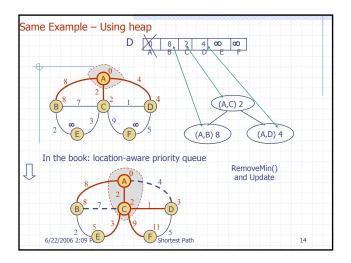
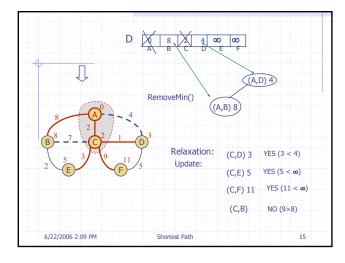
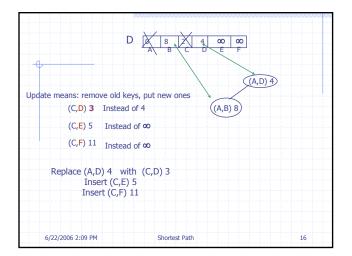
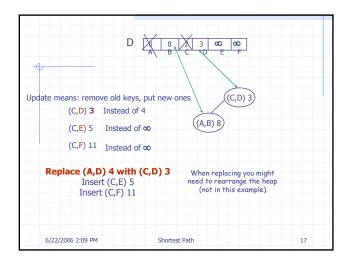


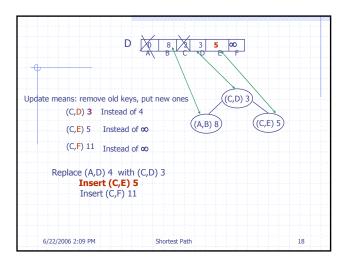
4	ithm ShortestPath(G, v): Input: A weighted graph G and a distinguished vertex v of G. Output: A label D[u], for each vertex that u of G, such that D[u] is the length of a shortest path from v to u in G.				
	initialize $D[v] \leftarrow 0$ and $D[u] \leftarrow \infty$ for each vertex $v \neq u$				
	let Q be a priority queue that contains all of the vertices of G using the D labels as keys. while $Q \neq \emptyset$ do {pull u into the cloud C}				
	$u \leftarrow Q$.removeMinElement() for each vertex z adjacent to u such that z is in Q do {perform the relaxation operation on edge (u, z) } if D[u] + w((u, z)) < D[z] then D[z] \leftarrow D[u] + w((u, z))				
	change the key value of z in Q to D[z] return the label D[u] of each vertex u.				
6/2	22/2006 2:09 PM Shortest Path 13				

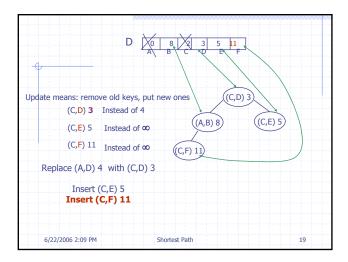


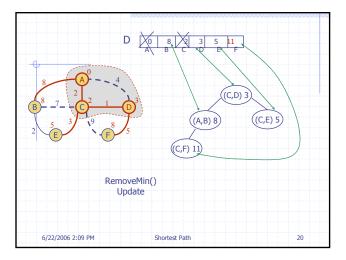


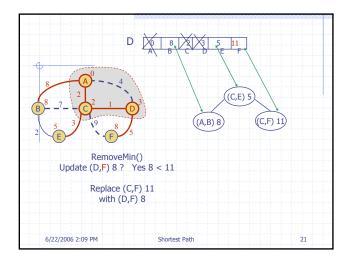


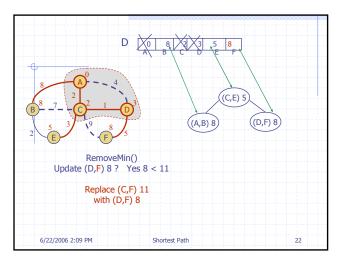












•

Running Tir	ne	
	adjacency list. We can then s time proportional to deg(u)	tep through all the
	with the smallest D-label: O()) for each update (replace ar	
in total: $\sum_{u \in G} (1 + det u)$ worst case: $O(n^2 \log n)$	g(u)) log n = O((n+m) log n)) = O(m log n)
6/22/2006 2:09 PM	Shortest Path	23

0		
An Unsorted S	equence:	
O(n) when w	ve extract minimum elements,	
but fast key	updates (O(1)).	
	1-1 extractions and m updates.	
	$e is O(n^2 + m) = O(n^2)$	
Неар	Sequence	
O(m log n)	O(n ²)	
6/22/2006 2:09 PM	Shortest Path	24