Multi-Way & (2,4) Trees

5/29/2006 9:32 PM (2,4) Trees 1

Outline and Reading

& Multi-way search tree (§9.4.1)
= Definition
= Search
(2,4) tree (§89.4.2)
= Definition
= Search
» Insertion
= Deletion

5/29/2006 9:32 PM (2,4) Trees 2

Multi-Way Search Tree

~# Multi-way search trees are defined so that each internal
node can have many children.

Like other search trees, we store entries in form of key-
elelzment pair (k,x), where k is the key associated with a
value x.

Let v be a node in the search tree. We say v is a d-node
if v has d children.

5/29/2006 9:32 PM (2,4) Trees 3

‘Multi-Way Search Tree

IEY multi-way search tree is an ordered tree such that

= Each internal node has at least two children and stores d -1
key-element items (k;, 0,), where d is the number of children
= For a node with children v, v, ... v, storing keys k k, ... k, ,
+ keys in the subtree of v, are less than &,
+ keys in the subtree of v; are between &, ;and k; (i=2,....d - 1)
+ keys in the subtree of v, are greater than k.,
= The leaves store no items and serve as placeholders

5/29/2006 9:32 PM (2,4) Trees

“Multi-Way Inorder Traversal

We can extend the notion of inorder traversal from binary trees
to multi-way search trees

Namely, we visit item (k,, 0,) of node v between the recursive
traversals of the subtrees of v rooted at children v; and v;

i+ 1
An inorder traversal of a multi-way search tree visits the keys in
increasing order

5/29/2006 9:32 PM (2,4) Trees 5

Multi-Way Searching

Similar to search in a binary search tree
At each internal node with children v, v, ... v, and keys k k, ... k, |
= k=k;(i=1, ..., d—1): the search terminates successfully
= k< k;: we continue the search in child v,
» k <k<k(i=2,...,d~-1): we continue the search in child v,
= k >k, : we continue the search in child v,
Reaching an external node terminates the search unsuccessfully
Example: search for 30

5/29/2006 9:32 PM (2,4) Trees 6

(2,4) Tree

A (2,4) tree (also called 2-4 tree or 2-3-4 tree) is a multi-way
search with the following properties
= Node-Size Property: every internal node has at most four children
= Depth Property: all the external nodes have the same depth
#+ Depending on the number of children, an internal node of a
(2,4) tree is called a 2-node, 3-node or 4-node

5/29/2006 9:32 PM (2,4) Trees 7

Height of a (2,4) Tree

Theorem: A (2,4) tree storing n items has height O(log n)
Proof:
= Let i be the height of a (2,4) tree with n items
= Since there are at least 2/ items at depth i = 0, ... , s — 1 and no
items at depth 7, we have
n21+2+4+.. . +21=20—1
s Thus, h <log(n+1)

Searching in a (2,4) tree with n items takes O(log n) time

depth items
0 1
1 2
L R
h 0 ———————

5/29/2006 9:32 PM (2,4) Trees 8

Height of a (2,4) Tree

Min # of
nodes, n:

Max # of
nodes, n:

5/29/2006 9:32 PM

When all internal nodes have 1 key and 2

children
n=2h1] h=|logn |
“perfect” binary tree

When all internal nodes have 3 keys and

4 children
h h+1.

n= Z fi= M
i=0 2

There are 3 keys per node>
#keys =411 h=[log,n |
> Search O(logn)

(2,4) Trees

Insertion

| # We insert a new item (k, 0) at the parent v of the leaf reached by

searching for &
= We preserve the depth property but
= We may cause an overflow (i.e., node ¥ may become a 5-node)
Example: inserting key 30 causes an overflow

5/29/2006 9:32 PM (2,4) Trees 10

Overflow and Split

5/29/2006 9:32 PM

(2,4) Trees

Overflow and Split

We handle an overflow at a 5-node v with a split operation:
= let v, ... v; be the children of v and &, ... k, be the keys of v
= node v is replaced by nodes v"and v”
+ v'is a 3-node with keys &, k, and children v, v, v,
+ v"is a 2-node with key &, and children v, v;
= key k, is inserted into the parent « of v (a new root may be created)
The overflow may propagate to the parent of node u

5/29/2006 9:32 PM (2,4) Trees 12

“Analysis of Insertion

® Let Thea(2,4)tree
with n items
= Tree T has O(log n)
height
= Step 1 takes O(log n)
time because we visit
O(log n) nodes
Step 2 takes O(1) time
Step 3 takes O(log n)
time because each split
takes O(1) time and we
perform O(log n) splits
Thus, an insertion in a
(2,4) tree takes O(log n)
time

Algorithm insertitem(k, o)

1. We search for key & to locate the
insertion node v

2. We add the new item (k, o) at node v

3. while overflow(v)
if isRoot(v)
create a new empty root above v

v < split(v)

5/29/2006 9:32 PM (2,4) Trees 13

Deletion

We reduce deletion of an item to the case where the item is at the
node with leaf children

& QOtherwise, we replace the item with its inorder successor (or,
equivalently, with its inorder predecessor) and delete the latter item

Example: to delete key 24, we replace it with 27 (inorder successor)

5/29/2006 9:32 PM (2,4) Trees

Underflow and Fusion

Deleting an item from a node v may cause an underflow, where
node v becomes a 1-node with one child and no keys

To handle an underflow at node v with parent u, we consider two
cases

Case 1: the adjacent siblings of v are 2-nodes

= Fusion operation: we merge v with an adjacent sibling w and move
an item from u to the merged node v’

= After a fusion, the underflow may propagate to the parent u

Underflow and Transfer

Case 2: an adjacent sibling w of v is a 3-node or a 4-node
= Transfer operation:
1. we move a child of w to »
2. we move an item from u to v
3. we move an item from w to u
= After a transfer, no underflow occurs

5/29/2006 9:32 PM (2,4) Trees 15

5/29/2006 9:32 PM (2,4) Trees

‘Analysis of Deletion

et T be a (2,4) tree with n items
= Tree T has O(log n) height
In a deletion operation

= We visit O(log n) nodes to locate the node from
which to delete the item

= We handle an underflow with a series of O(log n)
fusions, followed by at most one transfer

= Each fusion and transfer takes O(1) time

Thus, deleting an item from a (2,4) tree takes
O(log n) time

5/29/2006 9:32 PM (2,4) Trees 17

