e.g., UML use cases,
need to be verified and validated. For example, guided inspection
can be used to verify the use case model for correctness, complete-
ness and consistency [22]. Then, test scenarios can be developed
from the verified use cases: one is the normal scenario which is con-
sidered low-yield and low-risk/medium-risk; one or more are for al-
ternative and exceptional scenarios which are considered high-yield
and high-risk/medium-risk. Figure 5 lists part of the test scenarios
derived from the User Login use case. Some design models, e.g., ac-
tivity diagrams, can be used to analyze and improve the coverage
of the test scenarios [17].

Test Scemario Yield Risk Priority
[TS001] Low Medivn | Low
Pre-conditions:

1. Login page is displayed

2. User account is not locked
Action:

Enter valid User JD and Fassword, click Logi tutton
Post-conditions:

Weh pagewith accourt information 1z displayed, and a

session is created
[TS007] High High High
Pre-conditions:

1. Login page is displayed

2. User account is Jocked
Action:

Enter walid User JDand Fassword, click Login tutton
Post-conditions:

1. Web pagewith account locked message is displayed

2. User account is locked

Fig. 5. Test scenarios for the User Login use case

The test scenarios above can be specified in GFT, as shown in
Figure 6. These GFTs can be used to validate whether the design
models conform to the requirements, e.g. comparing them with the
MSCs created in the development process.

After the GUI design has been done, test cases can be developed
from test scenarios and the GUI design. The development of high-
yield test cases consists of three basic steps: (1) Partition input
conditions into equivalence classes. (2) Create test data based on
boundary-value analysis. (3) Design test cases to cover all test sce-
narios [17]. These test cases then are ready for functional testing.

— s e Lil L
| e | o v ibeger £ =i+ |
[p—— cal bogn 1
al | [——)
e
B eillgn
r—— | | s ’I
L~ b
e | [~
e -
wtverdicy (fall: st
[T
st v = l
- — - wrverdion fall
wetverdict oo - T '
T Fopart wetverdicincom
1 m—

Fig. 6. Test Scenario 1 & 7 in GFT

4.3 Unit Testing

The unit testing level corresponds to the n-tier architecture of web
applications: client tier testing, web tier testing, business tier test-
ing, and EIS tier testing (which we will not discuss in this paper).
This is because each tier is a relatively independent set of compo-
nents. The techniques used with these components are similar in
the same tier, but may be different in different tiers. Also, each tier
has different responsibilities.

Client Tier Typical components in the client tier are html files,
scripts embedded in an html file, and Java Applets. They run on
the client side, usually within the content of a browser. From a
functional perspective, common testing activities in the client tier
include validating that every hyperlink in an html file is valid and
that scripts and applets act as expected. Testing models based on
the analysis of data flow and control flow of source code can be used
to derive test cases [7]. The following TTCN-3 script demonstrates
how to check the validity of a hyperlink.

module hyperlinkCheck{
modulepar {charstring testtypel};
type record url {charstring protocol, charstring host, charstring portNum,
charstring path}
template url hyperlink_index := {protocol:=https://,host:=www.site.uottawa.ca,
portNum:=:1180, path:=ex/index.html}
template charstring status_ok := 200;
template charstring status_timeout := 408;
type port hyperlinkPortType message {out url; in charstring}
type port mCPType message {in verdicttype}
type port pCPType message {out verdicttype}
type component hyperlinkComponent {port hyperlinkPortType hyperlinkPort;
port pCPType CP}
type component mtcComponent {port mCPType CP;

port hyperlinkPortType hyperlinkPort;

var integer activePTCs := 0;}
type component TSI {port hyperlinkPortType hyperlinkTSI}
function hyperlink_check (in url hyperlink, mtcComponent theSystem)

runs on hyperlinkComponent {

map (self :hyperlinkPort, theSystem:hyperlinkPort);

hyperlinkPort.send (hyperlink) ;

alt {

10

[1 hyperlinkPort.receive(status_ok) {setverdict(pass)}
[1 hyperlinkPort.receive(status_timeout) {setverdict(inconc)}
[1 hyperlinkPort.receive() {setverdict(fail)} }
CP.send(getverdict); }
testcase hyperlink_tc(in url hyperlink, integer loops, out integer passedTCs,
integer failedTCs,integer inconcTCs)runs on mtcComponent system mtcComponent{
var verdicttype theVerdict;
var hyperlinkComponent theNewPTC[loops];
for (i:=1;i<=loops;i:=i+1) {
theNewPTC[i] := hyperlinkComponent.create;
activePTCs := activePTCs + 1;
connect (mtc:CP, theNewPTC[i]:CP);
theNewPTC[i] .start (hyperlink_check (hyperlink, system)); }
while (activePTCs > 0) {
CP.receive(verdicttype:?)-> value theVerdict;
activePTC := activePTC - 1;
setverdict (theVerdict);
if (theVerdict == pass) { passedTCs := passedTCs + 1; }
else if (theVerdict == fail) { failedTCs := failedTCs + 1; }
else if (theVerdict == inconc) { inconcTCs := inconcTCs + 1; } }
all component.done; }
function basicFunctionality() return verdicttype {
var verdicttype localVerdict;
var integer nrP := 0, nrF := 0, nrI := 0;
localVerdict := execute(hyperlink_tc(hyperlink_index,1,nrP,nrF,nrI));
return localVerdict; }
control {
var verdicttype overallVerdict;
if (testtype == basicFunctionality) {
overallVerdict := basicFunctionality(); } } }

Web Tier Components running in the web tier are JSP files, Java
Servlets, and CGI programs etc. Web components are also identi-
fied by URLs, in the same way as html files, but run on the server
side. In addition, servlet and CGI programs may utilize parameters
wrapped in an HTTP request. These components are usually re-
ferred to as server pages, while html files are referred as client pages.
Test modules in TTCN-3 for server pages are similar to those for
client pages, but with a significant difference: using procedure-based
ports which are based on a synchronous communication mechanism
to specify procedure calls in remote entities, instead of message-
based ports which are based on asynchronous message exchange.
The following code segment shows how to specify a test module for
testing Login Servlet by using a procedure-based port;:

signature loginServlet(in url url_loginServlet, charstring ID,
charstring password) return boolean exception (reasonType);

template loginServlet validLogin := {url_loginServlet := url_login_template,
ID := CO01, password := CO01}

type port loginPortType procedure {out loginServlet}

Business Tier The objects in the business tier are used to im-
plement the business logic of web applications. The objects can be
represented by class diagrams, possibly with constraints written in
Object Constraint Language (OCL). Test cases can be derived from
the class diagrams and constraints. Often, there exists an inheri-
tance relationship between these test cases, as we have discussed

in section 3.3.1. Test modules for specifying these test cases can be
specified in OO-TTCN-3, which can specify the inheritance rela-
tionship between test modules appropriately.

In the EX system, Account is an abstract class (see Figure 3). It
contains two attributes: accNum and user. One of the methods
defined and implemented in the class Account is getAccountNo(),
which returns the account number of the current user. Two sub-
classes, BankAccount and EXAccount, are derived from Account.
BankAccount is used to describe the attributes and behaviors of
bank accounts. EXAccount is used to describe the accounts in the
EX system. The signatures and implementations of get AccountNo()
do not change in the two derived classes. Therefore, test cases de-
veloped for getAccountNo() can be reused by the test modules for
BankAccount and ExAccount. In addition, we only need to run the
test suites once, either in the test module for BankAccount or in
the module for EXAccount, to validate the method in the three
classes. This also avoids testing the abstract class Account, which
cannot be instantiated and is difficult to test directly. The following
is a code segment which shows how to specify the test modules in
OO-TTCN-3:

module AccountTest {

signature Acc_constr(in charstring AccNum,charstring user)exception(charstring);
signature getAccountNo () return charstring exception (charstring);

testcase getAccountNo_tc() runs on mtcType system mtcType{...} }

module BankAccountTest() extends AccountTest {
control {execute(getAccountNo_tc());} }

4.4 Integration Testing

The purpose of integration testing is to make sure all components
of a software system work together properly. ATS defined for unit
testing can be reused directly for integration testing. Figure 7 is the
partial ORD (Object Relation Diagram) for the EX system. The
test module LoginServletTest defined for web tier testing is ready
for integration testing, which includes the components login server
page, LoginServlet servlet, logonSuccess server page, and EXBean,
and interactions between these components.

4.5 Functional Testing

The purpose of functional testing is to ensure the behaviors of a
software system meet its functional requirements. Test scenarios in
GFT developed at the system analysis and design phases can be
used to generate test cases for functional testing. Actually, a bidi-
rectional mapping between the core language and GFT is defined
in [11], which makes it is possible to generate test scripts in core
language from the scenarios in GFT automatically, or vice-versa,

11

12

‘ peee—To— " kb

<-Butiast O

[r—

Fig. 7. Partial Object Relation Diagram for EX system

given specific tool support. On the other hand, test modules in
TTCN-3 can be built manually. We can specify test cases devel-
oped in the system AD phases in TTCN-3. In addition, test scripts
produced in unit testing can be reused in functional testing. The
following is a code segment to test User Login functionality, which
utilizes part of the definitions from test modules hyperlinkCheck
and LoginServlettest.

function validLogin() return verdicttype {
localVerdict:=execute (hyperlinkCheck.hyperlink_tc(hyperlink_index,1,0,0,0));
if (localVerdict != pass) {return localVerdict;}

localVerdict := execute(hyperlinkCheck.hyperlink_tc(hyperlink_login,1,0,0,0));
if (localVerdict != pass) {return localVerdict;}
localVerdict := execute(LoginServletTest.validLogin_tc());
if (localVerdict != pass) {return localVerdict;}
localVerdict:=execute (hyperlinkCheck.hyperlink_tc(hyperlink_logout,1,0,0,0));}

4.6 Non-functional System Testing

Non-functional system testing is the process of testing an integrated
software system to verify that the system meets its specified non-
functional requirements. Test cases for non-functional system test
cases, such as performance tests, can be specified in TTCN-3. Test
scripts developed in the previous testing stages, such as functional
testing, may be reused for non-functional testing. The following is
an example of performance testing: adding a function in the hy-
perlinkCheck test module to simulate 1000 times of clicking on
index.html, and then observing how many requests timeout or fail:

function performanceTesting() return verdicttype {
localVerdict := execute(hyperlink_tc(hyperlink_index,1000,nrP,nrF,nrI)); }

4.7 Concrete Requirements and Results

The above abstract test suite can be executed after transforming it
into executable code in an implementation language such as Java.

This has been achieved by using one of the many commercially
available TTCN-3 tools, like in our case, TTthree [18]. After that
the actual execution of this code can be performed using a runtime
environment like TTman [18] that allows a user to select a given
test case to be executed. However, the abstract test suite can be
executed only after organizing some adapter and coding/decoding
code to transfer data from an internal representation to the real
world representation. This can be achieved by using ETSI standard
tri and tci classes interfaces and a set of APIs. Sample code can be
viewed at www.site.uottawa.ca/ bob/ECTesting. Once the adapter
and codec code compiled, they can be fed to the muTTman test
case manager that shows a list of test cases and upon execution a
test case execution trace as shown in Figure 8.

[T il

i forfrmms Sgmemr e

= EE T ale (2] v 8] (@
i Vo £ =

e

Fig. 8. Test Case Execution Result

5 Summary and Future Work

In this paper, we proposed an approach which realizes a life-cycle
test process for e-commerce systems by specifying the ATS in OO-
TTCN-3. The approach facilitates the reuse of test scripts. It also
provides a unified and standard ATS interface to test tool vendors.
This has significant potential to attract more support from the IT
industry.

Making a complete object-oriented extension to TTCN-3 would be
quite complex. In this paper we present a preliminary such exten-
sion. A formal description of this extension and a prototype tool
that supports OO-TTC-3 will be considered in future work.

References

1. Kit, E.: Software Testing in the Real World. Addison-Wesley (1995)

13

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

Bashir, I., Goel, A.L.: Testing Object-Oriented Software: Life-Cycle
Solutions. Springer-Verlag (1999)

Probert, R., Sims, D.P., Ghazizadeh, B., Li, W.: A Risk-Directed
E-Commerce Test Strategy. In: Proc. of Quality Week Europe 2000
Conf. (QWE). (2000) 388-401

Jim, C.: Modeling Web Application Architectures with UML. Com-
munications of the ACM 42 (2003) 63-77

Li, J., Chen, J., Chen, P.: Modeling Web Application Architecture
with UML. In: Proc. of 36th Intel. Conf. on Technology of Object-
Oriented Languages and Systems. (2000) 265-274

Yang, J.T., Huang, J.L., Wang, F.J., Chu, W.: An Object-Oriented
Architecture Supporting Web Application Testing. In: Proc. of 23rd
Annual Intel. Computer Software and Applications Conf. (1999)
122-127

D.C,, K., Liu, C.H., Hsia, P.: An Object-Oriented Web Test Model
for Testing Web Applications. In: Proc. of First Asia-Pacific Conf.
on Quality Software. (2000) 111-120

Lucca, G.D., Fasolino, A., Faralli, F., Carlini, U.D.: Testing Web
Applications. In: Proc. of Intel. Conf. on Software Maintenance.
(2002) 310-319

Probert, R.L., Chen, Y., Ghazizadeh, B., Sims, D.P., Cappa, M.:
Formal Verification and Validation for E-Commerce: Theory and
Best Practices. Information and Software Technology 45 (2003) 763—
T

ETSI: The Testing and Test Control Notation version 3, Partl:
TTCN-3 Core Language, V2.2.1. European Institute Standards
Telecommunication (2003)

ETSI: The Testing and Test Control Notation version 3, Part3:
TTCN-3 Graphical Presentation Format (GFT), V2.2.1. European
Institute Standards Telecommunication (2003)

Schieferdecker, I., Pietsch, S., Vassiliou-Gioles, T.: Systematic Test-
ing of Internet Protocols - First Experiences in Using TTCN-3 for
SIP. In: Proc. of 5th IFIP Africom Conf. on Communication Sys-
tems. (2001)

Dai, Z., Grabowski, J., Neukirchen, H.: Timed TTCN-3?A Real-
Time Extension for TTCN-3. Testing of Communicating Systems
14 (2002)

Schieferdecker, I., Stepien, B.: Automated Testing of XML/SOAP
Based Web Services. In: Proc. of 13th Fachkonferenz der Gesellschaft
fur Informatik (GI) Fachgruppe Kommunikation in verteilten Syste-
men? (2003)

Schieferdecker, I., Vassiliou-Gioles, T.: Tool Supported Test Frame-
works in TTCN-3. Electronic Notes in Theoretical Computer Science
80 (2003)

McGregor, J.D., Sykes, D.A.: A Practical Guide to Testing Object-
Oriented Software. Addison-Wesley (2001)

Xiong, P.: Life-Cycle E-Commerce Testing with Object-Oriented
TTCN-3. Master’s thesis, University of Ottawa (2004)

Testing Technologies IST GmbH: The TTthree and uTTman TTCN-
3 Tool Chain (2004) http://www.testingtech.de.

