Minimum Spanning Tree

6/22/2006 2:12 PM Minimum Spanning Tree

Outline and Reading

4 Minimum Spanning Trees (§12.7)
= Definitions
= A crucial fact

4 Prim-Jarnik's Algorithm (§12.7.2)
@ Kruskal's Algorithm (§12.7.1)

6/22/2006 2:12 PM Minimum Spanning Tree 2

Minimum Spanning Tree

Spanning subgraph
= Subgraph of a graph G
containing all the vertices of
G

Spanning tree
= Spanning subgraph that is
itself a (free) tree
Minimum spanning tree (MST)
= Spanning free of a weighted
graph with minimum total
edge weight
@ Applications
= Communications networks
= Transportation networks

6/22/2006 2:12 PM Minimum Spanning Tree

Cycle Property

Cycle Property:
= Let T be a minimum
spanning tree of a
weighted graph G
= Letebeanedgeof G
that is not in Tand let C
be the cycle formed by

addinge to T
= For every edge fof C,

weight(f) < weight(e) Replacing f with e yields
Proof: ﬂ a better spanning tree

By contradiction

u If weight(f) > weight(e) we
can get a spanning tree
of smaller weight by
replacing e with f

6/22/2006 2:12 PM Minimum Spanning Tree 4

Cycle Property

In other words:

in any cycle of the
graph, the non-
spanning free edge
(dotted line) has
max weight.

6/22/2006 2:12 PM Minimum Spanning Tree 5

Partition Property

Partition Property:
Consider a partition of the vertices
of G into subsets Uand V. Let e be
an edge of minimum weight across
the partition. There is a minimum
spanning tree of G containing edge e
Proof:
n Let Tbean MST of G
= If T does not contain e, consider the
cycle C formed by e with Tand let f Replacing f with e yields
be an edge of C across the partition @ another MST
= By the cycle property,
weight(f) < weight(e)
u Thus, weight(f) = weight(e)
= We obtain another MST by replacing f
with e

6/22/2006 2:12 PM Minimum Spanning Tree 6

Prim-Jarnik's Algorithm

Prim-Jarnik's algorithm for computing an
MST is similar to Dijkstra's algorithm

We assume that the graph is connected

We pick an arbitrary vertex s and we grow
the MST as a cloud of vertices, starting
from s

We store with each vertex v a label d(v)
representing the smallest weight of an

edge connecting v to any vertex in the

cloud (as opposed to the total sum of edge weights on a path from
the start vertex to u).

6/22/2006 2:12 PM Minimum Spanning Tree 7

Prim-Jarnik's Algorithm
®At each step

= We add to the cloud the vertex u with
(minimum-weight edge) outside the cloud
with the smallest distance label

= We update the labels of the vertices
adjacent fo u

6/22/2006 2:12 PM Minimum Spanning Tree 8

@ Use a priority queue Q whose keys are D labels, and whose elements are vertex-
edge pairs.
= Key: distance
= Element: vertex-edge pair

For example, an entry of Q is ((z, (u,z)), D[z]) for a vertex z, where (z, (u,2)) is
the element and D[z] is the key of the vertex z.

Any vertex v can be the starting vertex.

4 We still initialize all the D[u] values to INFINITE, but we also initialize the
edge associated with u to null.

4 Return the minimum-spanning tree T.

#® We can reuse code from Dijkstra’s, and we only have to change a few things. Let’s look at
the pseudocode....

6/22/2006 2:12 PM Minimum Spanning Tree 9

Algorithm PrimJarnik(G):
Input: A weighted graph G.
Output: A minimum spanning tree T for G.
pick any vertex v of G
D[v]« 0
for each vertex u # v do
D[u] <
Initialize T ¢— &
Initialize priority queue Q with an entry ((u, null), D[u]) for each vertex u,
where (u, null) is the element and D[u]) is the key.
while Q # & do {pull u into the cloud C}
(u, e) < Q.removeMin()
add vertex uand edgeeto T
for each vertex z adjacent to u such that z is in Q do
{perform the relaxation operation on edge (u, z) }
if weight(u, z) < D[z] then
D[z] «-weight(u, z)
change to (z, (u, z)) the element of z in Q
change to D[z] the key of vertex z in Q
return tree T

6/22/2006 2:12 PM Minimum Spanning Tree 10

6/22/2006 2:12 PM Minimum Spanning Tree 11

Example (contd.)

6/22/2006 2:12 PM Minimum Spanning Tree 12

Prim-Jarnik...

Why It Works

This is an application of the Cycle Property!

Let the minimum edge at some iteration be
(u,v). If there is an MST not containing
(u,v), then (u,v) completes a cycle. Since
(u,v) was considered before some other
edge connecting v to the cluster, it must
have weight equal to or lower than that
other edge. A new MST can be formed by

swapping.

6/22/2006 2:12 PM Minimum Spanning Tree 13

Analysis

Graph operations

= Method incidentEdges is called once for each vertex
Label operations

= We set/get the labels of vertex z O(deg(z)) times

= Setting/getting a label takes O(1) time
Priority queue operations

= Each vertex is inserted once into and removed once from the
priority queue, where each insertion or removal takes O(log n) time

= The key of a vertex w in the priority queue is modified at most
deg(w) times, where each key change takes O(log n) time
Prim-Jarnik's algorithm runs in O((n + m) log n) time provided
the graph is represented by the adjacency list structure
= Recall that £ deg(v) =2m
The running time is O(m log n) since the graph is connected

&

@

&

6/22/2006 2:12 PM Minimum Spanning Tree 14

Dijkstra vs. Prim-Jarnik

Algorithm DijkstraShortestPaths(G, s)
0O < new heap-based priority queue

for all v € G.vertices()
if v=ys
setDistance(v, 0)
else
setDistance(v, ©)
setParent(v, D)
| < Q.insert(getDistance(v), v)
setLocator(v,l)
while —Q.isEmpty()
u < Q.removeMin()
for all ¢ € G.incidentEdges(u)
z < G.opposite(u,e)
r < getDistance(u) + weight(e)
if r < getDistance(z)
setDistance(z,r)
setParent(z,e)
Q.replaceKey(getLocator(z),r)

Algorithm PrimJarnikMST(G)
0O < new heap-based priority queue
s < avertex of G
for all v € G.vertices()
if v=ys
setDistance(v, 0)
else
setDistance(v, ©)
setParent(v, D)
1 < Q.insert(getDistance(v), v)
setLocator(v,l)
while —Q.isEmpty()
u < Q.removeMin()
for all ¢ € G.incidentEdges(u)
z < G.opposite(u,e)
r < weight(e)
if r < getDistance(z)
setDistance(z,r)
setParent(z,e)
Q.replaceKey(getLocator(z),r)

6/22/2006 2:12 PM Minimum Spanning Tree 15

Kruskal's Algorithm

Each vertex is initially stored as its own
cluster.

@ At each iteration, the minimum weight edge
is added to the spanning tree if it joins 2
distinct clusters.

The algorithm ends when all the vertices
are in the same cluster.

6/22/2006 2:12 PM Minimum Spanning Tree 16

] .
Kruskal's Algorithm...
Why It Work Kruskal’s Algorithm
y orks
@ A priority queue stores Al%;)rriet;"g Iirllttgkaéﬂl{lsg (dGo)
L - . th tside th ich vertex i
4 This is an application of the Partition |e 3dges outside the define a Cloud(v) of € {v}
I clou let O be a priority queue.
PV'OPeM'Y‘ = Key: weight Insert all edges into Q using their
= Element: edge ‘;eg% as the key
ini P ion i # At the end of the hile 7 has fewer than n-1 edges d

4 If the minimum edge at some iteration is algorithm e e g 5 o

(U,V), then if we consider a pGI"TITIOH of 6 « We are left with one Let u, v be the endpoints of e

with u in one cluster and v in the other, cloud that encompasses if f\’g"l“égz:cf[f;d(") then

then the partition property says that there the MST Merge Cloud(v) and Cloud(u)

must be an MST containing (u,v). . |A\\/| g_'ree 7which is our return T
6/22/2006 2:12 PM Minimum Spanning Tree 17 6/22/2006 2:12 PM Minimum Spanning Tree 18
Data Structure for Kruskal Representation of |

. cq (2 -0

Algortihm a Partition TR e
The algorithm maintains a forest of trees @ Each set is stored in a sequence S

@ An edge is accepted it if connects distinct trees
We need a data structure that maintains a

Each element has a reference back to the set
= operation find(u) takes O(1) time, and returns the set

partition, i.e., a collection of disjoint sets, with the of which u is @ member-

operations: = in operation union(u,v), we move the elements of the
-find(u): refurn the set storing u smaller set to the sequence of the larger set and
-union(u,v): replace the sets storing u and v with update their references

their union = the time for operation union(u,v) is min(n,n,), where n,

and n, are the sizes of the sets storing u and v
Whenever an element is processed, it goes into
a set of size at least double, hence each
element is processed at most log n times

6/22/2006 2:12 PM Minimum Spanning Tree 6/22/2006 2:12 PM Minimum Spanning Tree 20

Partition-Based Implementation

A partition-based version of Kr

uskal's Algorithm

performs cloud merges as unions and tests as

finds.

Algorithm Kruskal(G):
Input: A weighted graph G.
Output: An MST T for G.

Let T be an initially-empty tree
while O is not empty do
(u,v) < Q.removeMin()

Let P be a partition of the vertices of G, where each vertex forms a separate set.

Let Q be a priority queue storing the edges of G, sorted by their weights

if P.find(x) != P.find(v) then
Add (u,v)to T

Running time:
O((n+m)log n)

P.union(u,v)

return 7'

6/22/2006 2:12 PM Minimum Spanning Tree

21

Kruskal
Example

6/22/2006 2:12 PM Minimum Spanning Tree 22

6/22/2006 2:12 PM Minimum Spanning Tree

23

6/22/2006 2:12 PM Minimum Spanning Tree 24

Minimum Spanning Tree Minimum Spanning Tree

26

28

6/22/2006 2:12 PM Minimum Spanning Tree 29 6/22/2006 2:12 PM Minimum Spanning Tree

6/22/2006 2:12 PM Minimum Spanning Tree 31 6/22/2006 2:12 PM Minimum Spanning Tree

6/22/2006 2:12 PM

Minimum Spanning Tree Minimum Spanning Tree

Example

6/22/2006 2:12 PM

Minimum Spanning Tree

Minimum Spanning Tree

(o)}

(o)}

Example (contd.)

6/22/2006 2:12 PM Minimum Spanning Tree 37

Traveling Salesperson Problem

4 A tour of a graph is a spanning
cycle (e.g., a cycle that goes
through all the vertices)

4 A traveling salesperson tour of a
weighted graph is a tour that is
simple (i.e., no repeated vertices or 2
edges) and has has minimum weight

No polynomial-time algorithms are

known for computing traveling

salesperson tours .

The traveling salesperson problem Example of traveling

(TSP) is a major open problem in salesperson tour

computer science (with weight 17)

= Find a polynomial-time algorithm
computing a traveling salesperson
tour or prove that none exists

@&

6/22/2006 2:12 PM Minimum Spanning Tree 38

TSP Approximation

% We can approximate a TSP tour
with a four of at most twice the
weight for the case of Euclidean
graphs

= Vertices are points in the plane

= Every pair of vertices is
connected by an edge

= The weight of an edge is the
length of the segment joining the
points

% Approximation algorithm

= Compute a minimum spanning free

= Form an Eulerian circuit around
the MST

= Transform the circuit into a tour

6/22/2006 2:12 PM Minimum Spanning Tree 39

