Graph Traversals

6/22/2006 2:07 PM Graph Traversals

Outline and Reading

- Definitions (§12.1)
- Subgraph
- Connectivity
- Spanning trees and forests

6/22/2006 2:07 PM Graph Traversals 2

Subgraphs

+ A subgraph S of a ,
graph G is a graph -
such that

- The vertices of Sarea
subset of the vertices
of 6

- The edges of Sarea
seubsef of the edges of

* A spanning subgraph
of Gisa subgrarh
that contains all the
vertices of 6

Spanning subgraph

6/22/2006 2:07 PM Graph Traversals

Connectivity

- A graph is connected if
there is a path between
every pair of vertices
A connected component
of agraph G is a
maximal connected
subgraph of 6

Connected graph

o—=o0O

Non connected graph with two
connected components

6/22/2006 2:07 PM Graph Traversals 4

Trees and Forests

+ A free is an undirected
graph T such that
- Tis connected
- T has no cycles

+ A forestisan
undirected graph Tree
without cycles (a
collection of trees).

+ The connected
components of a forest
are trees

Forest

6/22/2006 2:07 PM Graph Traversals

Spanning Trees and Forests

A spanning tree of a
connected graph is a
spanning subgraph that is
atree
A spanning free is not
unique unless the graph is
atree

Spanning trees have Graph
applications to the design
of communication
networks

A spanning forest of a
graph is a spanning
subgraph that is a forest

Spanning tree

6/22/2006 2:07 PM Graph Traversals

Graph Traversals

A traversal of a graph G:

Visits all the vertices and edges of G

- Determines whether G is connected
Computes the connected components of G
- Computes a spanning forest of G

- Build a spanning tree in a connected graph

6/22/2006 2:07 PM Graph Traversals

Depth-First Search

6/22/2006 2:07 PM Graph Traversals

Outline and Reading

Depth-first search (§12.3.1)

- Algorithm

- Example

- Properties

- Analysis

Applications of DFS (§12.3.1)
- Path finding

- Cycle finding

6/22/2006 2:07 PM Graph Traversals

Depth-First Search

Depth-First Search is a graph traversal technique that:

on a graph with n vertices and m edges takes O(n + m)
time

can be further extended to solve other graph problems
- Find and report a path between two given vertices
- Find a cycle in the graph

6/22/2006 2:07 PM Graph Traversals 10

The idea:

Starting at an arbitrary vertex, follow along a simple
path until you have get to a vertex which has no unvisited
adjacent vertices.

Then start tracing back up the path, one vertex at a time,
to find a vertex with unvisited adjacent vertices.

6/22/2006 2:07 PM Graph Traversals

DFS Algorithm -
With a Stack

6/22/2006 2:07 PM Graph Traversals 12

Example

POP - (3,12)
Visited: {1,2,3,12} to visit
T={(1,2), (2,3), 3,12)}

6/22/2006 2:07 PM Graph Traversals

14

.. L. 1.2)
Visited: {1} to visit 1)
POP = (1,2) €10
Visited: {1,2} to visit
T={(1,2)}
POP = (2,3)
Visited: {1,2,3} to visit G12)
T={(1,2), (293)} (3.4)
(2,10)
6/22/2006 2:07 PM Graph Traversals a1 13
(1,10)
(4.10)
POP - (3,4) to visit| “
Visited: {1,2,3,12,4} ﬁﬁ’)’
T:{(1a2)s (253)9 (3912)a (3a4)} (1,10)
POP > (4,10) to visit
Visited: {1,2,3,12,4,10} 108)
T:{(lsz)a (253), (3912)5 (354), (4,10)} (10,6)
(4.5)
(2,10
(1,11)
6/22/2006 2:07 PM Graph Traversals ® ©® @ a0y | 18

Complexity

Elementary operations: Pop and Push
Number of PUSH: 2.d(=2m

Number of POP: 240)=2"

O(m)

6/22/2006 2:07 PM Graph Traversals

16

DFS Algorithm -

Recursive version

DFS(v)
Mark v visited
vw e Adjacent(v)
if w not visited
visit w
DFS(w)

6/22/2006 2:07 PM Graph Traversals

DFS Again - More Deftail...

The algorithm uses a
mechanism for setting and
getting “labels” of vertices and
edges

Algorithm DFS(G)
Input graph G
Output labeling of the edges of G
as discovery edges and
back edges
for all u € G.vertices()
setLabel(u, UNEXPLORED)
for all e € G.edges()
setLabel(e, UNEXPLORED)
for all v € G.vertices()
if getLabel(v) = UNEXPLORED
DFS(G, v)

Algorithm DFS(G, v)
Input graph G and a start vertex v of G
Output labeling of the edges of G
in the connected component of v
as discovery edges and back edges
setLabel(v, VISITED)
for all e € G.incidentEdges(v)
if getLabel(e) = UNEXPLORED
w <« opposite(v,e)
if getLabel(w) = UNEXPLORED
setLabel(e, DISCOVERY)
DFS(G, w)
else
setLabel(e, BACK)

6/22/2006 2:07 PM Graph Traversals 18

Example

@ unexplored vertex
@ visited vertex
— unexplored edge
— discovery edge
- —-—-» back edge

6/22/2006 2:07 PM Graph Traversals

Example (cont.)

6/22/2006 2:07 PM Graph Traversals

DFS and Maze Traversal

The DFS algorithm is
similar to a classic
strategy for exploring a

maze

- We mark each
intersection, corner and
dead end (vertex)
visited

- We mark each corridor
(edge) traversed

- We keep track of the
path back to the

entrance (start vertex)
by means of a rope
(recursion stack)

6/22/2006 2:07 PM Graph Traversals 21

Properties of DFS

Property 1
DFS(G, v) visits all the
vertices and edges in
the connected
component of v
Property 2
The discovery edges
labeled by DFS(G, v)
form a spanning tree
of the connected
component of v

6/22/2006 2:07 PM Graph Traversals 22

Analysis of DFS + labeling

Setting/getting a vertex/edge label
takes O(1) time
Each vertex is labeled twice

- once as UNEXPLORED

- once as VISITED

Each edge is labeled twice

- once as UNEXPLORED

- once as DISCOVERY or BACK ~ 2m
Method incidentEdges is called once

for each vertex
> d(v)=2m

vel

2n

6/22/2006 2:07 PM Graph Traversals 23

DFS runs in O(n + m) time provided the graph is
represented by the adjacency list structure

O(n + m)=0(m)
Conclusion
If we represent the graph with an adjacency list

Complexity of DFS is O(m)
WORST CASE: m = O(n?), when ...

Question: »
Could we do it in less than O(m) ?

6/22/2006 2:07 PM Graph Traversals 24

Path Finding

* We can specialize the DFS algorithm to find a
path between two given vertices u and z using)
the template method pattern 5
We call DFS(G, u) with u as the start vertex
We use a stack S to keep track of the path
between the start vertex and the current 2.1 5 4% 6
vertex

*+ As soon as destination vertex z is
encountered, we return the path as the
contents of the stack

6/22/2006 2:07 PM Graph Traversals 25 6/22/2006 2:07 PM Graph Traversals 26

Cycle Finding

Algorithm pathDFS(G, v, z)
setLabel(v, VISITED)
S.push(v) .. .
if v=z + We can specialize the DFS algorithm to
return S.elements() . . .
for all ¢ ¢ G.incidentEdges(v) find a simple cycle using the template
if getLabel(e) = UNEXPLORED method pattern
w < opposite(v,e) .
if getLabel(w) = UNEXPLORED \évi use a sh‘rack S to keep Tr‘agk:\)f the path
setLabel(e, DISCOVERY) etween the start vertex and the current
S.push(e) vertex
pathDFS(G, w, z) .
S.pop(e) * As soon as a back edge (v, w) is
O bele, BAC encountered, we return the cycle as the
s.p[,p(vfc abelle, BACK) portion of the stack from the top to vertex
w

6/22/2006 2:07 PM Graph Traversals 27 6/22/2006 2:07 PM Graph Traversals 28

Algorithm cycleDFS(G, v, z)
setLabel(v, VISITED)
S.push(v)
for all ¢ € G.incidentEdges(v)
if getLabel(e) = UNEXPLORED
w <« opposite(v,e)
S.push(e)
if getLabel(w) = UNEXPLORED
setLabel(e, DISCOVERY)
cycleDFS(G, w, z)
S.pop(e)
else
T < new empty stack
repeat
0 < S.pop()
T.push(o)
untilo =w
return T.elements()
S.pop(v)

6/22/2006 2:07 PM Graph Traversals

29

Breadth-First Search

6/22/2006 2:07 PM Graph Traversals 30

Outline and Reading

* Breadth-first search (§12.3.3)
Algorithm
- Example
- Properties
Analysis
Applications
- DFS vs. BFS
- Comparison of applications
- Comparison of edge labels

)

6/22/2006 2:07 PM Graph Traversals

31

Breadth-First Search

Breadth-First Search is a graph traversal technique
that:

+ ona graph with n vertices and m edges, takes
O(n+m)time

+ can be further extended fo solve other graph
problems

- Find and report a path with the minimum number
of edges between two given vertices

- Find a simple cycle, if there is one

6/22/2006 2:07 PM Graph Traversals 32

The idea:

Visit a vertex and then visit all unvisited vertices
that are adjacent to it before visiting a vertex
which is 2 away from it.

level by level

6/22/2006 2:07 PM Graph Traversals 33

Simple Breadth-First Search
with a Queue

T is the set of
visited edges

6>

™~

Visited: {1} to visit: {(1,2), (1,6)}
T=¢

(1,2) - Is 2 visited?

Visited: {1,2} to visit: {(1,6), (2,4), (2,5)}
T={(12)}

(1,6) -1Is 6 visited?

Visited: {1,2,6} to visit: {(2,4), (2,5), (6,5)}

T=1{(12),(1,6)}
6/22/2006 2:07 PM Graph Traversals 35

6/22/2006 2:07 PM Graph Traversals 34
(2,4) -Is 4 visited?
Visited: {1,2,6,4} to visit: {(2,5), (6,5), (4,5), (4,3)}
T={(1,2), (1,6), (2.4)}
(2,5) -1Is 5 visited ?
Visited: {1,2,6,4,5} to visit: {(6,5), (4,5), (4,3)}
T={(1,2), (1,6), (2.4), (2,5)}
(6,5) - 5? already visited!
(4,5) - 5? already visited!
4,3) -3?
6/22/2006 2:07 PM Graph Traversals 36

BFS with labeling

Using a sequence for each level

6/22/2006 2:07 PM Graph Traversals

37

Example

(® unexplored vertex
@ visited vertex
— unexplored edge
— discovery edge
- ——» cross edge

6/22/2006 2:07 PM Graph Traversals

Example (cont.)

Example (cont.)

BFS Again -

The algorithm uses a
mechanism for setting and
getting "labels" of vertices
and edges

more details

Algorithm BFS(G)
Input graph G
Output labeling of the edges
and partition of the
vertices of G

for all u € G.vertices()
setLabel(u, UNEXPLORED)
for all e € G.edges()
setLabel(e, UNEXPLORED)
for all v € G.vertices()
if getLabel(v) = UNEXPLORED
BFS(G, v)

Algorithm BFS(G, s)
L, < new empty sequence
LinsertLast(s)
setLabel(s, VISITED)
i« 0
while ! L.isEmpty()
L, ,, < new empty sequence
for all v € L.elements()
for all ¢ € G.incidentEdges(v)
if getLabel(e) = UNEXPLORED
w <— opposite(v,e)
if getLabel(w)= UNEXPLORED
setLabel(e, DISCOVERY)
setLabel(w, VISITED)
L, .insertLast(w)
else
setLabel(e, CROSS)
i—i+l

6/22/2006 2:07 PM Graph Traversals 41

Properties

Notation
G, connected component of s
Property 1
BFS(G, s) visits all the vertices and
edges of G,
Property 2
The discovery edges labeled by
BFS(G, s) form a spanning tree T, of
GS
Property 3
For each vertex vin L,
- The path of T, from s to v has i edges

- Every path from s to v in G, has at
least i edges

6/22/2006 2:07 PM Graph Traversals 42

Analysis

+ Setting/getting a vertex/edge label takes O(1) time
+ Each vertex is labeled twice

- once as UNEXPLORED
- once as VISITED

+ Each edge is labeled twice

- once as UNEXPLORED

- once as DISCOVERY or CROSS
+ Each vertex is inserted once into a sequence L;

+ Method incidentEdges is called once for each vertex

+ BFS runs in O(n + m) time provided the graph is represented
by the adjacency list structure

- Recall that X, deg(v) = 2m

6/22/2006 2:07 PM Graph Traversals 43

Applications

* Using the template method pattern, we can
specialize the BFS traversal of a graph G to solve
the following problems in O(n + m) time

- Compute the connected components of G
- Compute a spanning forest of G
- Find a simple cycle in G, or report that G is a forest

- Given two vertices of G, find a path in G between them
with the minimum number of edges, or report that no
such path exists

6/22/2006 2:07 PM Graph Traversals 44

DFS vs. BFS DFS vs. BFS (cont.)

Applications DFS | BFS Back edge (v,w) Cross edge (v,w)

- ; ; — wis in the same level as v
Spanning forest, connected — wis an ancestor of v in wis in '
components, paths, cycles v N the tree of discovery or in the next level in the

edges tree of discovery edges
Shortest paths v
Biconnected components y

DFS

6/22/2006 2:07 PM Graph Traversals 45 6/22/2006 2:07 PM

Graph Traversals 46

