Maps and Dictionaries

Map and Dictionary ADTs

The dictionary ADT models a searchable collection
of key-element items

The main operations of a dictionary are searching,
inserting, and deleting items

MAP: Multiple items with the same key are NOT allowed

DICTIONARY: Multiple items with the same key

ARE allowed
Applications:

saddress book
sstudent-record database

scredit card authorization)

Dictionary ADT methods:

Map ADT methods:

find(k): if the dictionary has an entry with key K,
returns the entry; otherwise, returns null

insert(k, 0): inserts an entry (k, o) into the dictionary

remove(e): removes entry e from the dictionary and returns the
entry; otherwise, returns null if e not found

size(), isEmpty()

entries(): returns the key-value entries stored

findAll(K): returns an iterator of all entries with key k

get(Kk): if the map has an entry with key k,
returns the entry; otherwise, returns null

put(k, 0): adds an entry (k, o) into the map if it doesn't exist;
otherwise, the old value is replaced
remove(k): removes entry with key k from the map and returns
its value; otherwise, returns null if k not found

size(), isEmpty()

keys(): returns an iterator of keys stored in the map

values(): returns an iterator of values associated with keys stored
in the map

Dictionary ADTs

+ Ordered dictionary: total order relation defined by some
comparator for the keys

+ Unordered dictionary: no order relation defined for keys

Implementing a Dictionary with an
Unordered Sequence

* unordered sequence

+ searching and removing takes O(n) time
+ inserting takes O(1) time
- applications to log files (frequent insertions, rare searches

and removals)

Implementing a Dictionary with an
Ordered Sequence

* array-based ordered sequence (assumes keys can be
ordered)

- searching takes O(log n) time (binary search)
* inserting and removing takes O(n) time

+ application to look-up tables (frequent searches,
rare insertions and removals)

Binary Search

* narrow down the search range in stages
+ "“high-low" game
+ Example: find(7)

Pseudocode for Binary Search

Algorithm BinarySearch(S, k, low, high)
if low > high then
return NO SUCH KEY
else mid < (low+high) /2
if k = key(mid) then
return key(mid)
else if k < key(mid) then
return BinarySearch(S, k, low, mid-1)
else return BinarySearch(S, k, mid+1, high)

l2[4[5[7 [8[9[12[]4[17[19[22[25[27[28[33[37‘

lz‘zx‘s {7 ‘8 ‘9‘12‘14[17[19[22[25[27[28[33[37l
Iko m‘\d high
lz‘zx‘s {7 ‘8 ‘9‘12‘14]17[19[22]25‘27‘28‘33‘37l 9
o ol

Running Time of Binary Search

+ The range of candidate items to be searched is divided into

half after each comparison

comparison search range
0 n
1 n2
2 n/4
2! n/2
logs, 1t 1

In the array-based implementation, access by rank takes
O(1) time, thus binary search runs in O(log n) time 10

Binary Search Trees

+ Searching
* Cost of Searching
* Insertion
+ Deletion

Binary Search Trees

+ A binary search tree is a binary tree T such that

- each internal node stores an entry (k, e) of a dictionary.

- keys stored at nodes in the left subtree of v are less than or
equal to k.

- keys stored at nodes in the right subtree of v are greater than
or equal to k.

- external nodes do not hold elements but serve as place holders.

- 1o -
OENORS
/ 4 SO

‘ Bob ‘ ‘ Frank ‘ .
Question: How can we traverse the tree so that we
/ \ / \ visit the elements in increasing key order?
L] L1 [L]
13 14
Operations Search
To search for a key &, Algorithm TreeSearch(k, v)
Searching: find(k) we trace a dowhward if T.isExternal (v)
path starting at the return NO_SUCH_KEY
. . root if k < key(v)
Inserting: insert(k, o) * The next node visited return TreeSearch(k, T.left(v))
degends 02 me else if k = key(v)
. outcome of the
Removing: remove(k) comparison of kwith els:emm element(v)
;';3 ekey of the current return TreeSearch(k, T.right(v))
If we reach a leaf, the
key is not found and
we return
NO_SUCH_KEY
Example: find(4)
call
15 TreeSearch(4,root)

Search Example I

Successful find(76)
76>44

A successful search traverses a path starting at the root

and ending at an internal node
17

Search Example IT

Unsuccessful find(25)

+ An unsuccessful search traverses a path starting at the

root and ending at an external node
18

Cost of Search: Worst Case

E

D)
Average # of 2 \
comparisons in the
worst case: :
4T
Successful
search Path to node i has length i, to get

there we do O(i) comparisons

Avg cost= (1/n)2. O(i) = n

Cost of Search: Worst Case

e E

(D]
T~

Average # of 2 @

comparisons in the \Q@

worst case: 3

4 T

Unsuccessful
search

An unsuccessful search
always takes O(n) comparisons
for n internal nodes

20

Cost of Search: Best Case

ST R % Jha

Leaves are on the same level or on an adjacent level.
Length of path from root to node i = Llog i

For a successful search, we do 2 comparisons at each node
along the path plus one at the end.

Comparisons to node i: O(log i)

- Average # of comparisons in the best case

21

Li Ollogi) = Ol(nlog n)/ n) = O(log n)
i=1

Cost of Search: Best Case

SR dR % SRS

Leaves are on the same level or on an adjacent level.
Length of path from root to node i = Llog il

For a failed search, we do 2 comparisons at each node along
the path plus two at the end.

Only paths to external nodes count.

So, always O(log n)

22

Insertionl

To perform insert(k,e), call TreeInsert(k, e, T.root())
Let w be the node returned by TreeSearch(k, T.root())

« If wis external, we know that k is hot stored in T. We call
insertAtExternal(w) on T and store (k. e) inw
3)

23

insertAtExternal(v):

Transform v from an external
node into an internal node by creating two new children

insertAtExternal(v):
newl and new 2 are the new nodes
if isExternal(v)

vleft « newl

v.right « new?2

size < size +2 2

Insertion IT
If wis internal, we know another item with key k is stored at w. We call CO nST r‘UCT a Tr‘ee

the algorithm recursively starting at T.right(w) or T.left(w)

The idea is to store the new item in an external node which either .
precedes or follows the items with the same key in an inorder traversal. What would be the result of CONSTF‘UCT“"Q a

&) tree from repeated insertions of the
following sequences?

a 5837192456
. 123456,789
c. 546372819

25 26

Deletion I removeExternal(v):

To perform operation
remove(k), we search for
key k

Assume key kis in the
tree, and let vbe the node
storing k&

If node vhas a leaf child
w, we remove vand w from
the tree with operation
removeExternal(w)
Example: remove 4

27 28

o
removeExternal(v):
if isExternal(v)

{ p < parent(v)

Py s < sibling(v)

d if isRoot(v) s.parent <« null and root « s

else

{ g < parent(p)
if (p is leftChild(g) g.left «s
else g.right « s
s.parent <— g

Size « size - 2}

29 30

Deletion II

Practice, practice, practice...

+ We consider the case
where the key & to be
removed is stored at a node
vwhose children are both
internal

- we find the internal node w
that follows vin an inorder
traversal

- we copy key(w) into node v

- we remove node w and its
left child z (which must be
a leaf) by means of
operation
removeExternal(z2)

+ Example: remove 3

a. Delete the 3 from the tree you got
in the (a).
b. Now delete node 5.

32

Cost of Inserting and Deleting
= Cost of Search

Summary:

Consider a dictionary with n
items implemented by means
of a binary search tree of
height A

sthe space used is O(n)

smethods 7ind, insertand
remove take O(h) time

The height Ais O(n) in the
worst case and O(log n) in the
best case

33

Conclusion

* To achieve good running time,

we need to keep the tree balanced,
i.e., with Oflog n) height.

* Various balancing schemes will be

explored next.

34

