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Outline and Reading

4 Minimum Spanning Trees (§12.7)
= Definitions
= A crucial fact

4 Prim-Jarnik's Algorithm (§12.7.2)
@ Kruskal's Algorithm (§12.7.1)
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Minimum Spanning Tree

Spanning subgraph
= Subgraph of a graph G
containing all the vertices of
G

Spanning tree
= Spanning subgraph that is
itself a (free) tree
Minimum spanning tree (MST)
= Spanning free of a weighted
graph with minimum total
edge weight
@ Applications
= Communications networks
= Transportation networks
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Cycle Property

Cycle Property:
= Let T be a minimum
spanning tree of a
weighted graph G
= Letebeanedgeof G
that is not in Tand let C
be the cycle formed by

addinge to T
= For every edge fof C,

weight(f) < weight(e) Replacing f with e yields
Proof: ﬂ a better spanning tree

By contradiction

u If weight(f) > weight(e) we
can get a spanning tree
of smaller weight by
replacing e with f
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Cycle Property

In other words:

in any cycle of the
graph, the non-
spanning free edge
(dotted line) has
max weight.
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Partition Property

Partition Property:
Consider a partition of the vertices
of G into subsets Uand V. Let e be
an edge of minimum weight across
the partition. There is a minimum
spanning tree of G containing edge e
Proof:
n Let Tbean MST of G
= If T does not contain e, consider the
cycle C formed by e with Tand let f Replacing f with e yields
be an edge of C across the partition @ another MST
= By the cycle property,
weight(f) < weight(e)
u Thus, weight(f) = weight(e)
= We obtain another MST by replacing f
with e
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Prim-Jarnik's Algorithm

# Prim-Jarnik's algorithm for computing an
MST is similar to Dijkstra's algorithm

# We assume that the graph is connected

# We pick an arbitrary vertex s and we grow
the MST as a cloud of vertices, starting
from s

# We store with each vertex v a label d(v)
representing the smallest weight of an

edge connecting v to any vertex in the

cloud (as opposed to the total sum of edge weights on a path from
the start vertex to u).
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Prim-Jarnik's Algorithm
®At each step

= We add to the cloud the vertex u with
(minimum-weight edge) outside the cloud
with the smallest distance label

= We update the labels of the vertices
adjacent fo u
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@ Use a priority queue Q whose keys are D labels, and whose elements are vertex-
edge pairs.
= Key: distance
= Element: vertex-edge pair

For example, an entry of Q is ((z, (u,z)), D[z]) for a vertex z, where (z, (u,2)) is
the element and D[z] is the key of the vertex z.

# Any vertex v can be the starting vertex.

4 We still initialize all the D[u] values to INFINITE, but we also initialize the
edge associated with u to null.

4 Return the minimum-spanning tree T.

#® We can reuse code from Dijkstra’s, and we only have to change a few things. Let’s look at
the pseudocode....
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Algorithm PrimJarnik(G):
Input: A weighted graph G.
Output: A minimum spanning tree T for G.
pick any vertex v of G
D[v]« 0
for each vertex u # v do
D[u] <
Initialize T ¢— &
Initialize priority queue Q with an entry ((u, null), D[u]) for each vertex u,
where (u, null) is the element and D[u]) is the key.
while Q # & do {pull u into the cloud C}
(u, e) < Q.removeMin()
add vertex uand edgeeto T
for each vertex z adjacent to u such that z is in Q do
{perform the relaxation operation on edge (u, z) }
if weight(u, z) < D[z] then
D[z] «-weight(u, z)
change to (z, (u, z)) the element of z in Q
change to D[z] the key of vertex z in Q
return tree T
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Example (contd.)
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Prim-Jarnik...

Why It Works

# This is an application of the Cycle Property!

# Let the minimum edge at some iteration be
(u,v). If there is an MST not containing
(u,v), then (u,v) completes a cycle. Since
(u,v) was considered before some other
edge connecting v to the cluster, it must
have weight equal to or lower than that
other edge. A new MST can be formed by

swapping.
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Analysis

# Graph operations

= Method incidentEdges is called once for each vertex
Label operations

= We set/get the labels of vertex z O(deg(z)) times

= Setting/getting a label takes O(1) time
# Priority queue operations

= Each vertex is inserted once into and removed once from the
priority queue, where each insertion or removal takes O(log n) time

= The key of a vertex w in the priority queue is modified at most
deg(w) times, where each key change takes O(log n) time
Prim-Jarnik's algorithm runs in O((n + m) log n) time provided
the graph is represented by the adjacency list structure
= Recall that £ deg(v) =2m
The running time is O(m log n) since the graph is connected

&

@

&
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Dijkstra vs. Prim-Jarnik

Algorithm DijkstraShortestPaths(G, s)
0O < new heap-based priority queue

for all v € G.vertices()
if v=ys
setDistance(v, 0)
else
setDistance(v, ©)
setParent(v, D)
| < Q.insert(getDistance(v), v)
setLocator(v,l)
while —Q.isEmpty()
u < Q.removeMin()
for all ¢ € G.incidentEdges(u)
z < G.opposite(u,e)
r < getDistance(u) + weight(e)
if r < getDistance(z)
setDistance(z,r)
setParent(z,e)
Q.replaceKey(getLocator(z),r)

Algorithm PrimJarnikMST(G)
0O < new heap-based priority queue
s < avertex of G
for all v € G.vertices()
if v=ys
setDistance(v, 0)
else
setDistance(v, ©)
setParent(v, D)
1 < Q.insert(getDistance(v), v)
setLocator(v,l)
while —Q.isEmpty()
u < Q.removeMin()
for all ¢ € G.incidentEdges(u)
z < G.opposite(u,e)
r < weight(e)
if r < getDistance(z)
setDistance(z,r)
setParent(z,e)
Q.replaceKey(getLocator(z),r)
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Kruskal's Algorithm

# Each vertex is initially stored as its own
cluster.

@ At each iteration, the minimum weight edge
is added to the spanning tree if it joins 2
distinct clusters.

# The algorithm ends when all the vertices
are in the same cluster.
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] .
Kruskal's Algorithm...
Why It Work Kruskal’s Algorithm
y orks
@ A priority queue stores Al%;)rriet;"g Iirllttgkaéﬂl{lsg (dGo)
L - . th tside th ich vertex i
4 This is an application of the Partition |e 3dges outside the define a Cloud(v) of € {v}
I clou let O be a priority queue.
PV'OPeM'Y‘ = Key: weight Insert all edges into Q using their
= Element: edge ‘;eg% as the key
ini P ion i # At the end of the hile 7 has fewer than n-1 edges d

4 If the minimum edge at some iteration is algorithm e e g 5 o

(U,V), then if we consider a pGI"TITIOH of 6 « We are left with one Let u, v be the endpoints of e

with u in one cluster and v in the other, cloud that encompasses if f\’g"l“égz:cf[f;d(") then

then the partition property says that there the MST Merge Cloud(v) and Cloud(u)

must be an MST containing (u,v). . |A\\/| g_'ree 7which is our return T
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Data Structure for Kruskal Representation of |

. cq (2 -0

Algortihm a Partition TR e
# The algorithm maintains a forest of trees @ Each set is stored in a sequence S

@ An edge is accepted it if connects distinct trees
# We need a data structure that maintains a

# Each element has a reference back to the set
= operation find(u) takes O(1) time, and returns the set

partition, i.e., a collection of disjoint sets, with the of which u is @ member-

operations: = in operation union(u,v), we move the elements of the
-find(u): refurn the set storing u smaller set to the sequence of the larger set and
-union(u,v): replace the sets storing u and v with update their references

their union = the time for operation union(u,v) is min(n,n,), where n,

and n, are the sizes of the sets storing u and v
# Whenever an element is processed, it goes into
a set of size at least double, hence each
element is processed at most log n times
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Partition-Based Implementation

# A partition-based version of Kr

uskal's Algorithm

performs cloud merges as unions and tests as

finds.

Algorithm Kruskal(G):
Input: A weighted graph G.
Output: An MST T for G.

Let T be an initially-empty tree
while O is not empty do
(u,v) < Q.removeMin()

Let P be a partition of the vertices of G, where each vertex forms a separate set.

Let Q be a priority queue storing the edges of G, sorted by their weights

if P.find(x) != P.find(v) then
Add (u,v)to T

Running time:
O((n+m)log n)

P.union(u,v)

return 7'
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Kruskal
Example
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Example
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Example (contd.)
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Traveling Salesperson Problem

4 A tour of a graph is a spanning
cycle (e.g., a cycle that goes
through all the vertices)

4 A traveling salesperson tour of a
weighted graph is a tour that is
simple (i.e., no repeated vertices or 2
edges) and has has minimum weight

# No polynomial-time algorithms are

known for computing traveling

salesperson tours .

The traveling salesperson problem  Example of traveling

(TSP) is a major open problem in salesperson tour

computer science (with weight 17)

= Find a polynomial-time algorithm
computing a traveling salesperson
tour or prove that none exists

@&

6/22/2006 2:12 PM Minimum Spanning Tree 38

TSP Approximation

% We can approximate a TSP tour
with a four of at most twice the
weight for the case of Euclidean
graphs

= Vertices are points in the plane

= Every pair of vertices is
connected by an edge

= The weight of an edge is the
length of the segment joining the
points

% Approximation algorithm

= Compute a minimum spanning free

= Form an Eulerian circuit around
the MST

= Transform the circuit into a tour
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