Maps and Dictionaries

Map and Dictionary ADTs

The dictionary ADT models a searchable collection
of key-element items

The main operations of a dictionary are searching,
inserting, and deleting items

MAP: Multiple items with the same key are NOT allowed

DICTIONARY: Multiple items with the same key

ARE allowed
Applications:

saddress book
sstudent-record database

scredit card authorization )

Dictionary ADT methods:

Map ADT methods:

find(k): if the dictionary has an entry with key K,
returns the entry; otherwise, returns null

insert(k, 0): inserts an entry (k, o) into the dictionary

remove(e): removes entry e from the dictionary and returns the
entry; otherwise, returns null if e not found

size(), isEmpty()

entries(): returns the key-value entries stored

findAll(K): returns an iterator of all entries with key k

get(Kk): if the map has an entry with key k,
returns the entry; otherwise, returns null

put(k, 0): adds an entry (k, o) into the map if it doesn't exist;
otherwise, the old value is replaced
remove(k): removes entry with key k from the map and returns
its value; otherwise, returns null if k not found

size(), isEmpty()

keys(): returns an iterator of keys stored in the map

values(): returns an iterator of values associated with keys stored
in the map




Dictionary ADTs

+ Ordered dictionary: total order relation defined by some
comparator for the keys

+ Unordered dictionary: no order relation defined for keys

Implementing a Dictionary with an
Unordered Sequence

* unordered sequence

+ searching and removing takes O(n) time
+ inserting takes O(1) time
- applications to log files (frequent insertions, rare searches

and removals)

Implementing a Dictionary with an
Ordered Sequence

* array-based ordered sequence (assumes keys can be
ordered)

- searching takes O(log n) time (binary search)
* inserting and removing takes O(n) time

+ application to look-up tables (frequent searches,
rare insertions and removals)

Binary Search

* narrow down the search range in stages
+ "“high-low" game
+ Example: find(7)




Pseudocode for Binary Search

Algorithm BinarySearch(S, k, low, high)
if low > high then
return NO SUCH KEY
else  mid < (low+high) /2
if k = key(mid) then
return key(mid)
else if k < key(mid) then
return BinarySearch(S, k, low, mid-1)
else  return BinarySearch(S, k, mid+1, high)
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Running Time of Binary Search

+ The range of candidate items to be searched is divided into

half after each comparison

comparison search range
0 n
1 n2
2 n/4
2! n/2
logs, 1t 1

In the array-based implementation, access by rank takes
O(1) time, thus binary search runs in O(log n) time 10

Binary Search Trees

+ Searching
* Cost of Searching
* Insertion
+ Deletion

Binary Search Trees

+ A binary search tree is a binary tree T such that

- each internal node stores an entry (k, e) of a dictionary.

- keys stored at nodes in the left subtree of v are less than or
equal to k.

- keys stored at nodes in the right subtree of v are greater than
or equal to k.

- external nodes do not hold elements but serve as place holders.
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Operations Search
To search for a key &, Algorithm TreeSearch(k, v)
Searching: find(k) we trace a dowhward if T.isExternal (v)
path starting at the return NO_SUCH_KEY
. . root if k < key(v)
Inserting: insert(k, o) * The next node visited return TreeSearch(k, T.left(v))
degends 02 me else if k = key(v)
. outcome of the
Removing: remove(k) comparison of kwith els:emm element(v)
;';3 ekey of the current return TreeSearch(k, T.right(v))
If we reach a leaf, the
key is not found and
we return
NO_SUCH_KEY
Example: find(4)
call
15 TreeSearch(4,root)




Search Example I

Successful find(76)
76>44

A successful search traverses a path starting at the root

and ending at an internal node
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Search Example IT

Unsuccessful find(25)

+ An unsuccessful search traverses a path starting at the

root and ending at an external node
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Cost of Search: Worst Case

E

D)
Average # of 2 \
comparisons in the
worst case: :
4T
Successful
search Path to node i has length i, to get

there we do O(i) comparisons

Avg cost= (1/n)2. O(i) = n

Cost of Search: Worst Case
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Unsuccessful
search

An unsuccessful search
always takes O(n) comparisons
for n internal nodes
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Cost of Search: Best Case

ST R % Jha

Leaves are on the same level or on an adjacent level.
Length of path from root to node i = Llog i

For a successful search, we do 2 comparisons at each node
along the path plus one at the end.

Comparisons to node i:  O(log i)

- Average # of comparisons in the best case
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Li Ollogi) =  Ol(nlog n)/ n) = O(log n)
i=1

Cost of Search: Best Case

SR dR % SRS

Leaves are on the same level or on an adjacent level.
Length of path from root to node i = Llog il

For a failed search, we do 2 comparisons at each node along
the path plus two at the end.

Only paths to external nodes count.

So, always O(log n)
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Insertionl

To perform insert(k,e), call TreeInsert(k, e, T.root())
Let w be the node returned by TreeSearch(k, T.root())

« If wis external, we know that k is hot stored in T. We call
insertAtExternal(w) on T and store (k. e) inw
3)

23

insertAtExternal(v):

Transform v from an external
node into an internal node by creating two new children

insertAtExternal(v):
newl and new 2 are the new nodes
if isExternal(v)

vleft « newl

v.right « new?2

size < size +2 2




Insertion IT
If wis internal, we know another item with key k is stored at w. We call CO nST r‘UCT a Tr‘ee

the algorithm recursively starting at T.right(w) or T.left(w)

The idea is to store the new item in an external node which either .
precedes or follows the items with the same key in an inorder traversal. What would be the result of CONSTF‘UCT“"Q a

&) tree from repeated insertions of the
following sequences?

a 5837192456
. 123456,789
c. 546372819
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Deletion I removeExternal(v):

To perform operation
remove(k), we search for
key k

Assume key kis in the
tree, and let vbe the node
storing k&

If node vhas a leaf child
w, we remove vand w from
the tree with operation
removeExternal(w)
Example: remove 4
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o
removeExternal(v):
if isExternal(v)

{ p < parent(v)

Py s < sibling(v)

d if isRoot(v) s.parent <« null and root « s

else

{ g < parent(p)
if (p is leftChild(g) g.left «s
else g.right « s
s.parent <— g

Size « size - 2}
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Deletion II

Practice, practice, practice...

+ We consider the case
where the key & to be
removed is stored at a node
vwhose children are both
internal

- we find the internal node w
that follows vin an inorder
traversal

- we copy key(w) into node v

- we remove node w and its
left child z (which must be
a leaf) by means of
operation
removeExternal(z2)

+ Example: remove 3

a. Delete the 3 from the tree you got
in the (a).
b. Now delete node 5.
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Cost of Inserting and Deleting
= Cost of Search

Summary:

Consider a dictionary with n
items implemented by means
of a binary search tree of
height A

sthe space used is O(n)

smethods 7ind, insertand
remove take O(h) time

The height Ais O(n) in the
worst case and O(log n) in the
best case
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Conclusion

* To achieve good running time,

we need to keep the tree balanced,
i.e., with Oflog n) height.

* Various balancing schemes will be

explored next.

34




