AVL Trees
*Height of an AVL Tree
+Insertion and restructuring
‘Removal and restructuring

+Costs

+ AVL trees are

+ An AVL Treeisa

AVL Tree

balanced.

binary search tree
such that for every
internal node v of T,
the heights of the
children of v can

differ by at most 1. An example of an AVL tree
where the heights are shown
next to the nodes:

Balancing Factor
= height(right s.t.) - height(left s.t.)

e{-1,0, 1} for AVL tree

©+1

+ We see that n(1)=1and n(2) = 2

Height of an AVL Tree

+ Proposition: The height of an AVL tree T storing n keys is

O(log n).

- Justification: The easiest way to approach this problem is to

find n(h): the minimum number of internal nodes of an AVL
tree of height h.

O’ O 11

1




n(h): the minimum number of internal nodes of
an AVL tree of height h.

For n2 3, an AVL tree of height

h contains the root node, one
AVL subtree of height h-1and
the other AVL subtree of
height h-2. A h
h-2
h-1

ie., n(h) =1+ n(h-1) + n(h-2)

Height of an AVL Tree

n(h) = 1+ n(h-1) + n(h-2)
<A
h-1

that is: n(h) > 1+ n(h-2) +n(h-2)
which is > 2n(h-2)

Clearly: n(h-1) > n(h-2),

so n(h) > 2n(h-2)

Height of an AVL Tree

So, how we know: n(h) > 2n(h-2)
but then also: n(h-2) > 2n(h-4) | (N> 2n(h-4)= 2 2n(h-4)

n(h) > 4n(h-4)

but then also: n(h-4) > 2n(h-6)

n(h) > 8n(h-6)
We can continue:

n(h) > 2n(h-2)
n(h) > 4n(h-4)

n(h) > 2in(h-2i) 7

n(h) > 2in(h-2i) with
n1)=1
n2)=2

h-2i=2
fori=h/2-1

n(h) > 2"/2-1n(2)
n(h) > 22
log n(h) > log 22
log n(h) > h/2
h < 2 log n(h)
which means that h is O(log n)

8




Insertion

- A binary search tree T is called balanced if for every

node v, the height of v's children differ by at most one.

+ Inserting a node into an AVL tree involves performing
an insertAtExternal() on T, which changes the heights
of some of the nodes in T.

+ If aninsertion causes T to become unbalanced

we have to rebalance...

Before
°0
N

s+ 1

g

Insertion

After left
inser'ﬁoln

After right
inser’ri?n
s+

IR
-

re-balancing

KL &Y
i . Il

re-balancing

e

¥>

Rebalancing after insertion

We are going to identify 3 nodes which form a
grandparent, parent, child triplet and the 4

subtrees attached to them. We will rearrange
these elements fo create a new balanced tree.

Rebalancing

Step 1: Trace the path back from the point of
insertion to the first node whose grandparent is
unbalanced. Label this node x, its parent y, and

grandparent z.

z
)




Rebalancing

Step 2: These nodes will have 4 subtrees connected
to them. Label them Ty, T,, T3, T, from left to right.

Examples ...

Rebalancing

Step 3: Rename X, y, z to a, b, ¢ according to their
inorder traversal i.e. if y<x <z then labely'a’, x
‘b'and z'c'.

Example

Rebalancing

Step 4: Replace the tree rooted at z with the
following tree:

e
ar

Rebalance donel!

Example: after
inserting 54




Does this really work?

We need to see that the new tree is :

a) A Binary search tree - the inorder traversal
of our new tree should be the same as that of
the old tree

Inorder traversal: by definition is TlaT2b T3 ¢ T4

b) Balanced: have we fixed the problem?

We consider 2 types of examples

Example 1

Ts Ta

Inorder: T1z T2y T3 x T4

®\
Ak N /@\/
o b

Example 2

Inorder: T1y T2 x T3z T4

Single Rotation

single rotation
—

) h Ty




Double Rotation

An Observation...

Notice that in both cases, the new tree rooted at
b has the same height as the old tree rooted at z
had before insertion.

So.. once we have done one rebalancing act, we are
done.

restructure (v)
X <- v; Y <- x.parent; z <- y.parent
while (z.isBalanced and not(z.isRoot) )
X <-Yy.Yy<- 2 z<- zparent
if (not z.isBalanced)
if (x=y.leff) {x<«y}
if (y = z.left) {x<=y<=2}
a<-x;b<«y c-z
T2 <- x.right; T3 <-y.right;
else { z¢=x<zy}
a<-z b« x cey;
T2 <- x.left; T3 <- x.right:
else {y<«=x}
if (y = zleft) {y«<=x<=z}
a<y b«x c<z
T2 <- x.left; T3 <- x.right
else { ze=y<=x}
a<-z by ce-x
T2 <~ yleft; T3 < x.left

T1<- aleft; T4 <- c.right
b.left <- a; b.right <- ¢

aleft <- T1; a.right <- T2
c.left <- T3; c.right <- T4
Tl.parent <- a; T2.parent <-a
T3.parent <- b; T3.parent <- ¢

if (z.isRoot) then

root <- b

b.parent <- NULL
else if (z.isLeftChild)

z.parent.left<-b
else z.parent.right <- b

b.parent <- z.parent
a.parent <- b; c.parent <- b

Removal

We can easily see that performing a removeExternal(w)
can cause T to become unbalanced.

Let zbe the first unbalanced node encountered while
travelling up the tree from w. Also, let y be the child of
z with the larger height, and let x be the child of y
with the larger height.

We can perform operation restructure(x) to restore
balance at the subtree rooted at z.

As this restructuring may upset the balance of another
node higher in the tree, we must continue checking for

balance until the root of T is reached
24




Removal (contd.)

the choice of x is not unique Il

a Oh no, unbalanced!

Whew,
balanced!

Removal (contd.)
we could choose a different x:

R Oh no,
_ unbalanced!

26

COMPLEXITY

Searching: find(k):
Inserting: insert(k, o):
Removing: remove(k):

O(log n)




