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Outline and Reading

Minimum Spanning Trees (§12.7)
Definitions
A crucial fact

Prim-Jarnik’s Algorithm (§12.7.2)
Kruskal’s Algorithm (§12.7.1)
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Minimum Spanning Tree
Spanning subgraph

Subgraph of a graph G
containing all the vertices of 
G

Spanning tree
Spanning subgraph that is 
itself a (free) tree

Minimum spanning tree (MST)
Spanning tree of a weighted 
graph with minimum total 
edge weight

Applications
Communications networks
Transportation networks
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Cycle Property
Cycle Property:

Let T be a minimum 
spanning tree of a 
weighted graph G
Let e be an edge of G
that is not in T and let C
be the cycle formed by 
adding e to T
For every edge f of C,
weight(f) ≤ weight(e)

Proof:
By contradiction

If weight(f) > weight(e) we 
can get a spanning tree 
of smaller weight by 
replacing e with f

8
4

2 3
6

7

7

9

8
e

C
f

8
4

2 3
6

7

7

9

8

C

e

f

Replacing f with e yields
a better spanning tree 
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Cycle Property

In other words:
in any cycle of the 

graph, the non-
spanning tree edge 
(dotted line) has 
max weight. 
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U V

Partition Property
Partition Property:

Consider a partition of the vertices 
of G into subsets U and V. Let e be 
an edge of minimum weight across 
the partition. There is a minimum 
spanning tree of G containing edge e

Proof:
Let T be an MST of G
If T does not contain e, consider the 
cycle C formed by e with T and let  f
be an edge of C across the partition
By the cycle property,

weight(f) ≤ weight(e)
Thus, weight(f) = weight(e)
We obtain another MST by replacing f  
with e
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Prim-Jarnik’s Algorithm

Prim-Jarnik’s algorithm for computing an 
MST is similar to Dijkstra’s algorithm
We assume that the graph is connected
We pick an arbitrary vertex s and we grow 
the MST as a cloud of vertices, starting 
from s
We store with each vertex v a label d(v)
representing the smallest weight of an 
edge connecting v to any vertex in the 
cloud (as opposed to the total sum of edge weights on a path from 
the start vertex to u).
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Prim-Jarnik’s Algorithm
At each step

We add to the cloud the vertex u with
(minimum-weight edge) outside the cloud 
with the smallest distance label
We update the labels of the vertices 
adjacent to u
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Use a priority queue Q whose keys are D labels, and whose elements are vertex-
edge pairs. 

Key: distance
Element: vertex-edge pair 

For example, an entry of Q is ((z, (u,z)), D[z]) for a vertex z,               where (z, (u,z)) is 
the element and D[z] is the key of the vertex z.

Any vertex v can be the starting vertex.

We still initialize all the D[u] values to INFINITE, but we also initialize the 
edge associated with u to null.
Return the minimum-spanning tree T.
We can reuse code from Dijkstra’s, and we only have to change a few things. Let’s look at 
the pseudocode....
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Algorithm PrimJarnik(G):
Input: A weighted graph G.
Output: A minimum spanning tree T for G.

pick any vertex v of G
D[v] ← 0
for each vertex u ≠ v do

D[u] ← ∞
Initialize T ← ∅
Initialize priority queue Q with an entry ((u, null), D[u]) for each vertex u,
where (u, null) is the element and D[u]) is the key.
while Q ≠ ∅ do  {pull u into the cloud C}

(u, e) ← Q.removeMin()
add vertex u and edge e to T
for each vertex z adjacent to u such that z is in Q do 
{perform the relaxation operation on edge (u, z) }

if weight(u, z) < D[z] then
D[z] ←weight(u, z)
change to (z, (u, z)) the element of z in Q
change to D[z] the key of vertex z in Q 

return tree T
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Example
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Example (contd.)
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Prim-Jarnik…
Why It Works

This is an application of the Cycle Property!

Let the minimum edge at some iteration be 
(u,v).  If there is an MST not containing 
(u,v), then (u,v) completes a cycle.  Since 
(u,v) was considered before some other 
edge connecting v to the cluster, it must 
have weight equal to or lower than that 
other edge. A new MST can be formed by 
swapping. 
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Analysis
Graph operations

Method incidentEdges is called once for each vertex
Label operations

We set/get the   labels of vertex z O(deg(z)) times
Setting/getting a label takes O(1) time

Priority queue operations
Each vertex is inserted once into and removed once from the 
priority queue, where each insertion or removal takes O(log n) time
The key of a vertex w in the priority queue is modified at most 
deg(w) times, where each key change takes O(log n) time 

Prim-Jarnik’s algorithm runs in O((n + m) log n) time provided 
the graph is represented by the adjacency list structure

Recall that Σv deg(v) = 2m
The running time is O(m log n) since the graph is connected
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Dijkstra vs. Prim-Jarnik
Algorithm PrimJarnikMST(G)

Q ← new heap-based priority queue
s ← a vertex of G
for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ∞)

setParent(v, ∅)
l ← Q.insert(getDistance(v), v)
setLocator(v,l)

while ¬Q.isEmpty()
u ← Q.removeMin()
for all e ∈ G.incidentEdges(u)

z ← G.opposite(u,e)
r ← weight(e)
if r < getDistance(z)

setDistance(z,r)
setParent(z,e)
Q.replaceKey(getLocator(z),r)

Algorithm DijkstraShortestPaths(G, s)
Q ← new heap-based priority queue

for all v ∈ G.vertices()
if v = s

setDistance(v, 0)
else

setDistance(v, ∞)
setParent(v, ∅)
l ← Q.insert(getDistance(v), v)
setLocator(v,l)

while ¬Q.isEmpty()
u ← Q.removeMin()
for all e ∈ G.incidentEdges(u)

z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)
setParent(z,e)
Q.replaceKey(getLocator(z),r)
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Kruskal’s Algorithm
Each vertex is initially stored as its own 
cluster.
At each iteration, the minimum weight edge 
is added to the spanning tree if it joins 2 
distinct clusters.
The algorithm ends when all the vertices 
are in the same cluster.
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Kruskal’s Algorithm…
Why It Works

This is an application of the Partition 
Property!

If the minimum edge at some iteration is 
(u,v), then if we consider a partition of G 
with u in one cluster and v in the other, 
then the partition property says that there 
must be an MST containing (u,v).
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Kruskal’s Algorithm
A priority queue stores 
the edges outside the 
cloud

Key: weight
Element: edge

At the end of the 
algorithm

We are left with one 
cloud that encompasses 
the MST
A tree T which is our 
MST

Algorithm KruskalMST(G)
for each vertex V in G do

define a Cloud(v) of {v}
let Q be a priority queue.
Insert all edges into Q using their 
weights as the key
T ∅
while T has fewer than n-1 edges do

edge e = T.removeMin()
Let u, v be the endpoints of e
if Cloud(v) ≠ Cloud(u) then

Add edge e to T
Merge Cloud(v) and Cloud(u)

return T
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Data Structure for Kruskal
Algortihm

The algorithm maintains a forest of trees
An edge is accepted it if connects distinct trees
We need a data structure that maintains a 
partition, i.e., a collection of disjoint sets, with the 
operations:
-find(u): return the set storing u
-union(u,v): replace the sets storing u and v with 
their union
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Representation of 
a Partition

Each set is stored in a sequence
Each element has a reference back to the set

operation find(u) takes O(1) time, and returns the set 
of which u is a member.
in operation union(u,v), we move the elements of the 
smaller set to the sequence of the larger set and 
update their references
the time for operation union(u,v) is min(nu,nv), where nu
and nv are the sizes of the sets storing u and v

Whenever an element is processed, it goes into 
a set of size at least double, hence each 
element is processed at most log n times
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Partition-Based  Implementation
A partition-based version of Kruskal’s Algorithm 
performs cloud merges as unions and tests as 
finds.

Algorithm Kruskal(G):
Input: A weighted graph G.
Output: An MST T for G.

Let P be a partition of the vertices of G, where each vertex forms a separate set.
Let Q be a priority queue storing the edges of G, sorted by their weights
Let T be an initially-empty tree
while Q is not empty do

(u,v) ← Q.removeMin()
if P.find(u) != P.find(v) then

Add (u,v) to T
P.union(u,v)

return T

Running time: 
O((n+m)log n)
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Kruskal
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Example (contd.)
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Traveling Salesperson Problem
A tour of a graph is a spanning 
cycle (e.g., a cycle that goes 
through all the vertices)
A traveling salesperson tour of a 
weighted graph is a tour that is 
simple (i.e., no repeated vertices or 
edges) and has has minimum weight
No polynomial-time algorithms are 
known for computing traveling 
salesperson tours
The traveling salesperson problem 
(TSP) is a major open problem in 
computer science

Find a polynomial-time algorithm  
computing a traveling salesperson 
tour or prove that none exists
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TSP Approximation
We can approximate a TSP tour 
with a tour of at most twice the 
weight for the case of Euclidean 
graphs

Vertices are points in the plane
Every pair of vertices is 
connected by an edge
The weight of an edge is the 
length of the segment joining the 
points

Approximation algorithm
Compute a minimum spanning tree
Form an Eulerian circuit around 
the MST
Transform the circuit into a tour


