
1

1

Maps and Dictionaries

2

The dictionary ADT models a searchable collection
of key-element items
The main operations of a dictionary are searching,
inserting, and deleting items

Map and Dictionary ADTs

Applications:
address book
student-record database
credit card authorization

MAP: Multiple items with the same key are NOT allowed

DICTIONARY: Multiple items with the same key
ARE allowed

3

find(k): if the dictionary has an entry with key k,
returns the entry; otherwise, returns null

insert(k, o): inserts an entry (k, o) into the dictionary
remove(e): removes entry e from the dictionary and returns the

entry; otherwise, returns null if e not found
size(), isEmpty()

entries(): returns the key-value entries stored

findAll(k): returns an iterator of all entries with key k

Dictionary ADT methods:

4

get(k): if the map has an entry with key k,
returns the entry; otherwise, returns null

put(k, o): adds an entry (k, o) into the map if it doesn’t exist;
otherwise, the old value is replaced

remove(k): removes entry with key k from the map and returns
its value; otherwise, returns null if k not found

size(), isEmpty()

keys(): returns an iterator of keys stored in the map

values(): returns an iterator of values associated with keys stored
in the map

Map ADT methods:

2

5

Dictionary ADTs

• Ordered dictionary: total order relation defined by some
comparator for the keys

• Unordered dictionary: no order relation defined for keys

6

Implementing a Dictionary with an
Unordered Sequence

• searching and removing takes O(n) time
• inserting takes O(1) time
• applications to log files (frequent insertions, rare searches

and removals)

7

Implementing a Dictionary with an
Ordered Sequence

• searching takes O(log n) time (binary search)
• inserting and removing takes O(n) time
• application to look-up tables (frequent searches,

rare insertions and removals)

8

Binary Search

• narrow down the search range in stages
• “high-low” game
• Example: find(7)

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

0

0

0

0

ml h

ml h

ml h

l=m =h

3

9

Pseudocode for Binary Search
Algorithm BinarySearch(S, k, low, high)
if low > high then

return NO_SUCH_KEY
else mid ← (low+high) / 2

if k = key(mid) then
return key(mid)

else if k < key(mid) then
return BinarySearch(S, k, low, mid-1)

else return BinarySearch(S, k, mid+1, high)
2 4 5 7 8 9 12 14 17 19 22 25 27 28 33 37

2 4 5 7 8 9 12 14 17 19 22 25 27 28 33 37

2 4 5 7 8 9 12 14 17 19 22 25 27 28 33 37

low high mid

high midlow

low mid

10

Running Time of Binary Search

• The range of candidate items to be searched is divided into
half after each comparison

In the array-based implementation, access by rank takes
O(1) time, thus binary search runs in O(log n) time

11

Binary Search Trees

• Searching
• Cost of Searching
• Insertion
• Deletion

6

92

41 8

<

>

=

12

Binary Search Trees

• A binary search tree is a binary tree T such that
– each internal node stores an entry (k, e) of a dictionary.
– keys stored at nodes in the left subtree of v are less than or

equal to k.
– keys stored at nodes in the right subtree of v are greater than

or equal to k.
– external nodes do not hold elements but serve as place holders.

4

13

Gregor

Fabio Nicole

Bob Frank

14

10

3

1

17

8

5 9

15 20

Question: How can we traverse the tree so that we
visit the elements in increasing key order?

15

Searching: find(k)

Inserting: insert(k, o)

Removing: remove(k)

Operations

16

Search

• To search for a key k,
we trace a downward
path starting at the
root

• The next node visited
depends on the
outcome of the
comparison of k with
the key of the current
node

• If we reach a leaf, the
key is not found and
we return
NO_SUCH_KEY

• Example: find(4)
• call

TreeSearch(4,root)

Algorithm TreeSearch(k, v)
if T.isExternal (v)

return NO_SUCH_KEY
if k < key(v)

return TreeSearch(k, T.left(v))
else if k = key(v)

return element(v)
else { k > key(v) }

return TreeSearch(k, T.right(v))

6

92

41 8

<

>
=

5

17

Search Example I

• A successful search traverses a path starting at the root
and ending at an internal node

Successful find(76)
76>44

76<88

76>65

76<82

18

Search Example II

• An unsuccessful search traverses a path starting at the
root and ending at an external node

Unsuccessful find(25)

25<44
25>17

25<32

25<28

leaf
node

19

Cost of Search: Worst Case

a
account

Africa
apple

arc
Average # of
comparisons in the
worst case:

0

2

4

1

3

Path to node i has length i, to get
there we do O(i) comparisons

Successful
search

Avg cost= (1/n)∑ O(i) = n
20

Cost of Search: Worst Case

a
account

Africa
apple

arc
Average # of
comparisons in the
worst case:

0

2

4

1

3

An unsuccessful search
always takes O(n) comparisons
for n internal nodes

Unsuccessful
search

6

21

Cost of Search: Best Case

1
2 3

4 5 6 7

1
2 3

4 5

1
2 3

4 5 6 7
8 9

Leaves are on the same level or on an adjacent level.

Length of path from root to node i = log i

For a successful search, we do 2 comparisons at each node
along the path plus one at the end.

Σ =

i=1

n

Average # of comparisons in the best case

n
1

Comparisons to node i: O(log i)

O(log i) O((n log n)/ n) = O(log n)
22

Cost of Search: Best Case

1
2 3

4 5 6 7

1
2 3

4 5

1
2 3

4 5 6 7
8 9

Leaves are on the same level or on an adjacent level.

Length of path from root to node i = log i

For a failed search, we do 2 comparisons at each node along
the path plus two at the end.

Only paths to external nodes count.

So, always O(log n)

23

Insertion I
• To perform insert(k,e), call TreeInsert(k, e, T.root())
• Let w be the node returned by TreeSearch(k, T.root())
• If w is external, we know that k is not stored in T. We call

insertAtExternal(w) on T and store (k, e) in w

24

insertAtExternal(v):
new1 and new 2 are the new nodes
if isExternal(v)

v.left ← new1
v.right ← new2
size ← size +2

insertAtExternal(v):
Transform v from an external
node into an internal node by creating two new children

B

DA

C E

B

DA

C E

new1 new2

7

25

Insertion II
• If w is internal, we know another item with key k is stored at w. We call

the algorithm recursively starting at T.right(w) or T.left(w)
• The idea is to store the new item in an external node which either

precedes or follows the items with the same key in an inorder traversal.

26

Construct a Tree
What would be the result of constructing a

tree from repeated insertions of the
following sequences?

a. 5,8,3,7,1,9,2,4,6
b. 1,2,3,4,5,6,7,8,9
c. 5,4,6,3,7,2,8,1,9

27

Deletion I

• To perform operation
remove(k), we search for
key k

• Assume key k is in the
tree, and let v be the node
storing k

• If node v has a leaf child
w, we remove v and w from
the tree with operation
removeExternal(w)

• Example: remove 4

6

92

41 8

5

v
w

6

92

51 8

<

>

28

removeExternal(v):

B

DA

C E

F G

B

DA

C

G

B

DA

C
G

8

29

removeExternal(v):
if isExternal(v)

{ p ← parent(v)
s ← sibling(v)
if isRoot(v) s.parent ← null and root ← s
else

{ g ← parent(p)
if (p is leftChild(g) g.left ← s

else g.right ← s
s.parent ← g
}

size ← size - 2 }

B

DA

C E

F G

B

DA

C

G

B

A Gv

30

31

• We consider the case
where the key k to be
removed is stored at a node
v whose children are both
internal
– we find the internal node w

that follows v in an inorder
traversal

– we copy key(w) into node v
– we remove node w and its

left child z (which must be
a leaf) by means of
operation
removeExternal(z)

• Example: remove 3

3

1

8

6 9

5

v

w

z

2

5

1

8

6 9

v

2

Deletion II

32

Practice, practice, practice…

a. Delete the 3 from the tree you got
in the (a).

b. Now delete node 5.

9

33

Summary:

Consider a dictionary with n
items implemented by means
of a binary search tree of
height h

the space used is O(n)
methods find, insert and

remove take O(h) time

The height h is O(n) in the
worst case and O(log n) in the
best case

Cost of Inserting and Deleting
= Cost of Search

34

Conclusion

• To achieve good running time,
we need to keep the tree balanced,
i.e., with O(log n) height.

• Various balancing schemes will be
explored next.

