Heaps (Min-heap)

Complete binary tree that stores a collection of keys
(or key-element pairs) at its internal nodes and that satisfies

Heaps

- Heaps the additional property:
: key(parent) < key(child
* Properties REMEMBER: y(p) ¥)
+ Deletion, Insertion, Construction complete binary tree
+ Implementation of the Heap st e, which 18 1ot filled
+ Implementation of Priority Queue
using a Heap

* An application: HeapSort

Max-heap

We store the keys in the internal nodes only

key(parent) > key(child)

After adding the []leaves the resulting tree is full

3 4

Height of a Heap

+ Theorem: A heap storing nkeys has height (log n)
Proof:
- Let Abe the height of a heap storing 7 keys

- Since there are 2/ keys at depth /= 0, ..., A - 2 and at least one
key at depth A -1, we have n>1+2 + 4+ . +2h2 +1
- Thus,n>2#1 ie, h<logn+1

depth keys
0 1 mmmmm
1 2 mmmmmmmmmmeme
h2 2k
h—1 atleast1-————
h

Notice that ...

+ We could use a heap to implement a priority queue

+ We store a (key, element) item at each internal
node
removeMin():

- Remove the root

- Re-arrange the heap!

+ We need to fix the

Removal From a Heap

RemoveMin()
*+ The removal of the top
key leaves a hole

3-1-___________

heap

+ First, replace the hole
with the last key in
the heap

* Then, begin Downheap

Downheap compares the parent with the smalles‘r
child. If the child is smaller, it switches the two.

Downheap Continues

Downheap Continues

+ Downheap terminates when the key is greater than the

keys of both its children or the bottom of the heap is
reached. * (total #swaps) = (- 1), whichis O(logrn) n

Heap Insertion

The key to insert is 6

Heap Insertion

Add the key in the next available position in the
heap.

Now begin Upheap.

Upheap

* Swap parent-child keys out of order

Upheap Continues

its parent or the top of the heap is reached

+ (total #swaps) = (h - 1), which is O(log n)

. U:heap terminates when new key is greater than the key
0

16

Heap Construction Bottom-up Heap
Construction

We could insert the Items one at the time with
a sequence of Heap Insertions:

n + We can construct a heap

Y log k = O(n log n) storing ngiven keys using a
ket bottom-up construction

But we can do better ...

Example 1 (Max-H
Construction of a Heap ample 1 (Max-Heap)

. --- keys already in the free ---
Idea: Recursively re-arrange each sub-tree Y Y

in the heap starting with the leaves

SHEE—ERED

I am not drawing the
Oleaves anymore here

N Qbegm here

Example 1

469
This is not a heap ! 47 =
© ®
21
--- keys given one at a time ---
Example 2 (min-heap)
[20,23,7,6,12,4,15,16,27,11,5,25,8,7,10]
_____ Qo
Eea s
aC et ol et

Example 1
Finally: 2 10 i o
® ®
© 238
£ i
(19)
(9] (8)
OENONONNG)
ONO© .
Example 2

20,23,7,6,12,415,16,27,11,5,25,8,7,10]

Example 2
20,23,7,6,12,4,15,16,27,115,25,8,7,10]

Example 2
20,23,7,6,12,4,15,16,27,11,5,25,8,7,10]

Analysis of Heap Construction

27

Analysis of Heap Construction

level 0
Number of swaps? fg?%@ 1

At level i, the number of swaps is & OG-)

for each node

IN
—
1

At level i, there are < 2inodes

L
Total: < 2(L - i)-2

i=0

28

Calculating O(Z(L - i)-27)

LLeTj = L-i, TheLn i=L-jand
2(L-iy2i =Xjeriz2tX j2i
i=0 j=0 j=0

Consider 2j-2-i:

X j2i=1/2+21/4+31/8+41/16 + -
=1/2+1/4 + 1/8+ 1/16+-<«=1
* /4 + 1/8+ 1/16+-<=1/2
* + 1/8+ 1/16+-<« 1/4

2j2i = 2
i
So 2Lyj2i«z 22L= 21

29

L
2L Xin < ol
=

So, the number of swaps is < O(n)

30

Implementing a Heap with an

Array
A heap can be nicely represented by a vector (array-based),
where the node at rank i has 1

- left child at rank 2i
and

- right child at rank 2i + 1
(tl2f3fals]ef[7]s8]

The leaves do no need to be explicitly stored

31

32

Reminder

Implementation of a Priority

Left child of T[i] TI[2i] if 2i<n Queue wl.rh a Heap
Right child of . . .
T[] T[2i+1] if 2i+1<n
Parent of T[i] T[i div 2] if i>1
The Root T[1] if T#0
Leaf? TI[i] TRUE if 2i>n

33

Application: Sorting
Heap Sort
(up-heap bubbling)
Construct initial heap O(n)

insert O(logn) /
min o(1) remove root oQ)
removeMin O(log n) n re-arrange O(log n)
/ times remove root o)
re-arrange O(log (n-1))
(remove root + down-heap bubbling) :

Each PQ ADT method can be performed in O(1) or O(log n) time.
35

When there are i nodes left in the PQ: Llog il

n
S>TOT = > Llogi]
i=1

= O(nlogn)

37

