
1

Hash Tables

Hash functions and hash tables
Idea and Examples

Hash function details
Address Generation (Hash code + Compression code)

Collision Resolution
Linear probing
Quadratic probing
Double hashing

Idea
Hash tables are an example of a dictionary.

Data is stored and retrieved by use of a function
of the key.

It is stored, but not sorted!

Example
Student records are stored in an array using a 7 digit
student i.d. the index.

If the i.d. were used unmodified, the array would
have to have enough room for 10,000,000 student
records.

Instead, student i.d.’s are hashed to produce an
integer between, say 1 and 100,000 which indexes
into an array.

Problem

Since a possible 10,000,000 numbers
are being compressed into just
100,000, how can we guarantee that no
2 i.d.’s end up stored in the same
place?

2

Problem 1
Address Generation

Construction of the function h(Ki)
• Simple to calculate
• Uniformly distribute the elements in the

table

Problem 2
Collision Resolution

∀ key Ki
h (Ki) = position of Ki in the table

h (Ki) = pos pos: integer
h (Ki) ≠ h (Kg) i ≠ g

T1
2
3
4
5
6
M
M

Search
for key Ki

O(1) !

Insertion

The Idea:

—Example —
The keys all have different first letters.

CAT, ELEPHANT, FOX,
SKUNK, ZEBRA

h (CAT) = 3
h (ELEPHANT) = 5
h (FOX) = 6

M
M

6

5

4

3

2

1

ZEBRA

M

M

SKUNK

M

M

FOX

ELEPHANT

CAT

Problem
If we want to insert a key that doesn’t have a
different first letter

COLLISIONS

9

8

7

M

M

6

5

4

3

2

1

ZEBRA

M

M

SKUNK

M

M

FOX

ELEPHANT

CAT

3

Problem
If we want to insert a key that doesn’t have a
different first letter

COLLISIONS

9

8

7

M

M

6

5

4

3

2

1

ZEBRA

M

M

SKUNK

M

M

FOX

ELEPHANT

CAT

We want to insert:
CRICKET

h (CRICKET) = 3

position 3 is occupied

Definition:

of elements
of cells

= n
N

α

load factor of an Hash Table

Collisions

365
50=α

M

M

365

303Paul

1
M

M

M

The Birthday Paradox

• 50 people (n = 50)
• h (person) = value of her birth date

(from 1 to 365)
1 Jan. = 1
2 Jan. = 2 (N = 365)
M M

31 Dec.=365

What is the probability of a collision?

The probability that 2 people have the
same birthday turns out to be 0.97 !!!!

The load factor is So the table is only ≈ 13.76 % full
But

Address Generation

Hash code map:
h1: keys → integers

Compression map:
h2: integers → [0, TableSize - 1]

h(x) = h2(h1(x))

4

Hash Code Maps

Examples:
• Memory address:

– We reinterpret the memory address of the key object as an
integer (default hash code of all Java objects)

– Good in general, except for numeric and string keys
• Integer cast:

– We reinterpret the bits of the key as an integer
– Suitable for keys of length less than or equal to the number

of bits of the integer type (e.g., byte, short, int and float in
Java)

Hash codes reinterpret the key as an integer. They
should: 1. Provide good “spread”

2. Give the same result for the same key • Component sum:

– We partition the bits of the key into
components of fixed length (e.g., 16 or
32 bits) and we sum the components
(ignoring overflows)

– Suitable for numeric keys of fixed length
greater than or equal to the number of
bits of the integer type (e.g., long and
double in Java)

Hash Code Maps

Hash Code Maps (cont.)
• Polynomial accumulation:

– We partition the bits of the key into a sequence of
components of fixed length (e.g., 8, 16 or 32 bits)

a0 a1 … an-1

– We evaluate the polynomial
p(z) = a0 + a1 z + a2 z2 + … + an-1zn-1

at a fixed value z, ignoring overflows

– Especially suitable for strings (e.g., the choice z = 33
gives at most 6 collisions on a set of 50,000 English
words)

Hash Code Maps Cont.
• Polynomial p(z) can be evaluated in O(n) time using

Horner’s rule:

– The following polynomials are successively computed,
each from the previous one in O(1) time
p0(z) = an-1
pi (z) = an-i-1 + zpi-1(z)
(i = 1, 2, …, n -1)

• We have p(z) = pn-1(z)

5

Compression Maps
Compression Maps:

• Take the output of the hash code and compress
it into the desired range.

• If the result of the hash code was the same,
the result of the compression map should be the
same.

•Compression maps should maximize “spread” so
as to minimize collisions.

Compression Maps Examples

• Division:

– h2 (y) = y mod N

– The size N of the hash table is usually chosen to
be a prime

– The reason has to do with number theory and is
beyond the scope of this course

Compression Maps Examples

• Multiply, Add and Divide (MAD):

– h2 (y) = (ay + b) mod N

– a and b are nonnegative integers such that
a mod N ≠ 0

– Otherwise, every integer would map to the same value b

Address Generation
Some examples …

6

a) h2(h1(x)): = subset (of r bits) of h1(x)
a.1) the r least significant bits

a.2) the r most significant bits

a.3) the central r bits

Simple to calculate

Doesn’t guarantee a random distribution

N = size of the table

r = log N

Address Generation (a)

h1(x): integer cast

Coding of letters

100000⌴
M

010010T
M

001000H
M

000011C
000010B
000001A

} 29

h(000011001000000001010010100000100000) =

—Example —
N = 29

r = 9

CHAT⌴⌴

a.1 000100000
All the animals of 4 (or less) characters
hash to the same location.

a.2 000011001
All the animals that begin with “CH”
hash to the same location.

b) h2(h1(x)): sum of subset of bits of h1(x)

Simple to calculate

More random than a)

Address Generation (b)

h1(x): integer cast

b)
000011001 most significant
000101001 central
000100000 least significant

XOR 000010000

Coding of letters

100000⌴
M

010010T
M

001000H
M

000011C
000010B
000001A

} 29

h(000011001000000001010010100000100000) =

—Example —
N = 29

r = 9

CHAT⌴⌴

7

c) h2(h1(x)): subset (of r bits) of h1(x)2

Multiplication is involved
More random than a) and b)

Address Generation (c)

h1(x): integer cast

d) h2(h1(x)): = h1(x) MOD N

Division is involved!
Very random (if N is odd)

Address Generation (d)

Collision Resolution

Collision Resolution
Separate Chaining

Ex: cricket, cccc
CRICKET COYOTE

ZEBRA

M

M

M

10
9
8
7

FOX6
ELEPHANT5

DOG4
CAT3

2
1

•findElement(k)

•removeElement(k)

•insertItem(k,o)

8

COYOTE
h (COYOTE) = 3 OCCUPIED
We consider 4 OCCUPIED
We consider 5 OCCUPIED

“ 6 OCCUPIED
“ 7 FREE!

Collision Resolution (examples)
1. Open Addressing

ZEBRA

M

M

M

10
9
8
7

FOX6
ELEPHANT5
CRICKET4

CAT3
2
1

Linear Probing

Collision Resolution (1)
Linear Probing

h (Ki), h (Ki) + 1, h (Ki) + 2, h (Ki) + 3 ….

h0 (Ki) h1 (Ki) h2 (Ki) h3 (Ki)

Let h0 (Ki) = h (Ki)

hj (Ki) = [h (Ki) + j] mod N

Search with Linear Probing
• Consider a hash table A

that uses linear probing
• findElement(k)

– We start at cell h(k)
– We probe consecutive

locations until one of the
following occurs

• An item with key k is
found, or

• An empty cell is found, or
• N cells have been

unsuccessfully probed

Algorithm findElement(k)
i ← h(k)
p ← 0
repeat

c ← A[i]
if c = ∅

return NO_SUCH_KEY
else if c.key () = k

return c.element()
else

i ← (i + 1) mod N
p ← p + 1

until p = N
return NO_SUCH_KEY

Updates with Linear Probing
• To handle insertions and

deletions, we introduce a special
object, called AVAILABLE,
which replaces deleted elements

• removeElement(k)
– We search for an item with key

k
– If such an item (k, o) is found,

we replace it with the special
item AVAILABLE and we
return element o

– Else, we return
NO_SUCH_KEY

• insert Item(k, o)
– We throw an exception if

the table is full
– We start at cell h(k)
– We probe consecutive cells

until one of the following
occurs

• A cell i is found that is
either empty or stores
AVAILABLE, or

• N cells have been
unsuccessfully probed

– We store item (k, o) in cell
i

9

Performances of Linear Probing

5.500.9 (90%)

2.500.75 (75%)

1.500.5 (50%)

1.060.1 (10%)

C(α)α=n/N

Search: Average number of probes ….

C(α)

Experimental results for a hash table
with load factor α

Problem
with Linear Probing: PRIMARY CLUSTERING

8
CCC7

FOX6

ELEPHANT5
CRICKET4

CAT3
h (COYOTE) = 3
h1 (COYOTE) = 4
h2 = 5
h3 = 6
h4 = 7
h5 = 8 !

Idea:
Use a non-linear probeHere we are using as

address generation the integer
corresponding to the first letter

Collision Resolution (2)
Quadrating Probing

h(ki), h(ki)+1, h(ki)+4, h(ki)+9, …{
h0(ki)

{
h1(ki)

hj(ki) = [h(ki) + j2] mod N
N: prime

mod is hard to calculate

Visits only half of the table

but…

Performances of Quadratic Probing

Experimental results for a hash table
with load factor α

2.790.9 (90%)

1.990.75 (75%)

1.440.5 (50%)

1.050.1 (10%)

C(α)α = n/N

Search

10

Problem
with non linear Probing: SECONDARY CLUSTERING

Two keys that hash to the
same place follow the same
collision path

Idea:

Double Hashing

Collision Resolution
Open Adressing: (3) Double Hashing

h(ki), h(ki)+h'(ki), h(ki)+2h'(ki), h(ki)+3h'(ki), …{
h0

123
h1

123
h2

123
h3

hj(ki) = [h(ki) + j•h’(ki)] mod N
OR
Ex:

h(ki), h(ki)+h’(ki), h(ki)+4 h’(ki), h(ki)+9 h’(ki), …

hJ(ki) = [h(ki) + j2•h’(ki)] mod N

Choice of h(•)
Choice of secondary hashing function h’()

Ex:

– N = 13
– h(k) = k mod 13
– d(k) = 7 − k mod 7

• Insert keys 18, 41,
22, 44, 59, 32, 31,
73, in this order

Example of Double Hashing

0 1 2 3 4 5 6 7 8 9 10 11 12

31 41 18 32 59 73 22 44
0 1 2 3 4 5 6 7 8 9 10 11 12

k h (k) d (k) Probes
18 5 3 5
41 2 1 2
22 9 6 9
44 5 5 5 10
59 7 4 7
32 6 3 6
31 5 4 5 9 0
73 8 4 8

h(ki) = ki mod N

h’(ki) = ki div N
N prime!

Another Example of Double Hashing

11

2.550.9 (90%)

1.830.75 (75%)

1.380.5 (50%)

1.050.1 (10%)

C(α)α = n/N

Performances of Double Hashing

Experimental results for a hash table
with load factor α

Search

Performance of Hashing: Summary
• In the worst case, searches,

insertions and removals on a
hash table take O(n) time

• The worst case occurs when all
the keys inserted into the
dictionary collide

• The load factor α = n/N
affects the performance of a
hash table

• Assuming that the hash values
are like random numbers, it can
be shown that the expected
number of probes for an
insertion with open addressing
is approximately

1 / (1 - α)

• The expected running time
of all the dictionary ADT
operations in a hash table
is O(1)

• In practice, hashing is very
fast provided the load
factor is not close to 100%

• Applications of hash
tables:
– small databases
– compilers
– browser caches

