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Hash Tables

Hash functions and hash tables  
Idea and Examples

Hash function details
Address Generation   (Hash code + Compression code)

Collision Resolution
Linear probing
Quadratic probing
Double hashing

Idea
Hash tables are an example of a dictionary.

Data is stored and retrieved by use of a function 
of the key.

It is stored, but not sorted!

Example
Student records are stored in an array using a 7 digit 
student i.d. the index.

If the i.d. were used unmodified, the array would
have to have enough room for 10,000,000 student 
records.

Instead, student i.d.’s are hashed to produce an 
integer between, say 1 and 100,000 which indexes 
into an array.

Problem

Since a possible 10,000,000 numbers 
are being compressed into just 
100,000, how can we guarantee that no 
2 i.d.’s end up stored in the same 
place?
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Problem 1
Address Generation

Construction of the function h(Ki)
• Simple to calculate
• Uniformly distribute the elements in the 

table

Problem 2
Collision Resolution

∀ key Ki
h ( Ki ) = position of Ki in the table

h ( Ki ) = pos pos: integer
h ( Ki ) ≠ h ( Kg ) i ≠ g 

T1
2
3
4
5
6
M
M

Search 
for key Ki

O( 1 ) !

Insertion

The Idea:

—Example —
The keys all have different first letters.

CAT, ELEPHANT, FOX, 
SKUNK, ZEBRA

h (CAT) = 3
h (ELEPHANT) = 5
h (FOX) = 6

M
M
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1
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M

M
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M

M

FOX
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CAT

Problem 
If we want to insert a key that doesn’t have a 
different first letter

COLLISIONS
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Problem 
If we want to insert a key that doesn’t have a 
different first letter

COLLISIONS

9

8

7

M

M

6

5

4

3

2

1

ZEBRA

M

M

SKUNK

M

M

FOX

ELEPHANT

CAT

We want to insert:
CRICKET

h (CRICKET) = 3

position 3 is occupied

Definition:

# of elements
# of cells

= n
N

α

load factor of an Hash Table

Collisions

365
50=α

M

M

365

303Paul

1
M

M

M

The Birthday Paradox

• 50 people ( n = 50)
• h (person) = value of her birth date 

(from 1 to 365)
1 Jan. = 1
2 Jan. = 2 ( N = 365 )
M M

31 Dec.=365

What is the probability of a collision?

The probability that 2 people have the 
same birthday turns out to be 0.97 !!!!

The load factor is So the table is only ≈ 13.76 % full
But

Address Generation

Hash code map:
h1: keys → integers

Compression map:
h2: integers → [0, TableSize - 1]

h(x) = h2(h1(x))
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Hash Code Maps

Examples:
• Memory address:

– We reinterpret the memory address of the key object as an 
integer (default hash code of all Java objects)

– Good in general, except for numeric and string keys
• Integer cast:

– We reinterpret the bits of the key as an integer
– Suitable for keys of length less than or equal to the number 

of bits of the integer type (e.g., byte, short, int and float in
Java)

Hash codes reinterpret the key as an integer.  They 
should: 1. Provide good “spread”

2. Give the same result for the same key • Component sum:

– We partition the bits of the key into 
components of fixed length (e.g., 16 or 
32 bits) and we sum the components 
(ignoring overflows)

– Suitable for numeric keys of fixed length 
greater than or equal to the number of 
bits of the integer type (e.g., long and 
double in Java)

Hash Code Maps

Hash Code Maps (cont.)
• Polynomial accumulation:

– We partition the bits of the key into a sequence of 
components of fixed length (e.g., 8, 16 or 32 bits)

a0 a1 … an-1

– We evaluate the polynomial
p(z) = a0 + a1 z + a2 z2 + … + an-1zn-1

at a fixed value z, ignoring overflows

– Especially suitable for strings (e.g., the choice z = 33 
gives at most 6 collisions on a set of 50,000 English 
words)

Hash Code Maps Cont.
• Polynomial p(z) can be evaluated in O(n) time using 

Horner’s rule:

– The following polynomials are successively computed, 
each from the previous one in O(1) time
p0(z) = an-1
pi (z) = an-i-1 + zpi-1(z)
(i = 1, 2, …, n -1)

• We have p(z) = pn-1(z) 
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Compression Maps
Compression Maps:

• Take the output of the hash code and compress
it into the desired range.

• If the result of the hash code was the same, 
the result of the compression map should be the 
same.

•Compression maps should maximize “spread” so 
as to minimize collisions.

Compression Maps Examples

• Division:

– h2 (y) = y mod N

– The size N of the hash table is usually chosen to 
be a prime

– The reason has to do with number theory and is 
beyond the scope of this course

Compression Maps Examples

• Multiply, Add and Divide (MAD):

– h2 (y) = (ay + b) mod N

– a and b are nonnegative integers such that
a mod N ≠ 0

– Otherwise, every integer would map to the same value b

Address Generation
Some examples …
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a) h2(h1(x)): = subset ( of r bits ) of h1(x)
a.1) the r least significant bits

a.2) the r most significant bits

a.3) the central r bits

Simple to calculate

Doesn’t guarantee a random distribution

N = size of the table

r =  log N 

Address Generation (a)

h1(x): integer cast

Coding of letters

100000⌴
M

010010T
M

001000H
M

000011C
000010B
000001A

} 29

h(000011001000000001010010100000100000) =

—Example —
N = 29

r = 9

CHAT⌴⌴

a.1 000100000
All the animals of 4 (or less) characters 
hash to the same location.

a.2 000011001
All the animals that begin with “CH”
hash to the same location.

b) h2(h1(x)): sum of subset of bits of h1(x)

Simple to calculate

More random than a)

Address Generation (b)

h1(x): integer cast

b)
000011001 most significant
000101001 central
000100000 least significant

XOR 000010000

Coding of letters

100000⌴
M

010010T
M

001000H
M

000011C
000010B
000001A

} 29

h(000011001000000001010010100000100000) =

—Example —
N = 29

r = 9

CHAT⌴⌴
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c) h2(h1(x)): subset (of r bits) of h1(x)2

Multiplication is involved
More random than a) and b)

Address Generation (c)

h1(x): integer cast

d) h2(h1(x)): = h1(x) MOD N

Division is involved!
Very random (if N is odd)

Address Generation (d)

Collision Resolution

Collision Resolution 
Separate Chaining

Ex: cricket, cccc
CRICKET COYOTE

ZEBRA

M

M

M

10
9
8
7

FOX6
ELEPHANT5

DOG4
CAT3

2
1

•findElement(k)

•removeElement(k)

•insertItem(k,o)
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COYOTE
h (COYOTE) = 3     OCCUPIED
We consider 4       OCCUPIED
We consider 5       OCCUPIED

“       6          OCCUPIED
“       7          FREE!

Collision Resolution (examples)
1. Open Addressing

ZEBRA

M

M

M

10
9
8
7

FOX6
ELEPHANT5
CRICKET4

CAT3
2
1

Linear Probing

Collision Resolution (1) 
Linear Probing

h ( Ki ), h ( Ki ) + 1, h ( Ki ) + 2, h ( Ki ) + 3 ….

h0 ( Ki )   h1 ( Ki ) h2 ( Ki )        h3 ( Ki )

Let h0 ( Ki ) = h ( Ki )

hj ( Ki ) = [h ( Ki ) + j ] mod N

Search with Linear Probing
• Consider a hash table A

that uses linear probing
• findElement(k)

– We start at cell h(k) 
– We probe consecutive 

locations until one of the 
following occurs

• An item with key k is 
found, or

• An empty cell is found, or
• N cells have been 

unsuccessfully probed 

Algorithm findElement(k)
i ← h(k)
p ← 0
repeat

c ← A[i]
if c = ∅

return NO_SUCH_KEY
else if c.key () = k

return c.element()
else

i ← (i + 1) mod N
p ← p + 1

until p = N
return NO_SUCH_KEY

Updates with Linear Probing
• To handle insertions and 

deletions, we introduce a special 
object, called AVAILABLE,
which replaces deleted elements

• removeElement(k)
– We search for an item with key 

k
– If such an item (k, o) is found, 

we replace it with the special 
item AVAILABLE and we 
return element o

– Else, we return 
NO_SUCH_KEY

• insert Item(k, o)
– We throw an exception if 

the table is full
– We start at cell h(k) 
– We probe consecutive cells 

until one of the following 
occurs

• A cell i is found that is 
either empty or stores 
AVAILABLE, or

• N cells have been 
unsuccessfully probed

– We store item (k, o) in cell 
i
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Performances of Linear Probing

5.500.9 (90%)

2.500.75 (75%)

1.500.5 (50%)

1.060.1 (10%)

C(α )α=n/N

Search: Average number of probes ….

C(α )

Experimental results for a hash table 
with load factor  α

Problem
with Linear Probing:  PRIMARY CLUSTERING

8
CCC7

FOX6

ELEPHANT5
CRICKET4

CAT3
h (COYOTE)  = 3
h1 (COYOTE)  = 4
h2 = 5
h3 = 6
h4 = 7
h5 = 8 !

Idea:
Use a non-linear probeHere we are using as 

address generation the integer
corresponding to the first letter

Collision Resolution  (2)
Quadrating Probing

h(ki), h(ki)+1, h(ki)+4, h(ki)+9, …{
h0(ki)

{
h1(ki)

hj(ki) = [h(ki) + j2] mod N
N: prime

mod is hard to calculate

Visits only half of the table

but…

Performances of Quadratic Probing

Experimental results for a hash table 
with load factor  α

2.790.9 (90%)

1.990.75 (75%)

1.440.5 (50%)

1.050.1 (10%)

C(α )α = n/N

Search
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Problem
with non linear Probing:  SECONDARY CLUSTERING

Two keys that hash to the 
same place follow the same 
collision path

Idea:

Double Hashing

Collision Resolution  
Open Adressing: (3) Double Hashing

h(ki), h(ki)+h'(ki), h(ki)+2h'(ki), h(ki)+3h'(ki), …{
h0

123
h1

123
h2

123
h3

hj(ki) = [h(ki) + j•h’(ki)] mod N
OR
Ex:

h(ki), h(ki)+h’(ki), h(ki)+4 h’(ki), h(ki)+9 h’(ki), …

hJ(ki) = [h(ki) + j2•h’(ki)] mod N

Choice of h(•)
Choice of secondary hashing function h’( )

Ex:

– N = 13 
– h(k) = k mod 13 
– d(k) = 7 − k mod 7

• Insert keys 18, 41, 
22, 44, 59, 32, 31, 
73, in this order

Example of Double Hashing

0 1 2 3 4 5 6 7 8 9 10 11 12

31 41 18 32 59 73 22 44
0 1 2 3 4 5 6 7 8 9 10 11 12

k h (k ) d (k ) Probes
18 5 3 5
41 2 1 2
22 9 6 9
44 5 5 5 10
59 7 4 7
32 6 3 6
31 5 4 5 9 0
73 8 4 8

h(ki) = ki mod N

h’(ki) = ki div N
N prime!

Another Example of Double Hashing
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2.550.9 (90%)

1.830.75 (75%)

1.380.5 (50%)

1.050.1 (10%)

C(α )α = n/N

Performances of Double Hashing

Experimental results for a hash table 
with load factor  α

Search

Performance of Hashing: Summary
• In the worst case, searches, 

insertions and removals on a 
hash table take O(n) time

• The worst case occurs when all 
the keys inserted into the 
dictionary collide

• The load factor α = n/N 
affects the performance of a 
hash table

• Assuming that the hash values 
are like random numbers, it can 
be shown that the expected 
number of probes for an 
insertion with open addressing 
is approximately

1 / (1 - α) 

• The expected running time 
of all the dictionary ADT 
operations in a hash table 
is O(1) 

• In practice, hashing is very 
fast provided the load 
factor is not close to 100%

• Applications of hash 
tables:
– small databases
– compilers
– browser caches


