AVL Trees

•Height of an AVL Tree

•Insertion and restructuring

•Removal and restructuring

•Costs

1

Height of an AVL Tree			
So, now we know: n(h) > 2n(h-2) but then also: n(h-2) > 2n(h-4)	} n(h) > 2n(h-4)= 2 2n(h-4)		
	n(h) > 4n(h-4)		
but then also: n(h-4) > 2n(h-6)			
We can continue: n(h) > 2n(h-2) n(h) > 4n(h-4)	n(h) > 8n(h-6)		
 n(h) > 2 ⁱ n(h-2i)	7		

n(h) > 2in(<u>h-2i</u>) h-2i = 2	with n(1) = 1 n(2) = 2	
for i = h/2 - 1		
n(h) > 2 ^{h/2 - 1} n(2)		
n(h) > 2 ^{h/2}		
log n(h) > log 2 ^{h/2}		
log n(h) > h/2		
	h < 2 log n(h)	
which means that h is O(log n) ⁸		

9

Bebalancing after insertion We are going to identify 3 nodes which form a grandparent, parent, child triplet and the 4 subtrees attached to them. We will rearrange these elements to create a new balanced tree.

Rebalancing

Step 1: Trace the path back from the point of insertion to the first node whose grandparent is unbalanced. Label this node x, its parent y, and grandparent z.

An Observation...

Notice that in both cases, the new tree rooted at b has the same height as the old tree rooted at z had before insertion.

So.. once we have done one rebalancing act , we are done.

22

restructure (v) x <- v; Y <- x.parent; z <- y.parent

while (z.isBalanced and not(z.isRoot)) x <- y; y <- z; z <- z.parent if (not z.isBalanced) if (x = y.left) { x<=y} if (y = z.left) {x<=y<=z} a <- x; b <- y; c<- z; T2 <- x.right; T3 <- y.right; else { z<=x<=y} a <- z; b <- x; c <- y; T2 <- x.left; T3 <- x.right; {y<=x} else if (y = z.left) {y<=x<=z} a <- y; b <- x; c <- z; T2 <- x.left; T3 <- x.right { z<=y<=x} else

a <- z; b <- y; c <- x; T2 <- y.left; T3 <- x.left T1 <- a.left; T4 <- c.right b.left <- a; b.right <- c a.left <- T1; a.right <- T2 c.left <- T3; c.right <- T4 T1.parent <- a; T2.parent <-a T3.parent <- b; T3.parent <- c

if (z.isRoot) then root <- b b.parent <- NULL else if (z.isLeftChild) z.parent.left<-b else z.parent.right <- b b.parent <- z.parent a.parent <- b; c.parent <- b

23

COMF	PLEXITY	
Searching: Inserting: Removing:	find(k): insert(k, o): remove(k):	
O(log n)		
		27