
Depth-First Search 6/22/2006 2:07 PM

1

6/22/2006 2:07 PM Graph Traversals 1

Graph Traversals

DB

A

C

E

6/22/2006 2:07 PM Graph Traversals 2

Outline and Reading
• Definitions (§12.1)

– Subgraph
– Connectivity
– Spanning trees and forests

6/22/2006 2:07 PM Graph Traversals 3

Subgraphs
• A subgraph S of a

graph G is a graph
such that
– The vertices of S are a

subset of the vertices
of G

– The edges of S are a
subset of the edges of
G

• A spanning subgraph
of G is a subgraph
that contains all the
vertices of G

Subgraph

Spanning subgraph

6/22/2006 2:07 PM Graph Traversals 4

Connectivity
• A graph is connected if

there is a path between
every pair of vertices

• A connected component
of a graph G is a
maximal connected
subgraph of G

Connected graph

Non connected graph with two
connected components

Depth-First Search 6/22/2006 2:07 PM

2

6/22/2006 2:07 PM Graph Traversals 5

Trees and Forests
• A tree is an undirected

graph T such that
– T is connected
– T has no cycles

• A forest is an
undirected graph
without cycles (a
collection of trees).

• The connected
components of a forest
are trees

Tree

Forest

6/22/2006 2:07 PM Graph Traversals 6

Spanning Trees and Forests
• A spanning tree of a

connected graph is a
spanning subgraph that is
a tree

• A spanning tree is not
unique unless the graph is
a tree

• Spanning trees have
applications to the design
of communication
networks

• A spanning forest of a
graph is a spanning
subgraph that is a forest

Graph

Spanning tree

6/22/2006 2:07 PM Graph Traversals 7

Graph Traversals
A traversal of a graph G:

– Visits all the vertices and edges of G
– Determines whether G is connected
– Computes the connected components of G
– Computes a spanning forest of G
– Build a spanning tree in a connected graph

6/22/2006 2:07 PM Graph Traversals 8

Depth-First Search

DB

A

C

E

Depth-First Search 6/22/2006 2:07 PM

3

6/22/2006 2:07 PM Graph Traversals 9

Outline and Reading
• Depth-first search (§12.3.1)

– Algorithm
– Example
– Properties
– Analysis

• Applications of DFS (§12.3.1)
– Path finding
– Cycle finding

6/22/2006 2:07 PM Graph Traversals 10

Depth-First Search
Depth-First Search is a graph traversal technique that:

• on a graph with n vertices and m edges takes O(n + m)
time

• can be further extended to solve other graph problems
– Find and report a path between two given vertices
– Find a cycle in the graph

6/22/2006 2:07 PM Graph Traversals 11

The idea:
Starting at an arbitrary vertex, follow along a simple
path until you have get to a vertex which has no unvisited
adjacent vertices.
Then start tracing back up the path, one vertex at a time,
to find a vertex with unvisited adjacent vertices.

6/22/2006 2:07 PM Graph Traversals 12

DFS Algorithm –
With a Stack

(A,B)
DB

A

C

E

Depth-First Search 6/22/2006 2:07 PM

4

6/22/2006 2:07 PM Graph Traversals 13

2

8

10
11

9

7

6

53 4

12

1

Visited: {1} to visit

POP (1,2)
Visited: {1,2} to visit
T={(1,2)}

POP (2,3)
Visited: {1,2,3} to visit
T={(1,2), (2,3)}

(1,10)
(1,11)
(1,2)

(2,3)

(1,10)
(1,11)
(2,10)

(3,12)
(3,4)

(1,10)
(1,11)
(2,10)

Example

6/22/2006 2:07 PM Graph Traversals 14

POP (3,12)
Visited: {1,2,3,12} to visit
T={(1,2), (2,3), (3,12)}

(3,4)

(1,10)
(1,11)
(2,10)

2

8

10
11

9

7

6

53 4

12

1

6/22/2006 2:07 PM Graph Traversals 15

2

8

10
11

9

7

6

53 4

12

1

POP (3,4) to visit
Visited: {1,2,3,12,4}

T={(1,2), (2,3), (3,12), (3,4)}

POP (4,10)
Visited: {1,2,3,12,4,10}

T={(1,2), (2,3), (3,12), (3,4), (4,10)}

(4,10)
(4,5)

(1,10)
(1,11)
(2,10)

(10,8)
(10,6)
(4,5)

(1,10)
(1,11)
(2,10)…

to visit

6/22/2006 2:07 PM Graph Traversals 16

Complexity

Number of PUSH:

Number of POP:

O(m)

∑
∈

=
Vv

mvd 2)(

∑
∈

=
Vv

mvd 2)(

Elementary operations: Pop and Push

Depth-First Search 6/22/2006 2:07 PM

5

6/22/2006 2:07 PM Graph Traversals 17

DFS(v)
Mark v visited
∀w ∈ Adjacent(v)

if w not visited
visit w
DFS(w)

DFS Algorithm –
Recursive version

6/22/2006 2:07 PM Graph Traversals 18

DFS Again - More Detail…
• The algorithm uses a

mechanism for setting and
getting “labels” of vertices and
edges

Algorithm DFS(G, v)
Input graph G and a start vertex v of G
Output labeling of the edges of G

in the connected component of v
as discovery edges and back edges

setLabel(v, VISITED)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
DFS(G, w)

else
setLabel(e, BACK)

Algorithm DFS(G)
Input graph G
Output labeling of the edges of G

as discovery edges and
back edges

for all u ∈ G.vertices()
setLabel(u, UNEXPLORED)

for all e ∈ G.edges()
setLabel(e, UNEXPLORED)

for all v ∈ G.vertices()
if getLabel(v) = UNEXPLORED

DFS(G, v)

6/22/2006 2:07 PM Graph Traversals 19

Example

DB

A

C

E

DB

A

C

E

DB

A

C

E

discovery edge
back edge

A visited vertex
A unexplored vertex

unexplored edge

6/22/2006 2:07 PM Graph Traversals 20

Example (cont.)

DB

A

C

E

DB

A

C

E

DB

A

C

E

DB

A

C

E

Depth-First Search 6/22/2006 2:07 PM

6

6/22/2006 2:07 PM Graph Traversals 21

DFS and Maze Traversal
• The DFS algorithm is

similar to a classic
strategy for exploring a
maze
– We mark each

intersection, corner and
dead end (vertex)
visited

– We mark each corridor
(edge) traversed

– We keep track of the
path back to the
entrance (start vertex)
by means of a rope
(recursion stack)

6/22/2006 2:07 PM Graph Traversals 22

Properties of DFS

Property 1
DFS(G, v) visits all the
vertices and edges in
the connected
component of v

Property 2
The discovery edges
labeled by DFS(G, v)
form a spanning tree
of the connected
component of v

DB

A

C

E

6/22/2006 2:07 PM Graph Traversals 23

Analysis of DFS + labeling

• Setting/getting a vertex/edge label
takes O(1) time

• Each vertex is labeled twice
– once as UNEXPLORED
– once as VISITED

• Each edge is labeled twice
– once as UNEXPLORED
– once as DISCOVERY or BACK

• Method incidentEdges is called once
for each vertex

∑
∈

=
Vv

mvd 2)(

2n

2m

6/22/2006 2:07 PM Graph Traversals 24

• DFS runs in O(n + m) time provided the graph is
represented by the adjacency list structure

O(n + m) = O(m)

Conclusion
If we represent the graph with an adjacency list

Complexity of DFS is O(m)
WORST CASE: m = O(n2), when …

Question:
Could we do it in less than O(m) ?

Depth-First Search 6/22/2006 2:07 PM

7

6/22/2006 2:07 PM Graph Traversals 25

Path Finding
• We can specialize the DFS algorithm to find a

path between two given vertices u and z using
the template method pattern

• We call DFS(G, u) with u as the start vertex
• We use a stack S to keep track of the path

between the start vertex and the current
vertex

• As soon as destination vertex z is
encountered, we return the path as the
contents of the stack

6/22/2006 2:07 PM Graph Traversals 26

1

2

34

5

2 -- 6

2 1 5 4 3

6

6

6/22/2006 2:07 PM Graph Traversals 27

Algorithm pathDFS(G, v, z)
setLabel(v, VISITED)
S.push(v)
if v = z

return S.elements()
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
S.push(e)
pathDFS(G, w, z)
S.pop(e)

else
setLabel(e, BACK)

S.pop(v)

6/22/2006 2:07 PM Graph Traversals 28

Cycle Finding

• We can specialize the DFS algorithm to
find a simple cycle using the template
method pattern

• We use a stack S to keep track of the path
between the start vertex and the current
vertex

• As soon as a back edge (v, w) is
encountered, we return the cycle as the
portion of the stack from the top to vertex
w

Depth-First Search 6/22/2006 2:07 PM

8

6/22/2006 2:07 PM Graph Traversals 29

Algorithm cycleDFS(G, v, z)
setLabel(v, VISITED)
S.push(v)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
S.push(e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
cycleDFS(G, w, z)
S.pop(e)

else
T ← new empty stack
repeat

o ← S.pop()
T.push(o)

until o = w
return T.elements()

S.pop(v)

6/22/2006 2:07 PM Graph Traversals 30

Breadth-First Search

CB

A

E

D

L0

L1

F
L2

6/22/2006 2:07 PM Graph Traversals 31

Outline and Reading
• Breadth-first search (§12.3.3)

– Algorithm
– Example
– Properties
– Analysis
– Applications

• DFS vs. BFS
– Comparison of applications
– Comparison of edge labels

6/22/2006 2:07 PM Graph Traversals 32

Breadth-First Search
Breadth-First Search is a graph traversal technique

that:

• on a graph with n vertices and m edges, takes
O(n + m) time

• can be further extended to solve other graph
problems
– Find and report a path with the minimum number

of edges between two given vertices
– Find a simple cycle, if there is one

Depth-First Search 6/22/2006 2:07 PM

9

6/22/2006 2:07 PM Graph Traversals 33

CB

A

E

D

L0

L1

F
L2

The idea:
Visit a vertex and then visit all unvisited vertices
that are adjacent to it before visiting a vertex
which is 2 away from it.

level by level

6/22/2006 2:07 PM Graph Traversals 34

6/22/2006 2:07 PM Graph Traversals 35

Simple Breadth-First Search
with a Queue

1

5

4

2 3

6

Visited: {1} to visit: {(1,2), (1,6)}
T = φ

(1,2) - Is 2 visited?
Visited: {1,2} to visit: {(1,6), (2,4), (2,5)}
T = {(1,2)}

(1,6) - Is 6 visited?
Visited: {1,2,6} to visit: {(2,4), (2,5), (6,5)}
T = {(1,2), (1,6)}

T is the set of
visited edges

6/22/2006 2:07 PM Graph Traversals 36

1

5

4

2 3

6

(2,4) - Is 4 visited?
Visited: {1,2,6,4} to visit: {(2,5), (6,5), (4,5), (4,3)}
T = {(1,2), (1,6), (2,4)}

(2,5) - Is 5 visited ?
Visited: {1,2,6,4,5} to visit: {(6,5), (4,5), (4,3)}
T = {(1,2), (1,6), (2,4), (2,5)}

(6,5) - 5? already visited!

(4,5) - 5? already visited!

(4,3) - 3?

Depth-First Search 6/22/2006 2:07 PM

10

6/22/2006 2:07 PM Graph Traversals 37

BFS with labeling

Using a sequence for each level

CB

A

E

D

L0

L1

F
L2

6/22/2006 2:07 PM Graph Traversals 38

Example

CB

A

E

D

discovery edge
cross edge

A visited vertex
A unexplored vertex

unexplored edge

L0

L1

F

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F

6/22/2006 2:07 PM Graph Traversals 39

Example (cont.)

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

6/22/2006 2:07 PM Graph Traversals 40

Example (cont.)

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

Depth-First Search 6/22/2006 2:07 PM

11

6/22/2006 2:07 PM Graph Traversals 41

BFS Again - more details
• The algorithm uses a

mechanism for setting and
getting “labels” of vertices
and edges

Algorithm BFS(G, s)
L0 ← new empty sequence
L0.insertLast(s)
setLabel(s, VISITED)
i ← 0
while ! Li.isEmpty()

Li +1 ← new empty sequence
for all v ∈ Li.elements()

for all e ∈ G.incidentEdges(v)
if getLabel(e) = UNEXPLORED

w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
setLabel(w, VISITED)
Li +1.insertLast(w)

else
setLabel(e, CROSS)

i ← i +1

Algorithm BFS(G)
Input graph G
Output labeling of the edges

and partition of the
vertices of G

for all u ∈ G.vertices()
setLabel(u, UNEXPLORED)

for all e ∈ G.edges()
setLabel(e, UNEXPLORED)

for all v ∈ G.vertices()
if getLabel(v) = UNEXPLORED

BFS(G, v)
6/22/2006 2:07 PM Graph Traversals 42

Properties
Notation

Gs: connected component of s
Property 1

BFS(G, s) visits all the vertices and
edges of Gs

Property 2
The discovery edges labeled by
BFS(G, s) form a spanning tree Ts of
Gs

Property 3
For each vertex v in Li
– The path of Ts from s to v has i edges
– Every path from s to v in Gs has at

least i edges CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

6/22/2006 2:07 PM Graph Traversals 43

Analysis
• Setting/getting a vertex/edge label takes O(1) time
• Each vertex is labeled twice

– once as UNEXPLORED
– once as VISITED

• Each edge is labeled twice
– once as UNEXPLORED
– once as DISCOVERY or CROSS

• Each vertex is inserted once into a sequence Li

• Method incidentEdges is called once for each vertex
• BFS runs in O(n + m) time provided the graph is represented

by the adjacency list structure
– Recall that Σv deg(v) = 2m

6/22/2006 2:07 PM Graph Traversals 44

Applications

• Using the template method pattern, we can
specialize the BFS traversal of a graph G to solve
the following problems in O(n + m) time
– Compute the connected components of G
– Compute a spanning forest of G
– Find a simple cycle in G, or report that G is a forest
– Given two vertices of G, find a path in G between them

with the minimum number of edges, or report that no
such path exists

Depth-First Search 6/22/2006 2:07 PM

12

6/22/2006 2:07 PM Graph Traversals 45

DFS vs. BFS

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS

√Biconnected components

√Shortest paths

√√
Spanning forest, connected
components, paths, cycles

BFSDFSApplications

6/22/2006 2:07 PM Graph Traversals 46

DFS vs. BFS (cont.)
Back edge (v,w)

– w is an ancestor of v in
the tree of discovery
edges

Cross edge (v,w)
– w is in the same level as v

or in the next level in the
tree of discovery edges

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS

