
Minimum Spanning Tree 6/22/2006 2:12 PM

1

6/22/2006 2:12 PM Minimum Spanning Tree 1

Minimum Spanning Tree

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

6/22/2006 2:12 PM Minimum Spanning Tree 2

Outline and Reading

Minimum Spanning Trees (§12.7)
Definitions
A crucial fact

Prim-Jarnik’s Algorithm (§12.7.2)
Kruskal’s Algorithm (§12.7.1)

6/22/2006 2:12 PM Minimum Spanning Tree 3

Minimum Spanning Tree
Spanning subgraph

Subgraph of a graph G
containing all the vertices of
G

Spanning tree
Spanning subgraph that is
itself a (free) tree

Minimum spanning tree (MST)
Spanning tree of a weighted
graph with minimum total
edge weight

Applications
Communications networks
Transportation networks

ORD

PIT

ATL

STL

DEN

DFW

DCA

10
1

9

8

6

3

25

7

4

6/22/2006 2:12 PM Minimum Spanning Tree 4

Cycle Property
Cycle Property:

Let T be a minimum
spanning tree of a
weighted graph G
Let e be an edge of G
that is not in T and let C
be the cycle formed by
adding e to T
For every edge f of C,
weight(f) ≤ weight(e)

Proof:
By contradiction

If weight(f) > weight(e) we
can get a spanning tree
of smaller weight by
replacing e with f

8
4

2 3
6

7

7

9

8
e

C
f

8
4

2 3
6

7

7

9

8

C

e

f

Replacing f with e yields
a better spanning tree

Minimum Spanning Tree 6/22/2006 2:12 PM

2

6/22/2006 2:12 PM Minimum Spanning Tree 5

Cycle Property

In other words:
in any cycle of the

graph, the non-
spanning tree edge
(dotted line) has
max weight.

ORD

PIT

ATL

STL

DEN

DFW

10
1

9

8

6

3

25

7

4
DCA

6/22/2006 2:12 PM Minimum Spanning Tree 6

U V

Partition Property
Partition Property:

Consider a partition of the vertices
of G into subsets U and V. Let e be
an edge of minimum weight across
the partition. There is a minimum
spanning tree of G containing edge e

Proof:
Let T be an MST of G
If T does not contain e, consider the
cycle C formed by e with T and let f
be an edge of C across the partition
By the cycle property,

weight(f) ≤ weight(e)
Thus, weight(f) = weight(e)
We obtain another MST by replacing f
with e

7
4

2 8
5

7

3

9

8 e

f

7
4

2 8
5

7

3

9

8 e

f

Replacing f with e yields
another MST

U V

6/22/2006 2:12 PM Minimum Spanning Tree 7

Prim-Jarnik’s Algorithm

Prim-Jarnik’s algorithm for computing an
MST is similar to Dijkstra’s algorithm
We assume that the graph is connected
We pick an arbitrary vertex s and we grow
the MST as a cloud of vertices, starting
from s
We store with each vertex v a label d(v)
representing the smallest weight of an
edge connecting v to any vertex in the
cloud (as opposed to the total sum of edge weights on a path from
the start vertex to u).

6/22/2006 2:12 PM Minimum Spanning Tree 8

Prim-Jarnik’s Algorithm
At each step

We add to the cloud the vertex u with
(minimum-weight edge) outside the cloud
with the smallest distance label
We update the labels of the vertices
adjacent to u

Minimum Spanning Tree 6/22/2006 2:12 PM

3

6/22/2006 2:12 PM Minimum Spanning Tree 9

Use a priority queue Q whose keys are D labels, and whose elements are vertex-
edge pairs.

Key: distance
Element: vertex-edge pair

For example, an entry of Q is ((z, (u,z)), D[z]) for a vertex z, where (z, (u,z)) is
the element and D[z] is the key of the vertex z.

Any vertex v can be the starting vertex.

We still initialize all the D[u] values to INFINITE, but we also initialize the
edge associated with u to null.
Return the minimum-spanning tree T.
We can reuse code from Dijkstra’s, and we only have to change a few things. Let’s look at
the pseudocode....

6/22/2006 2:12 PM Minimum Spanning Tree 10

Algorithm PrimJarnik(G):
Input: A weighted graph G.
Output: A minimum spanning tree T for G.

pick any vertex v of G
D[v] ← 0
for each vertex u ≠ v do

D[u] ← ∞
Initialize T ← ∅
Initialize priority queue Q with an entry ((u, null), D[u]) for each vertex u,
where (u, null) is the element and D[u]) is the key.
while Q ≠ ∅ do {pull u into the cloud C}

(u, e) ← Q.removeMin()
add vertex u and edge e to T
for each vertex z adjacent to u such that z is in Q do
{perform the relaxation operation on edge (u, z) }

if weight(u, z) < D[z] then
D[z] ←weight(u, z)
change to (z, (u, z)) the element of z in Q
change to D[z] the key of vertex z in Q

return tree T

6/22/2006 2:12 PM Minimum Spanning Tree 11

Example

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

8 ∞

∞

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

5 ∞

7

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

5 ∞

7

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

5 4

7

6/22/2006 2:12 PM Minimum Spanning Tree 12

Example (contd.)

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 3

2

5 4

7

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 3

2

5 4

7

Minimum Spanning Tree 6/22/2006 2:12 PM

4

6/22/2006 2:12 PM Minimum Spanning Tree 13

Prim-Jarnik…
Why It Works

This is an application of the Cycle Property!

Let the minimum edge at some iteration be
(u,v). If there is an MST not containing
(u,v), then (u,v) completes a cycle. Since
(u,v) was considered before some other
edge connecting v to the cluster, it must
have weight equal to or lower than that
other edge. A new MST can be formed by
swapping.

6/22/2006 2:12 PM Minimum Spanning Tree 14

Analysis
Graph operations

Method incidentEdges is called once for each vertex
Label operations

We set/get the labels of vertex z O(deg(z)) times
Setting/getting a label takes O(1) time

Priority queue operations
Each vertex is inserted once into and removed once from the
priority queue, where each insertion or removal takes O(log n) time
The key of a vertex w in the priority queue is modified at most
deg(w) times, where each key change takes O(log n) time

Prim-Jarnik’s algorithm runs in O((n + m) log n) time provided
the graph is represented by the adjacency list structure

Recall that Σv deg(v) = 2m
The running time is O(m log n) since the graph is connected

6/22/2006 2:12 PM Minimum Spanning Tree 15

Dijkstra vs. Prim-Jarnik
Algorithm PrimJarnikMST(G)

Q ← new heap-based priority queue
s ← a vertex of G
for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ∞)

setParent(v, ∅)
l ← Q.insert(getDistance(v), v)
setLocator(v,l)

while ¬Q.isEmpty()
u ← Q.removeMin()
for all e ∈ G.incidentEdges(u)

z ← G.opposite(u,e)
r ← weight(e)
if r < getDistance(z)

setDistance(z,r)
setParent(z,e)
Q.replaceKey(getLocator(z),r)

Algorithm DijkstraShortestPaths(G, s)
Q ← new heap-based priority queue

for all v ∈ G.vertices()
if v = s

setDistance(v, 0)
else

setDistance(v, ∞)
setParent(v, ∅)
l ← Q.insert(getDistance(v), v)
setLocator(v,l)

while ¬Q.isEmpty()
u ← Q.removeMin()
for all e ∈ G.incidentEdges(u)

z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)
setParent(z,e)
Q.replaceKey(getLocator(z),r)

6/22/2006 2:12 PM Minimum Spanning Tree 16

Kruskal’s Algorithm
Each vertex is initially stored as its own
cluster.
At each iteration, the minimum weight edge
is added to the spanning tree if it joins 2
distinct clusters.
The algorithm ends when all the vertices
are in the same cluster.

Minimum Spanning Tree 6/22/2006 2:12 PM

5

6/22/2006 2:12 PM Minimum Spanning Tree 17

Kruskal’s Algorithm…
Why It Works

This is an application of the Partition
Property!

If the minimum edge at some iteration is
(u,v), then if we consider a partition of G
with u in one cluster and v in the other,
then the partition property says that there
must be an MST containing (u,v).

6/22/2006 2:12 PM Minimum Spanning Tree 18

Kruskal’s Algorithm
A priority queue stores
the edges outside the
cloud

Key: weight
Element: edge

At the end of the
algorithm

We are left with one
cloud that encompasses
the MST
A tree T which is our
MST

Algorithm KruskalMST(G)
for each vertex V in G do

define a Cloud(v) of {v}
let Q be a priority queue.
Insert all edges into Q using their
weights as the key
T ∅
while T has fewer than n-1 edges do

edge e = T.removeMin()
Let u, v be the endpoints of e
if Cloud(v) ≠ Cloud(u) then

Add edge e to T
Merge Cloud(v) and Cloud(u)

return T

6/22/2006 2:12 PM Minimum Spanning Tree 19

Data Structure for Kruskal
Algortihm

The algorithm maintains a forest of trees
An edge is accepted it if connects distinct trees
We need a data structure that maintains a
partition, i.e., a collection of disjoint sets, with the
operations:
-find(u): return the set storing u
-union(u,v): replace the sets storing u and v with
their union

6/22/2006 2:12 PM Minimum Spanning Tree 20

Representation of
a Partition

Each set is stored in a sequence
Each element has a reference back to the set

operation find(u) takes O(1) time, and returns the set
of which u is a member.
in operation union(u,v), we move the elements of the
smaller set to the sequence of the larger set and
update their references
the time for operation union(u,v) is min(nu,nv), where nu
and nv are the sizes of the sets storing u and v

Whenever an element is processed, it goes into
a set of size at least double, hence each
element is processed at most log n times

Minimum Spanning Tree 6/22/2006 2:12 PM

6

6/22/2006 2:12 PM Minimum Spanning Tree 21

Partition-Based Implementation
A partition-based version of Kruskal’s Algorithm
performs cloud merges as unions and tests as
finds.

Algorithm Kruskal(G):
Input: A weighted graph G.
Output: An MST T for G.

Let P be a partition of the vertices of G, where each vertex forms a separate set.
Let Q be a priority queue storing the edges of G, sorted by their weights
Let T be an initially-empty tree
while Q is not empty do

(u,v) ← Q.removeMin()
if P.find(u) != P.find(v) then

Add (u,v) to T
P.union(u,v)

return T

Running time:
O((n+m)log n)

6/22/2006 2:12 PM Minimum Spanning Tree 22

Kruskal
Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

6/22/2006 2:12 PM Minimum Spanning Tree 23

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Example

6/22/2006 2:12 PM Minimum Spanning Tree 24

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Minimum Spanning Tree 6/22/2006 2:12 PM

7

6/22/2006 2:12 PM Minimum Spanning Tree 25

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

6/22/2006 2:12 PM Minimum Spanning Tree 26

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

6/22/2006 2:12 PM Minimum Spanning Tree 27

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

6/22/2006 2:12 PM Minimum Spanning Tree 28

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Minimum Spanning Tree 6/22/2006 2:12 PM

8

6/22/2006 2:12 PM Minimum Spanning Tree 29

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

6/22/2006 2:12 PM Minimum Spanning Tree 30

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

6/22/2006 2:12 PM Minimum Spanning Tree 31

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

6/22/2006 2:12 PM Minimum Spanning Tree 32

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Minimum Spanning Tree 6/22/2006 2:12 PM

9

6/22/2006 2:12 PM Minimum Spanning Tree 33

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

6/22/2006 2:12 PM Minimum Spanning Tree 34

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

6/22/2006 2:12 PM Minimum Spanning Tree 35

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

6/22/2006 2:12 PM Minimum Spanning Tree 36

Example

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

Minimum Spanning Tree 6/22/2006 2:12 PM

10

6/22/2006 2:12 PM Minimum Spanning Tree 37

Example (contd.)

four steps

tw
o

st
ep

s

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

6/22/2006 2:12 PM Minimum Spanning Tree 38

Traveling Salesperson Problem
A tour of a graph is a spanning
cycle (e.g., a cycle that goes
through all the vertices)
A traveling salesperson tour of a
weighted graph is a tour that is
simple (i.e., no repeated vertices or
edges) and has has minimum weight
No polynomial-time algorithms are
known for computing traveling
salesperson tours
The traveling salesperson problem
(TSP) is a major open problem in
computer science

Find a polynomial-time algorithm
computing a traveling salesperson
tour or prove that none exists

B
D

C

A

F

E

7
4

2
8

5

3

2

6

1

Example of traveling
salesperson tour
(with weight 17)

6/22/2006 2:12 PM Minimum Spanning Tree 39

TSP Approximation
We can approximate a TSP tour
with a tour of at most twice the
weight for the case of Euclidean
graphs

Vertices are points in the plane
Every pair of vertices is
connected by an edge
The weight of an edge is the
length of the segment joining the
points

Approximation algorithm
Compute a minimum spanning tree
Form an Eulerian circuit around
the MST
Transform the circuit into a tour

