Bucket-Sort and Radix-Sort

-«

Bucket-Sort (§ 10.4.1)

Let be S be a sequence of n
(key, element) entries with
keys in the range [0, N - 1]

Bucket-sort uses the keys as
indices into an auxiliary array B

Algorithm bucketSor«(S, N)

Input scquence S of (key, element)
items with keys in the range
[0,N-1]

Output sequence S sorted by

of sequences (buckets) increasing keys
Phase 1: Empty sequence S by B « array of N empty sequences
_moving each entry (k, o) into while —S.isEmpiy()
its bucket B[k] I Sfirst)
Phase 2: For i=0, ..., N1, move (k, 0) < S.remove(f)
|@ | Y |@| + |@|@|@| d |@| @| the entries of bucket B[i] to the BlK).insertLast((k, 0))
B end of sequence § fori < OtoN_]
0423425188 # Analysis:) while —B[il.isEmpty()
= Phase 1 takes O(n) tlme. < Blilfirst()
= Phase 2 takes O(n + N) t|m<? (k, 0) < Bli}.remove(f)
Bucket-sort takes O(n + N) time S.insertLast((k, 0))
Bucket-Sort and Radix-Sort 1 Bucket-Sort and Radix-Sort 2
[J

Example
! # Key range [0, 9]

ﬂPhasel

AEINEINEIEIEI K EIE]
0 1 2 3 4 5 6 7 8 9
ﬂPhaseZ

Bucket-Sort and Radix-Sort 3

Properties and Extensions

Key-type Property
= The keys are used as
indices into an array
and cannot be arbitrary
objects
= No external comparator

Stable Sort Property

= The relative order of
any two items with the
same key is preserved
after the execution of
the algorithm

Extensions

= Integer keys in the range [a, b]
+ Put entry (%, o) into bucket
Blk - a]
= String keys from a set D of
possible strings, where D has
constant size (e.g., names of
the 50 U.S. states)
+ Sort D and compute the rank
r(k) of each string k of D in
the sorted sequence
+ Put entry (&, o) into bucket
Blr(k)]

Bucket-Sort and Radix-Sort 4

Lexicographic Order

A d-tuple is a sequence of d keys (k,, k,, ..., k;), where

key k; is said to be the i-th dimension of the tuple
Example:

= The Cartesian coordinates of a point in space are a 3-tuple
The lexicographic order of two d-tuples is recursively

defined as follows

(01, X9 veey X)) < (V15 D5 wees V)
=
X <PV X =P (X, e X)) < (s oo V)
I.e., the tuples are compared by the first dimension,
then by the second dimension, etc.

Bucket-Sort and Radix-Sort 5

Lexicographic-Sort

Let C, be the comparator

that compares two tuples by
their i-th dimension

Let stableSort(S, C) be a

stable sorting algorithm that
uses comparator C

Lexicographic-sort sorts a

Algorithm lexicographicSort(S)
Input sequence S of d-tuples
Output sequence § sorted in

lexicographic order

for i <— d downto |
stableSort(S, C;)

sequence of d-tuples in
lexicographic order by .
executing d times algorithm Example:
stableSort, one per (7.4,6) (5.1.5) (2,4,6) (2,1,4) (3,2, 4)
dimension

- Lexicographic—sort runs in) 2. 1,46, 2,4 5,15 (7:406) (2.4.6)
O(dT(n)) time, where T(n) is (2, 1,4) (5,1,5) (3, 2, 4) (7,4,6) (2,4.6)
the running time of
stableSort (2,1,4)(2:4,6) (3,2,4) (5,1.5) (7.4,6)

Bucket-Sort and Radix-Sort 6

‘Radix-Sort (§ 10.4.2)

Radix-sort is a
specialization of
lexicographic-sort that
uses bucket-sort as the
stable sorting algorithm

in each dimension
Radix-sort is applicable
to tuples where the
keys in each dimension i
are integers in the
range [0, N 1]
Radix-sort runs in time
O(d(n+N))

Algorithm radixSort(S, N)

Input sequence S of d-tuples such
that (0, ..., 0) < (x,, ..., x,) and
Xp X)) S(V=1, 0.5 N=1)
for each tuple (x, ..., x,) In §

Output sequence S sorted in
lexicographic order

for i «— d downto |
bucketSort(S, N)

Bucket-Sort and Radix-Sort 7

Radix-Sort for

:/Binary Numbers a 2k

Consider a sequence of n
b-bit integers

X=X, | .. X)X

We represent each element | Algorithm binaryRadixSor(S)
as a b-tuple of integers in Inpiflf:gcgrgcncc §of b:bit
thg. rangr% [O’tli] arldzapply Output sequence S sorted
ra _IX-SO . WI_ N= replace each element x

This application of the of § with the item (0, x)
radix-sort algorithm runs in fori< 0toh— 1
O(bn) time replace the key k of

For example, we can sort a ff;l': tiom (:‘t{;‘) of §
sequence of 32-bit integers o

in linear time bucketSor«(S, 2)

Bucket-Sort and Radix-Sort 8

'Example

Sorting a sequence of 4-bit integers

ch

Bucket-Sort and Radix-Sort

