
Shortest Path 6/22/2006 2:09 PM

1

6/22/2006 2:09 PM Shortest Path 1

Shortest Path

CB

A

E

D

F

0

328

5 8

48

7 1

2 5

2

3 9

6/22/2006 2:09 PM Shortest Path 2

Outline and Reading
Shortest path (§12.6)

Weighted graph
Shortest path problem
Shortest path properties

Dijkstra’s algorithm (§12.6.1)
Algorithm
Edge relaxation
Example
Analysis

6/22/2006 2:09 PM Shortest Path 3

Weighted Graph
In a weighted graph, each edge has an associated numerical
value, called the weight of the edge
Edge weights may represent, distances, costs, etc.
Example:

In a flight route graph, the weight of an edge represents the
distance in miles between the endpoint airports

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

138717
43

1843

1099
1120

1233

337

2555

142 1205

6/22/2006 2:09 PM Shortest Path 4

Shortest Path Problem
Given a weighted graph and two vertices u and v, we want to
find a path of minimum total weight between u and v
Applications

Flight reservations
Driving directions
Internet packet routing

Example:
Shortest path between Providence and Honolulu

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

138717
43

1843

1099
1120

1233

337

2555

142 1205

Shortest Path 6/22/2006 2:09 PM

2

6/22/2006 2:09 PM Shortest Path 5

Shortest Path Properties
Property 1:

A subpath of a shortest path is itself a shortest path
Property 2:

There is a tree of shortest paths from a start vertex to all the other
vertices

Example:
Tree of shortest paths from Providence

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

138717
43

1843

1099
1120

1233

337

2555

142 1205

6/22/2006 2:09 PM Shortest Path 6

Dijkstra’s Algorithm
The distance to a vertex v from a vertex s is
the length of a shortest path between s and v

Dijkstra’s algorithm computes the distances to
all the vertices from a given start vertex s

Assumptions:
the graph is connected
the edges are undirected
the edge weights are nonnegative

6/22/2006 2:09 PM Shortest Path 7

We grow a “cloud” of vertices, beginning with s and eventually
covering all the vertices

At each vertex v we store
d(v) = distance to v from s in the subgraph consisting of the

cloud and its adjacent vertices

Example

CB

A

E

D

F

0

428

∞ ∞

48

7 1

2 5

2

3 9

6/22/2006 2:09 PM Shortest Path 8

At each step

We add to the cloud the vertex u outside the cloud
with the smallest distance label

We update the labels of the vertices adjacent to u

CB

A

E

D

F

0
48

7 1

2 5

2

3 9

428

∞ ∞

3 - better way !

11 - better way !5 - better way !

Shortest Path 6/22/2006 2:09 PM

3

6/22/2006 2:09 PM Shortest Path 9

Update = Edge Relaxation
Consider an edge e = (u,z)
such that

u is the vertex most
recently added to the
cloud
z is not in the cloud

The relaxation of edge e
updates distance d(z) as
follows

d(z) ←
min(d(z), d(u) + weight(e))

d(z) = 75d(u) = 50
10

zs
u

d(z) = 60d(u) = 50 10

zs
u

6/22/2006 2:09 PM Shortest Path 10

Example

CB

A

E

D

F

0

428

∞ ∞

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

328

5 11

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

328

5 8

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

6/22/2006 2:09 PM Shortest Path 11

Example (cont.)

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

6/22/2006 2:09 PM Shortest Path 12

Dijkstra’s Algorithm

We use a priority queue Q to store
the vertices not in the cloud,

where D[v] is the key of a vertex v in Q

Shortest Path 6/22/2006 2:09 PM

4

6/22/2006 2:09 PM Shortest Path 13

Algorithm ShortestPath(G, v):
Input: A weighted graph G and a distinguished vertex v of G.
Output: A label D[u], for each vertex that u of G,
such that D[u] is the length of a shortest path from v to u in G.

initialize D[v] ← 0 and D[u] ← ∞ for each
vertex v ≠ u

let Q be a priority queue that contains all of the
vertices of G using the D labels as keys.

while Q ≠ ∅ do {pull u into the cloud C}
u ← Q.removeMinElement()
for each vertex z adjacent to u such that z is in Q do

{perform the relaxation operation on edge (u, z) }
if D[u] + w((u, z)) < D[z] then

D[z] ←D[u] + w((u, z))
change the key value of z in Q to D[z]

return the label D[u] of each vertex u.

6/22/2006 2:09 PM Shortest Path 14

Same Example – Using heap

CB

A

E

D

F

0

428

∞ ∞

48

7 1

2 5

2

3 9

(A,C) 2

(A,D) 4(A,B) 8

A B C D E F
0 8 2 4 ∞ ∞D

In the book: location-aware priority queue

CB

A

E

D

F

0

328

5 11

48

7 1

2 5

2

3 9

RemoveMin()
and Update

6/22/2006 2:09 PM Shortest Path 15

CB

A

E

D

F

0

328

5 11

48

7 1

2 5

2

3 9

(A,B) 8
RemoveMin()

(A,D) 4

Relaxation:
Update:

(C,D) 3

(C,F) 11

(C,E) 5

(C,B) NO (9>8)

YES (3 < 4)

YES (5 < ∞)

YES (11 < ∞)

D
A B C D E F
0 8 2 4 ∞ ∞

6/22/2006 2:09 PM Shortest Path 16

Update means: remove old keys, put new ones

(C,D) 3

(C,F) 11

(C,E) 5

(A,B) 8

(A,D) 4

D
A B C D E F

0 8 2 4 ∞ ∞

Instead of 4

Instead of ∞

Instead of ∞

Replace (A,D) 4 with (C,D) 3
Insert (C,E) 5
Insert (C,F) 11

Shortest Path 6/22/2006 2:09 PM

5

6/22/2006 2:09 PM Shortest Path 17

Update means: remove old keys, put new ones

(C,D) 3

(C,F) 11

(C,E) 5
(A,B) 8

D
A B C D E F
0 8 2 3 ∞ ∞

Instead of 4

Instead of ∞

Instead of ∞

Replace (A,D) 4 with (C,D) 3
Insert (C,E) 5
Insert (C,F) 11

(C,D) 3

When replacing you might
need to rearrange the heap

(not in this example).

6/22/2006 2:09 PM Shortest Path 18

Update means: remove old keys, put new ones

(C,D) 3

(C,F) 11

(C,E) 5
(A,B) 8

D
A B C D E F
0 8 2 3 5 ∞

Instead of 4

Instead of ∞

Instead of ∞

Replace (A,D) 4 with (C,D) 3
Insert (C,E) 5
Insert (C,F) 11

(C,D) 3

(C,E) 5

6/22/2006 2:09 PM Shortest Path 19

Update means: remove old keys, put new ones

(C,D) 3

(C,F) 11

(C,E) 5
(A,B) 8

D
A B C D E F
0 8 2 3 5 11

Instead of 4

Instead of ∞

Instead of ∞

Replace (A,D) 4 with (C,D) 3

Insert (C,E) 5
Insert (C,F) 11

(C,D) 3

(C,E) 5

(C,F) 11

6/22/2006 2:09 PM Shortest Path 20

(A,B) 8

D
A B C D E F
0 8 2 3 5 11

(C,D) 3

(C,E) 5

(C,F) 11

CB

A

E

D

F

0

328

5 8

48

7 1

2 5

2

3 9

RemoveMin()
Update

Shortest Path 6/22/2006 2:09 PM

6

6/22/2006 2:09 PM Shortest Path 21

(A,B) 8

D
A B C D E F
0 8 2 3 5 11

(C,E) 5

(C,F) 11

CB

A

E

D

F

0

328

5 8

48

7 1

2 5

2

3 9

RemoveMin()
Update (D,F) 8 ? Yes 8 < 11

Replace (C,F) 11
with (D,F) 8

6/22/2006 2:09 PM Shortest Path 22

(A,B) 8

D
A B C D E F
0 8 2 3 5 8

(C,E) 5

(D,F) 8

CB

A

E

D

F

0

328

5 8

48

7 1

2 5

2

3 9

RemoveMin()
Update (D,F) 8 ? Yes 8 < 11

Replace (C,F) 11
with (D,F) 8

6/22/2006 2:09 PM Shortest Path 23

Running Time

If we represent G with an adjacency list. We can then step through all the
vertices adjacent to u in time proportional to deg(u)

The priority queue Q
A Heap:

while Q ≠ ∅ do {pull u into the cloud C}

at each iteration:
- extraction of vertices with the smallest D-label: O(log n).

- key updates: O(log n) for each update (replace and insert keys).
After each extraction: O(deg(u) log n)

in total: Σu∈G (1 + deg(u)) log n = O((n+m) log n) = O(m log n)
worst case: O(n2 log n)

6/22/2006 2:09 PM Shortest Path 24

An Unsorted Sequence:
O(n) when we extract minimum elements,
but fast key updates (O(1)).

There are only n-1 extractions and m updates.
The running time is O(n2+m) = O(n2)

O(m log n) O(n2)

Heap Sequence

