
1

1

AVL Trees
•Height of an AVL Tree

•Insertion and restructuring

•Removal and restructuring

•Costs

2

AVL Tree

• AVL trees are
balanced.

• An AVL Tree is a
binary search tree
such that for every
internal node v of T,
the heights of the
children of v can
differ by at most 1.

88

44

17 78

32 50

48 62

2

4

1

1

2

3

1

1

An example of an AVL tree
where the heights are shown
next to the nodes:

3

Balancing Factor
= height(right s.t.) – height(left s.t.)

∈{-1, 0, 1} for AVL tree
+ 1

– 10

0 0 0– 1

0

4

Height of an AVL Tree
• Proposition: The height of an AVL tree T storing n keys is

O(log n).

• Justification: The easiest way to approach this problem is to
find n(h): the minimum number of internal nodes of an AVL
tree of height h.

• We see that n(1) = 1 and n(2) = 2

2

1

2

5

For n ≥ 3, an AVL tree of height
h contains the root node, one
AVL subtree of height h-1 and
the other AVL subtree of
height h-2.

i.e., n(h) = 1 + n(h-1) + n(h-2)

h-2
h-1

n(h): the minimum number of internal nodes of
an AVL tree of height h.

h

6

Height of an AVL Tree

Clearly: n(h-1) > n(h-2),

n(h) = 1 + n(h-1) + n(h-2)

h-2
h-1

so n(h) > 2n(h-2)

that is: n(h) > 1+ n(h-2) +n(h-2)
which is > 2n(h-2)

7

Height of an AVL Tree

So, now we know: n(h) > 2n(h-2)

but then also: n(h-2) > 2n(h-4) n(h) > 2n(h-4)= 2 2n(h-4)

n(h) > 4n(h-4)

but then also: n(h-4) > 2n(h-6)

n(h) > 8n(h-6)
We can continue:
n(h) > 2n(h-2)
n(h) > 4n(h-4)
…
n(h) > 2in(h-2i) 8

n(h) > 2in(h-2i) with
n(1) = 1
n(2) = 2

h-2i = 2

for i = h/2 - 1

n(h) > 2h/2 - 1 n(2)

n(h) > 2h/2

log n(h) > log 2h/2

log n(h) > h/2
h < 2 log n(h)

which means that h is O(log n)

3

9

Insertion

• A binary search tree T is called balanced if for every
node v, the height of v’s children differ by at most one.

• Inserting a node into an AVL tree involves performing
an insertAtExternal() on T, which changes the heights
of some of the nodes in T.

• If an insertion causes T to become unbalanced
we have to rebalance...

10

Insertion
Before After left

insertion
After right
insertion

A 0 A – 1 A + 1

A + 1 A 0 A + 2

A – 1 A – 2 A 0
re-balancing

re-balancing

11

Rebalancing after insertion

We are going to identify 3 nodes which form a
grandparent, parent, child triplet and the 4
subtrees attached to them. We will rearrange
these elements to create a new balanced tree.

12

x

z
y

Examples …..
z

y
x

Step 1: Trace the path back from the point of
insertion to the first node whose grandparent is
unbalanced. Label this node x, its parent y, and
grandparent z.

Rebalancing

4

13

Step 2: These nodes will have 4 subtrees connected
to them. Label them T1, T2, T3, T4 from left to right.

Rebalancing

x

z
y

Examples …..

z

y
x

T1

T2 T3

T4

T1 T2

T3

T4

14

Step 3: Rename x, y, z to a, b, c according to their
inorder traversal i.e. if y< x < z then label y ‘a’, x
‘b’ and z ‘c’.

Rebalancing

c = z

a=y
b= x

Example

15

Rebalance done!

Step 4: Replace the tree rooted at z with the
following tree:

b

a c

T1 T2 T3 T4

Rebalancing

16

88

44

17 78

32 50

48 62

54

T 0
T 2

T 3

x

y

z
2

3

4

5

6
7

1

a

b

c

88

44

17

7832 50

48

62

54

T0 T1

T2

T3

x

y z

1
2

3

4

5

6

7

b

a c

Example: after
inserting 54

5

17

Does this really work?
We need to see that the new tree is :

a) A Binary search tree - the inorder traversal
of our new tree should be the same as that of
the old tree

b) Balanced: have we fixed the problem?

Inorder traversal: by definition is T1 a T2 b T3 c T4

18

Example 1

y

z

x
T1

T2

T3 T4

a

b

c
h

h+2

hh-1

h

Inorder: T1 z T2 y T3 x T4

y

z x

T1 T2 T3 T4

h h h-1 h

We consider 2 types of examples

19

Example 2

y

z

x

T1

T2 T3

T4

a
b

c

h
h+2

h

h-1 h

Inorder: T1 y T2 x T3 z T4

x

y z

T1 T2 T3 T4

h h-1 h h

20

Single Rotation

T0
T1

T2

T3

c = x
b = y

a = z

T0 T1 T2

T3

c = x
b = y

a = z
single rotation

T3
T2

T1

T0

a = x
b = y

c = z

T0T1T2

T3

a = x
b = y

c = z
single rotation

6

21

Double Rotation

double rotationa = z

b = x
c = y

T0
T2

T1

T3 T0

T2
T3T1

a = z
b = x

c = y

double rotationc = z

b = x
a = y

T0
T2

T1

T3 T0

T2
T3 T1

c = z
b = x

a = y

22

An Observation…

Notice that in both cases, the new tree rooted at
b has the same height as the old tree rooted at z
had before insertion.

So.. once we have done one rebalancing act, we are
done.

23

restructure (v)
x <- v; Y <- x.parent; z <- y.parent
while (z.isBalanced and not(z.isRoot))

x <- y; y <- z; z <- z.parent
if (not z.isBalanced)

if (x = y.left) { x<=y}
if (y = z.left) {x<=y<=z}

a <- x; b <- y; c<- z;
T2 <- x.right; T3 <- y.right;

else { z<=x<=y}
a <- z; b <- x; c <- y;
T2 <- x.left; T3 <- x.right;

else {y<=x}
if (y = z.left) {y<=x<=z}

a <- y; b <- x; c <- z;
T2 <- x.left; T3 <- x.right

else { z<=y<=x}
a <- z; b <- y; c <- x;
T2 <- y.left; T3 <- x.left

T1 <- a.left; T4 <- c.right
b.left <- a; b.right <- c
a.left <- T1; a.right <- T2
c.left <- T3; c.right <- T4
T1.parent <- a; T2.parent <-a
T3.parent <- b; T3.parent <- c

if (z.isRoot) then
root <- b
b.parent <- NULL

else if (z.isLeftChild)
z.parent.left<-b

else z.parent.right <- b
b.parent <- z.parent
a.parent <- b; c.parent <- b

24

Removal
• We can easily see that performing a removeExternal(w)

can cause T to become unbalanced.

• Let z be the first unbalanced node encountered while
travelling up the tree from w. Also, let y be the child of
z with the larger height, and let x be the child of y
with the larger height.

• We can perform operation restructure(x) to restore
balance at the subtree rooted at z.

• As this restructuring may upset the balance of another
node higher in the tree, we must continue checking for
balance until the root of T is reached

7

25

Removal (contd.)
the choice of x is not unique !!!

88

44

17

78

32

50

48

62
1

4

1

2 2

3

1
54

1
T0

T 1

T 2

T 3

y

x

0

Oh no, unbalanced!

8817

78

50

48

62

1

1

2

23

1

54
1

T 0

T 2

T 3

y

x
44

4

z

0 Whew,
balanced!

a
b

c

z

26

Removal (contd.)
• we could choose a different x:

Whew,
balanced!

88

17 78

50

48

62
1 1

4

2

3

1
54

1

T 0 T 1 T 2

y

x

0

44
2

z

88

44

17

78

32

50

48

62
1

4

1

2 2

3

1
54

1
T 0

T 1 T 2 T 3

z

y

x

0
Oh no,
unbalanced!

a

b

c

b

a

c

27

Searching: find(k):
Inserting: insert(k, o):
Removing: remove(k):

COMPLEXITY

O(log n)

