Graphs

Graphs 1

Outline and Reading

Graphs (§12.1)
= Definition
= Applications
= Terminology
» Properties
= ADT
Data structures for graphs (§12.2)
= Edge list structure
= Adjacency list structure
= Adjacency matrix structure

Graphs 2

~Graph

A graph is a pair (V, E), where
= Vis aset of nodes, called vertices
= Eis a collection of pairs of vertices, called edges
= Vertices and edges are positions and store elements
Example:
= A vertex represents an airport and stores the three-letter airport code
= An edge represents a flight route between two airports and stores the
mileage of the route

Edge Types

T # Directed edge

= ordered pair of vertices (u,v)
= first vertex u is the origin
= second vertex v is the destination
= e.g., aflight
Undirected edge 849
= unordered pair of vertices (u,v) .—.
= e.g., aflight route @ miles @
Directed graph
= all the edges are directed
= e.g., route network
Undirected graph
= all the edges are undirected
= e.g., flight network

oRD flight
@ AA 1206

Graphs 4

Applications

Electronic circuits
= Printed circuit board
= Integrated circuit
4 Transportation networks
= Highway network
= Flight network
4 Computer networks
= Local area network
= Internet
= Web
Databases Paul Bavid
= Entity-relationship diagram

cslabla ~ cslab1b

cs.brown.edu

brown.edu

qwest.net

Graphs 5

Terminology

End vertices (or endpoints) of
an edge
= U and V are the endpoints of
a

Edges incident on a vertex
= a,d, and b are incident on V
Adjacent vertices
= Uand V are adjacent
Degree of a vertex
= X has degree 5
Parallel edges
= hand i are parallel edges
Self-loop
= jis a self-loop

®

®

Graphs 6

Terminology (cont.)

% Path

= sequence of alternating
vertices and edges
begins with a vertex
ends with a vertex
each edge is preceded and
followed by its endpoints
% Simple path
= path such that all its vertices
and edges are distinct
Examples
= P,=(V,b,X;h,Z) is a simple path
= P,=(U,c,W,eX,q,Y,f,W,dV)isa
path that is not simple

Graphs 7

Terminology (cont.)

Cycle
= circular sequence of alternating
vertices and edges
= each edge is preceded and
followed by its endpoints
Simple cycle
= cycle such that all its vertices
and edges are distinct
Examples
= C;=(V,bXg,Y,fW,.cUa.)isa
simple cycle
= C=(U,c,W,eXqg,Y,f,W,dV,a,.)
is a cycle that is not simple

Graphs 8

Properties

_Connected Graphs

Property 1 Notation A (non-directed) graph is connected if there exists a path
¥, deg(v) = 2m n number of vertices YuveV.)
Proof: each endpoint m number of edges - _f
is counted twice deg(v) degree of vertex v —~
Property 2 O cfi;\Q -
In an undirected Example /C> T
graph with no self- o |
joops and no = n=4
multiple edges nm=6 %/\O
m<n(n—1)2 & | L G
Proof: each vertex = deg(v)=3 / o =
has degree at most | -
(n=1)
Connected components T
Graphs 9 Graphs 10
Main Methods of the Graph ADT Representations

Vertices and edges # Update methods

= are positions = insertVertex(x)

= store elements = insertEdge(v, w, x)
Accessor methods . ir}sertDirectedEdge(v, w,

= aVertex() X

= incidentEdges(v) = removeVertex(v)

= endVertices(e) = removeEdge(e)

= isDirected(e) % Generic methods

= origin(e) = numVertices()

= destination(e) = numEdges()

= opposite(v, e) = vertices()

= areAdjacent(v, w) = edges()

There could be other methods

Graphs 11

sEdge List
eAdjacency List
eAdjacency Matrix
eIncidence Matrix

Graphs

'Edge List Structure

@ \Vertex object
= element

= reference to position in
vertex sequence

Edge object
= element
= origin vertex object
= destination vertex object

= reference to position in
edge sequence

Vertex sequence
= seauence of vertex [i{[fa] {EE] [IMETe] RIETa]

objects
Space: n+m @ Edge sequence g \71
Ay

= sequence of edge objects

. Edge List Structure (example)
S

0

o

Graphs 13 Graphs 14

Adjacency List (example)
‘Adjacency List Structure

Edge list structure @)}@{@
Incidence sequence

-1 - for each vertex

= sequence of D
references to edge Q
objects of incident T
edges

Augmented edge
Oz Augme

= references to
associated
positions in
incidence
sequences of end
vertices

aos W N e

Graphs 15

Adjacency Matrix (examples)

acency Matrix (observation)

Space:

12 3 4.5
1[0 1 0 1 0
g g B g g g Lots of waste space if the matrix is SPARSE ...
4{0 0 0 0 1
51 1 0 0_0
1 0 0 0 0 1 0 0 0 0
00 1 0 0 0 t 0 1 0
00 0 0 1 0 0 0 0 O
t 0t 1 0 1 0 0 0 0
12 3 45 000 0 0 1 0 0 1 0 0
i1fo 1t 0 1 1 00 0 0 0 0 0 0 0 1
201 0 1 0 1 01 0 0 0 0 0 1 0 0
3]0 1 0 0 0 00 0 0 0 0 t 0 0 O
401 0 0 0 1 01 1 0 0 0 0 0 0 0
501 1 0 1 0 00 1 0 0 1 0 0 0 _0
G . .
symmetric matrix
Graphs 17 Graphs 18
Edge list structure y <D ;
Augmented vertex ‘
objects ’
= Integer key (index)
associated with
vertex
- i oldTu b 6 [o | fe [e [5] fa | ¢
2D-array adjacency [0]?Tu] v, |41][1]0o]Jo]o]o]o0o]o0
array v. tJolo|1]o]1]olo]o0
= Reference to edge v. of[-1]Jof1[1]of[-1[0oTfo0
object for adjacent v, JoJol-1]Jol-1]ofJol1t]o
vertices Vg oloJof[oJof[o] 1]-1]-1
= Null for non ve 1 010]0J010J110]011
nonadjacent
vertices %
8 Space: nxm
Graphs 19 Graphs 20

Is (vi, v;) an edge?

Adjacency

Matrix: PR [] o(1)

Which nodes are adjacent to
v

Adjacency
Matrix: i [] """ O(n)

I e B | ; [[4—I =] I
Adjacency 13— 3—C 11 Adjacency .
List: ’ H , List O(deg()
O(deg(1))
"’ '(’ ’ Edge "' v(’ '
Edge Q’*(A O(m) List: - O(m)
List:
Graphs 21 Graphs 22
Add an Edge (v, v
Mark all Edges | ge (v)
Adjacency ! Adjacency . K
Matrix: 2 Matrix: o)
"""" > [+ 41
| m— o)
Adjacenc e O(m) Adjacency ; S ——
oy ' s A M List (linked): —)
"' V(’r ’ " "’ V(’ﬁ
Edge K Q d’/ Edge & Q / o)
List: folov LYY LYY O(m) List: ENEVERARARARARA
Graphs 23 Graphs 24

Adjacency
Matrix:

_Remove an Edge (v, v))

o [rrrrrrrrr 0] o)

O(deg(1))

Adjacency Adjacency
Matrix List

o(1) O(deg(i))

Which nodes are

adjacent to v;? O(n) O(deg(®)

i = - O~ Mark all edges ~ O(n?) O(m)
Adjacency —— e
List : Add edge o(1 o1
V) (1) (1)
Remove edge .
L o1 O(deg(i))
Edge ‘V)Q v";i o W)) g
List: O(deg(i)) = OUT-degree of node vi What are the
G is directed predecessors of v,?°
Graphs 25 Graphs
Performance Special Graphs
: & Regular Graphs
n vertices \
m edges Edge Adjacency Adjacency M -
4 no parallel edges List List Matrix
no self-loops
Space n+m n+m n? 4
incidentEdges(v) m deg(v) n Vv, vie Vv d(v) = d(vy)
_areAd]acent (v w) m__| min(deg(v), deg(w)) ! Bipartite Graphs Planar Graphs
insertVertex(x) 1 1 n? -
insertEdge(y, w, x) | 1 1 1 o — /@ Cynnot have o
removeVertex(v) m deg(v) n? pe - @
removeEdge(e) 1 1 1 =] @ X
Graphs 27 Graphs 28

Some Regular Graphs

n-lsms “en connected, — Ring — 7
1 <dee(i)<n-1 non-directed — T ree
ca) < (Cm=n > niom
degree o (4=2 vi ¢
n=|V| m=|E| — Complete Graph —
B n(n—1) m=O(n?)
m= 2
n-l<ms<n@-1) connected, % d=n-1 Vi
I <deg(i)<n-1 directed
g\(‘) — Hypercube —
OUT-degree - - o I:I
dim 0 dim 1 dﬁ 2
Graphs 29 dim 3 @im 4 30
— Grid —
Hypercu be Not regular
& n m >
ho 1 O L 4 - > W
h1 2 1 Y ® ~ ~ > deg(i)=4 v, = internal
h, 4 1242 = 4 deg(@) =3 v;=border
deg(i)=2 v, = corner
hs 8 4x2+4 = 12 Torus
h, 16 12x2+8 = 32 - T
e e
<l. 4}7.. L .I*‘r 'I> m= O(n
<;:771P L 3 L] 71') Cf\f?
T | % * 19 d =4
S Y Y Y o= egOJ)\/VI
| I &
] J

31

Graphs 32

