Binary tree:

[image: image1.png]

[image: image2.png]DEFINITION: The level-order of an ordered tree 1s a listing of the vertices in increas-
ing order of depth, such that the vertices of equal depth are listed according to their

prescribed order.

In the above example:

[image: image3.png]ra,b,c.de f,hi gkl

[image: image4.png]Algorithm 35.1: Level-Order Traversal: Top-to-Bottom, Left-to-Right

Input: A binary tree.
Output: A list of the vertices in level-order.

Enqueue root.

‘While queue is not empty
Dequeue a vertex and write it on the output list.
Enqueue its children left-to-right.

Left-First walk around the tree (Euler tour):
[image: image5.png]

[image: image6.png]1. Left Pre-Order Traversal: r,a,c, h,d,i,j,1,b,ek, f

Geometrically: As you take a left-first walk around the tree, list each vertex the first
time you see it, but not again thereafter.

Algorithm 3.5.2: Left Pre-Order: Iterative

Input: a binary tree.
Output: a list of the vertices in left pre-order.

Push root onto stack.

While stack is not empty
Pop a vertex off stack, and write it on the output list.
Push its children right-to-left onto stack.

Algorithm 3.5.3: Left Pre-Order: Recursive

Input: a binary tree.
OQutput: a list of the vertices in left pre-order.

List root.
Traverse the left subtree in left pre-order.
Traverse the right subtree in left pre-order.

[image: image7.png]2. Post-Order Traversal: h,c¢,i,0,j,d,a,k,e, f,b,1

Geometrically: While taking a left-first walk around the tree, list each vertex the la:
time you see it and not beforehand.

Algorithm 3.5.4: Post-Order: Iterative

Input: a binary tree.
Output: alist of the vertices in post-order.

Push root onto stack.
‘While stack is not empty
If top(stack) is unmarked
Mark it, and push its children right-to-left onto stack.
Else
v := pop(stack).
List v.

Algorithm 3.5.5: Post-Order: Recursive

Input: a binary tree.
Output: a list of the vertices in post-order.

Traverse the left subtree in post-order.
Traverse the right subtree in post-order.
List root.

[image: image8.png]3. In-Order Traversal: c, h,a,%,d,l,j,7,k,e,b, f

Geometrically: While taking a left-first walk around the tree, list each leaf as soon as
you see it, and list each non-leaf the second time you see it.

[image: image9.png]Algorithm 3.5.6: In-Order: Iterative

Input: a binary tree.
Output: a list of the vertices in in-order.

Push root onto stack.
While stack is not empty
v := top(stack).
While v has a left-child
Push leftchild(v) onto stack.
v := le ftchild(v).
v := pop(stack).
List v.
If v has a right-child,
Push rightchild(v) onto stack.
v = rightchild(v).
Else
While stack not empty and v has no right-child
v := pop(stack).
List v.
If v has a right-child,
Push rightchild(v) onto stack.
v = rightchild(v).

[image: image10.png]Algorithm 3.5.7: In-Order: Recursive

Input: a binary tree.
Output: a list of the vertices in in-order.
Traverse the left subtree in in-order.

List root.
Traverse the right subtree in in-order.

