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Graph Traversals
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Outline and Reading
• Definitions (§12.1)

– Subgraph
– Connectivity
– Spanning trees and forests

6/22/2006 2:07 PM Graph Traversals 3

Subgraphs
• A subgraph S of a 

graph G is a graph 
such that 
– The vertices of S are a 

subset of the vertices 
of G

– The edges of S are a 
subset of the edges of 
G

• A spanning subgraph 
of G is a subgraph 
that contains all the 
vertices of G

Subgraph

Spanning subgraph
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Connectivity
• A graph is connected if 

there is a path between 
every pair of vertices

• A connected component 
of a graph G is a 
maximal connected 
subgraph of G

Connected graph

Non connected graph with two 
connected components
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Trees and Forests
• A tree is an undirected 

graph T such that
– T is connected
– T has no cycles

• A forest is an 
undirected graph 
without cycles (a 
collection of trees).

• The connected 
components of a forest 
are trees

Tree

Forest
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Spanning Trees and Forests
• A spanning tree of a 

connected graph is a 
spanning subgraph that is 
a tree

• A spanning tree is not 
unique unless the graph is 
a tree

• Spanning trees have 
applications to the design 
of communication 
networks

• A spanning forest of a 
graph is a spanning 
subgraph that is a forest

Graph

Spanning tree
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Graph Traversals
A traversal of a graph G:

– Visits all the vertices and edges of G
– Determines whether G is connected
– Computes the connected components of G
– Computes a spanning forest of G
– Build a spanning tree in a connected graph
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Depth-First Search
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Outline and Reading
• Depth-first search (§12.3.1)

– Algorithm
– Example
– Properties
– Analysis

• Applications of DFS  (§12.3.1)
– Path finding
– Cycle finding
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Depth-First Search
Depth-First Search is a graph traversal technique that:

• on a graph with n vertices and m edges takes O(n + m )
time

• can be further extended to solve other graph problems
– Find and report a path between two given vertices
– Find a cycle in the graph
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The idea:  
Starting at an arbitrary vertex, follow  along a simple 
path until you have get to a vertex which has no unvisited 
adjacent vertices.  
Then start tracing back up the path, one vertex at a time, 
to find a vertex with unvisited adjacent vertices.
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DFS Algorithm –
With a Stack

(A,B)
DB

A

C

E
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Visited: {1} to visit

POP (1,2)
Visited: {1,2} to visit
T={(1,2)}

POP (2,3)
Visited: {1,2,3} to visit
T={(1,2), (2,3)}

(1,10)
(1,11)
(1,2)

(2,3)

(1,10)
(1,11)
(2,10)

(3,12)
(3,4)

(1,10)
(1,11)
(2,10)

Example
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POP (3,12)
Visited: {1,2,3,12} to visit
T={(1,2), (2,3), (3,12)}

(3,4)

(1,10)
(1,11)
(2,10)
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POP (3,4) to visit
Visited: {1,2,3,12,4}

T={(1,2), (2,3), (3,12), (3,4)}

POP (4,10)
Visited: {1,2,3,12,4,10}

T={(1,2), (2,3), (3,12), (3,4), (4,10)}

(4,10)
(4,5)

(1,10)
(1,11)
(2,10)

(10,8)
(10,6)
(4,5)

(1,10)
(1,11)
(2,10)…

to visit
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Complexity

Number of PUSH: 

Number of POP:

O(m)

∑
∈

=
Vv

mvd 2)(

∑
∈

=
Vv

mvd 2)(

Elementary operations: Pop and Push
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DFS(v)
Mark v visited
∀w ∈ Adjacent(v)

if w not visited
visit w
DFS(w)

DFS Algorithm –
Recursive version
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DFS Again  - More Detail…
• The algorithm uses a 

mechanism for setting and 
getting “labels” of vertices and 
edges

Algorithm DFS(G, v)
Input graph G and a start vertex v of G
Output labeling of the edges of G

in the connected component of v
as discovery edges and back edges

setLabel(v, VISITED)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
DFS(G, w)

else
setLabel(e, BACK)

Algorithm DFS(G)
Input graph G
Output labeling of the edges of G

as discovery edges and
back edges

for all u ∈ G.vertices()
setLabel(u, UNEXPLORED)

for all e ∈ G.edges()
setLabel(e, UNEXPLORED)

for all v ∈ G.vertices()
if getLabel(v) = UNEXPLORED

DFS(G, v)
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Example

DB

A

C

E

DB

A

C

E

DB

A

C

E

discovery edge
back edge

A visited vertex
A unexplored vertex

unexplored edge
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Example (cont.)

DB
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DB
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DFS and Maze Traversal 
• The DFS algorithm is 

similar to a classic 
strategy for exploring a 
maze
– We mark each 

intersection, corner and 
dead end (vertex) 
visited

– We mark each corridor 
(edge ) traversed

– We keep track of the 
path back to the 
entrance (start vertex) 
by means of a rope 
(recursion stack)
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Properties of DFS

Property 1
DFS(G, v) visits all the 
vertices and edges in 
the connected 
component of v

Property 2
The discovery edges 
labeled by DFS(G, v) 
form a spanning tree
of the connected 
component of v

DB

A

C

E
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Analysis of DFS + labeling 

• Setting/getting a vertex/edge label 
takes O(1) time

• Each vertex is labeled twice 
– once as UNEXPLORED
– once as VISITED

• Each edge is labeled twice
– once as UNEXPLORED
– once as DISCOVERY or BACK

• Method incidentEdges is called once 
for each vertex

∑
∈

=
Vv

mvd 2)(

2n

2m
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• DFS runs in O(n + m) time provided the graph is 
represented by the adjacency list structure

O(n + m) = O(m)

Conclusion
If we represent the graph with an adjacency list

Complexity of DFS is O(m)
WORST CASE: m = O(n2), when …

Question:
Could we do it in less than O(m) ?
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Path Finding
• We can specialize the DFS algorithm to find a 

path between two given vertices u and z using 
the template method pattern

• We call DFS(G, u) with u as the start vertex
• We use a stack S to keep track of the path 

between the start vertex and the current 
vertex

• As soon as destination vertex z is 
encountered, we return the path as the 
contents of the stack 
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Algorithm pathDFS(G, v, z)
setLabel(v, VISITED)
S.push(v)
if  v = z

return S.elements()
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
S.push(e)
pathDFS(G, w, z)
S.pop(e)

else
setLabel(e, BACK)

S.pop(v)
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Cycle Finding

• We can specialize the DFS algorithm to 
find a simple cycle using the template 
method pattern

• We use a stack S to keep track of the path 
between the start vertex and the current 
vertex

• As soon as a back edge (v, w) is 
encountered, we return the cycle as the 
portion of the stack from the top to vertex 
w
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Algorithm cycleDFS(G, v, z)
setLabel(v, VISITED)
S.push(v)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
S.push(e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
cycleDFS(G, w, z)
S.pop(e)

else
T ← new empty stack
repeat

o ← S.pop()
T.push(o)

until o = w
return T.elements()

S.pop(v)
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Breadth-First Search

CB

A

E

D

L0

L1

F
L2
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Outline and Reading
• Breadth-first search (§12.3.3)

– Algorithm
– Example
– Properties
– Analysis
– Applications

• DFS vs. BFS  
– Comparison of applications
– Comparison of edge labels
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Breadth-First Search
Breadth-First Search is a graph traversal technique 

that:

• on a graph with n vertices and m edges, takes 
O(n + m ) time

• can be further extended to solve other graph 
problems
– Find and report a path with the minimum number 

of edges between two given vertices 
– Find a simple cycle, if there is one
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CB

A

E

D

L0

L1

F
L2

The idea:
Visit a vertex and then visit all unvisited vertices 
that  are adjacent to it before visiting a vertex 
which is 2 away from it.

level by level
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Simple Breadth-First Search 
with a Queue

1

5

4

2 3

6

Visited: {1} to visit: {(1,2), (1,6)}
T = φ

(1,2) - Is 2 visited?
Visited: {1,2} to visit: {(1,6), (2,4), (2,5)}
T = {(1,2)}

(1,6)   - Is 6 visited?
Visited: {1,2,6} to visit: {(2,4), (2,5), (6,5)} 
T = {(1,2), (1,6)}

T is the set of 
visited edges
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1

5

4

2 3

6

(2,4)  - Is 4 visited?
Visited: {1,2,6,4} to visit: {(2,5), (6,5), (4,5), (4,3)}
T = {(1,2), (1,6), (2,4)}

(2,5)  - Is 5 visited ?
Visited: {1,2,6,4,5} to visit: {(6,5), (4,5), (4,3)}
T = {(1,2), (1,6), (2,4), (2,5)}

(6,5)  - 5? already visited!

(4,5)  - 5? already visited!

(4,3)  - 3? 
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BFS with labeling  

Using a sequence for each level 

CB

A

E

D

L0

L1

F
L2
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Example

CB

A

E

D

discovery edge
cross edge

A visited vertex
A unexplored vertex

unexplored edge

L0

L1

F

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F
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Example (cont.)
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L0

L1
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E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2
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A

E

D

L0
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F
L2
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Example (cont.)
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L0

L1

F
L2
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E

D

L0

L1

F
L2

CB
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D

L0

L1

F
L2
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BFS Again - more details
• The algorithm uses a 

mechanism for setting and 
getting “labels” of vertices 
and edges

Algorithm BFS(G, s)
L0 ← new empty sequence
L0.insertLast(s)
setLabel(s, VISITED)
i ← 0
while ! Li.isEmpty()

Li +1 ← new empty sequence
for all v ∈ Li.elements() 

for all e ∈ G.incidentEdges(v)
if getLabel(e) = UNEXPLORED

w ← opposite(v,e)
if  getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
setLabel(w, VISITED)
Li +1.insertLast(w)

else
setLabel(e, CROSS)

i ← i +1

Algorithm BFS(G)
Input graph G
Output labeling of the edges 

and partition of the 
vertices  of G 

for all u ∈ G.vertices()
setLabel(u, UNEXPLORED)

for all e ∈ G.edges()
setLabel(e, UNEXPLORED)

for all v ∈ G.vertices()
if getLabel(v) = UNEXPLORED

BFS(G, v)
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Properties
Notation

Gs: connected component of s
Property 1

BFS(G, s) visits all the vertices and 
edges of Gs

Property 2
The discovery edges labeled by 
BFS(G, s) form a spanning tree Ts of 
Gs

Property 3
For each vertex v in Li
– The path of  Ts from s to v has i edges 
– Every path from s to v in Gs has at 

least i edges CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F
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Analysis
• Setting/getting a vertex/edge label takes O(1) time
• Each vertex is labeled twice 

– once as UNEXPLORED
– once as VISITED

• Each edge is labeled twice
– once as UNEXPLORED
– once as DISCOVERY or CROSS

• Each vertex is inserted once into a sequence Li

• Method incidentEdges is called once for each vertex
• BFS runs in O(n + m) time provided the graph is represented 

by the adjacency list structure
– Recall that Σv deg(v) = 2m
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Applications

• Using the template method pattern, we can 
specialize the BFS traversal of a graph G to solve 
the following problems in O(n + m) time
– Compute the connected components of G
– Compute a spanning forest of G
– Find a simple cycle in G, or report that G is a forest
– Given two vertices of G, find a path in G between them 

with the minimum number of edges, or report that no 
such path exists
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DFS vs. BFS

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS

√Biconnected components

√Shortest paths

√√
Spanning forest, connected 
components, paths, cycles

BFSDFSApplications
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DFS vs. BFS (cont.)
Back edge (v,w)

– w is an ancestor of v in 
the tree of discovery 
edges

Cross edge (v,w)
– w is in the same level as v

or in the next level in the 
tree of discovery edges

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS


