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Weighted Graph
In a weighted graph, each edge has an associated numerical 
value, called the weight of the edge
Edge weights may represent, distances, costs, etc.
Example:

In a  flight route graph, the weight of an edge represents the 
distance in miles between the endpoint airports
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Shortest Path Problem
Given a weighted graph and two vertices u and v, we want to 
find a path of minimum total weight between u and v
Applications

Flight reservations
Driving directions
Internet packet routing 

Example:
Shortest path between Providence and Honolulu
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Shortest Path Properties
Property 1:

A subpath of a shortest path is itself a shortest path
Property 2:

There is a tree of shortest paths from a start vertex to all the other 
vertices

Example:
Tree of shortest paths from Providence
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Dijkstra’s Algorithm
The distance to a vertex v from a vertex s is 
the length of a shortest path between s and v

Dijkstra’s algorithm computes the distances to 
all the vertices from a given start vertex s

Assumptions:
the graph is connected
the edges are undirected
the edge weights are nonnegative
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We grow a “cloud” of vertices, beginning with s and eventually 
covering all the vertices

At each vertex v we store 
d(v) = distance to v from s in the subgraph consisting of the 

cloud and its adjacent vertices

Example
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At each step

We add to the cloud the vertex u outside the cloud 
with the smallest distance label

We update the labels of the vertices adjacent to u
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Update = Edge Relaxation
Consider an edge e = (u,z)
such that

u is the vertex most 
recently added to the 
cloud
z is not in the cloud

The relaxation of edge e 
updates distance d(z) as 
follows

d(z) ←
min(d(z), d(u) + weight(e))

d(z) = 75d(u) = 50
10

zs
u

d(z) = 60d(u) = 50 10

zs
u
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Example
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Example (cont.)
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Dijkstra’s Algorithm

We use a priority queue Q to store 
the vertices not in the cloud, 

where D[v] is the key of a vertex v in Q
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Algorithm ShortestPath(G, v):
Input: A weighted graph G and a distinguished vertex v of G.
Output: A label D[u], for each vertex that u of G, 
such that D[u] is the length of a shortest path from v to u in G.

initialize D[v] ← 0 and D[u] ← ∞ for each 
vertex v ≠ u

let Q be a priority queue that contains all of the 
vertices of G using the D labels as keys.

while Q ≠ ∅ do {pull u into the cloud C}
u ← Q.removeMinElement()
for each vertex z adjacent to u such that z is in Q do

{perform the relaxation operation on edge (u, z) }
if D[u] + w((u, z)) < D[z] then

D[z] ←D[u] + w((u, z))
change the key value of z in Q to D[z]

return the label D[u] of each vertex u.
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Same Example – Using heap
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RemoveMin()
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Relaxation:
Update:

(C,D) 3

(C,F) 11

(C,E) 5

(C,B)        NO (9>8)

YES (3 < 4)

YES (5 < ∞)

YES (11 < ∞)

D
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Update means: remove old keys, put new ones  

(C,D) 3

(C,F) 11

(C,E) 5

(A,B) 8

(A,D) 4

D
A       B      C      D      E      F

0       8      2       4      ∞ ∞

Instead of 4

Instead of ∞

Instead of ∞

Replace (A,D) 4   with  (C,D) 3
Insert (C,E) 5
Insert (C,F) 11
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Update means: remove old keys, put new ones  

(C,D) 3

(C,F) 11

(C,E) 5
(A,B) 8

D
A       B      C      D      E      F
0       8      2     3 ∞ ∞

Instead of 4

Instead of ∞

Instead of ∞

Replace (A,D) 4 with (C,D) 3
Insert (C,E) 5
Insert (C,F) 11

(C,D) 3

When replacing you might 
need to rearrange the heap 

(not in this example).
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Update means: remove old keys, put new ones  

(C,D) 3

(C,F) 11

(C,E) 5
(A,B) 8

D
A       B      C      D      E      F
0       8      2     3 5 ∞

Instead of 4

Instead of ∞

Instead of ∞

Replace (A,D) 4  with (C,D) 3
Insert (C,E) 5
Insert (C,F) 11

(C,D) 3

(C,E) 5
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Update means: remove old keys, put new ones  

(C,D) 3

(C,F) 11

(C,E) 5
(A,B) 8

D
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0       8      2     3 5   11

Instead of 4

Instead of ∞

Instead of ∞

Replace (A,D) 4  with (C,D) 3

Insert (C,E) 5
Insert (C,F) 11

(C,D) 3

(C,E) 5

(C,F) 11
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Update (D,F) 8 ?   Yes 8 < 11

Replace (C,F) 11
with (D,F) 8
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Running Time

If  we represent G with an adjacency list. We can then step through all the 
vertices adjacent to u in time proportional to deg(u)  

The priority queue Q  
A Heap: 

while Q ≠ ∅ do {pull u into the cloud C}

at each iteration:
- extraction of vertices with the smallest D-label: O(log n). 

- key updates: O(log n) for each update (replace and insert keys).
After  each extraction: O(deg(u) log n)

in total:    Σu∈G (1 + deg(u)) log n = O((n+m) log n) = O(m log n)
worst case: O(n2 log n)
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An Unsorted Sequence: 
O(n) when we extract minimum elements, 
but fast key updates (O(1)). 

There are only n-1 extractions and m updates. 
The running time is O(n2+m) = O(n2 )

O(m log n) O(n2 )

Heap Sequence


