package net.datastructures; import java.util.Comparator; import java.util.Iterator; /** * Realization of a dictionary by means of a binary search tree. * @author Michael Goodrich, Eric Zamore */ // Realization of a dictionary by means of a binary search tree public class BinarySearchTree extends LinkedBinaryTree implements Dictionary { // Instance variables: protected Comparator C; // comparator protected Position actionPos; // insertion node or parent of removed node protected int numEntries = 0; // number of entries /** Creates a BinarySearchTree with a default comparator. */ public BinarySearchTree() { C = new DefaultComparator(); addRoot(null); } /** Creates a BinarySearchTree with the given comparator. */ public BinarySearchTree(Comparator c) { C = c; addRoot(null); } /** Nested class for location-aware binary search tree entries */ protected static class BSTEntry implements Entry { protected Object key; protected Object value; protected Position pos; BSTEntry() { /* default constructor */ } BSTEntry(Object k, Object v, Position p) { key = k; value = v; pos = p;} public Object key() { return key; } public Object value() { return value; } public Position position() { return pos; } } // Auxiliary methods: /** Extract the key of the entry at a given node of the tree. */ protected Object key(Position position) { return ((Entry) position.element()).key(); } /** Extract the value of the entry at a given node of the tree. */ protected Object value(Position position) { return ((Entry) position.element()).value(); } /** Extract the entry at a given node of the tree. */ protected Entry entry(Position position) { return (Entry) position.element(); } /** Replace an entry with a new entry (and reset the entry's location) */ protected void replaceEntry(Position pos, Entry ent) { ((BSTEntry) ent).pos = pos; replace(pos, ent); } /** Check whether a given key is valid. */ protected void checkKey(Object key) throws InvalidKeyException { if(key == null) // just a simple test for now throw new InvalidKeyException("null key"); } /** Check whether a given entry is valid. */ protected void checkEntry(Entry ent) throws InvalidEntryException { if(ent == null || !(ent instanceof BSTEntry)) throw new InvalidEntryException("invalid entry"); } /** Auxiliary method for inserting an entry at an external node */ protected Entry insertAtExternal(Position v, Entry e) { expandExternal(v,null,null); replace(v, e); numEntries++; return e; } /** Auxiliary method for removing an external node and its parent */ protected void removeExternal(Position v) { removeAboveExternal(v); numEntries--; } /** Auxiliary method used by find, insert, and remove. */ protected Position treeSearch(Object key, Position pos) { if (isExternal(pos)) return pos; // key not found; return external node else { Object curKey = key(pos); int comp = C.compare(key, curKey); if (comp < 0) return treeSearch(key, left(pos)); // search left subtree else if (comp > 0) return treeSearch(key, right(pos)); // search right subtree return pos; // return internal node where key is found } } /** Adds to L all entries in the subtree rooted at v having keys * equal to k. */ // Adds to L all entries in the subtree rooted at v having keys equal to k protected void addAll(List L, Position v, Object k) { if (isExternal(v)) return; Position pos = treeSearch(k, v); if (!isExternal(pos)) { // we found an entry with key equal to k addAll(L, left(pos), k); L.insertLast(pos.element()); // add entries in inorder addAll(L, right(pos), k); } // this recursive algorithm is simple, but it's not the fastest } // methods of the dictionary ADT /** Returns the number of entries in the tree. */ public int size() { return numEntries; } /** Returns whether the tree is empty. */ public boolean isEmpty() { return size() == 0; } /** Returns an entry containing the given key. Returns null if no * such entry exists. */ public Entry find(Object key) throws InvalidKeyException { checkKey(key); // may throw an InvalidKeyException Position curPos = treeSearch(key, root()); actionPos = curPos; // node where the search ended if (isInternal(curPos)) return entry(curPos); return null; } /** Returns an iterator containing all entries containing the given * key. Returns an empty iterator if no such entries exist. */ public Iterator findAll(Object key) throws InvalidKeyException { checkKey(key); // may throw an InvalidKeyException List L = new NodeList(); addAll(L, root(), key); return L.elements(); } /** Inserts an entry into the tree and returns the newly created entry. */ public Entry insert(Object k, Object x) throws InvalidKeyException { checkKey(k); // may throw an InvalidKeyException Position insPos = treeSearch(k, root()); while (!isExternal(insPos)) // iterative search for insertion position insPos = treeSearch(k, left(insPos)); actionPos = insPos; // node where the new entry is being inserted return insertAtExternal(insPos, new BSTEntry(k, x, insPos)); } /** Removes and returns a given entry. */ public Entry remove(Entry ent) throws InvalidEntryException { checkEntry(ent); // may throw an InvalidEntryException Position remPos = ((BSTEntry) ent).position(); Entry toReturn = entry(remPos); // entry to be returned if (isExternal(left(remPos))) remPos = left(remPos); // left easy case else if (isExternal(right(remPos))) remPos = right(remPos); // right easy case else { // entry is at a node with internal children Position swapPos = remPos; // find node for moving entry remPos = right(swapPos); do remPos = left(remPos); while (isInternal(remPos)); replaceEntry(swapPos, (Entry) parent(remPos).element()); } actionPos = sibling(remPos); // sibling of the leaf to be removed removeExternal(remPos); return toReturn; } /** Returns an iterator containing all entries in the tree. */ public Iterator entries() { Iterator positer = positions(); Position cur; List entries = new NodeList(); while (positer.hasNext()) { cur = (Position) positer.next(); if (isInternal(cur)) entries.insertLast(cur.element()); } return entries.elements(); } /** * Performs a tri-node restructuring. Assumes the nodes are in one * of following configurations: * *
   *          z=c       z=c        z=a         z=a
   *         /  \      /  \       /  \        /  \
   *       y=b  t4   y=a  t4    t1  y=c     t1  y=b
   *      /  \      /  \           /  \         /  \
   *    x=a  t3    t1 x=b        x=b  t4       t2 x=c
   *   /  \          /  \       /  \             /  \
   *  t1  t2        t2  t3     t2  t3           t3  t4
   * 
* @return the new root of the restructured subtree */ protected Position restructure(Position x) { BTPosition a, b, c, t1, t2, t3, t4; Position y = parent(x); // assumes x has a parent Position z = parent(y); // assumes y has a parent boolean xLeft = (x == left(y)); boolean yLeft = (y == left(z)); BTPosition xx = (BTPosition)x, yy = (BTPosition)y, zz = (BTPosition)z; if (xLeft && yLeft) { a = xx; b = yy; c = zz; t1 = a.getLeft(); t2 = a.getRight(); t3 = b.getRight(); t4 = c.getRight(); } else if (!xLeft && yLeft) { a = yy; b = xx; c = zz; t1 = a.getLeft(); t2 = b.getLeft(); t3 = b.getRight(); t4 = c.getRight(); } else if (xLeft && !yLeft) { a = zz; b = xx; c = yy; t1 = a.getLeft(); t2 = b.getLeft(); t3 = b.getRight(); t4 = c.getRight(); } else { // right-right a = zz; b = yy; c = xx; t1 = a.getLeft(); t2 = b.getLeft(); t3 = c.getLeft(); t4 = c.getRight(); } // put b at z's place if (isRoot(z)) { root = b; b.setParent(null); } else { BTPosition zParent = (BTPosition)parent(z); if (z == left(zParent)) { b.setParent(zParent); zParent.setLeft(b); } else { // z was a right child b.setParent(zParent); zParent.setRight(b); } } // place the rest of the nodes and their children b.setLeft(a); a.setParent(b); b.setRight(c); c.setParent(b); a.setLeft(t1); t1.setParent(a); a.setRight(t2); t2.setParent(a); c.setLeft(t3); t3.setParent(c); c.setRight(t4); t4.setParent(c); // Reset the location-aware entries ((BSTEntry) a.element()).pos = a; ((BSTEntry) b.element()).pos = b; ((BSTEntry) c.element()).pos = c; return b; // the new root of this subtree } } // entries() method is omitted here