
1

1

Heaps

• Heaps
• Properties
• Deletion, Insertion, Construction
• Implementation of the Heap
• Implementation of Priority Queue

using a Heap
• An application: HeapSort

2

Heaps (Min-heap)
Complete binary tree that stores a collection of keys
(or key-element pairs) at its internal nodes and that satisfies
the additional property:

key(parent) ≤ key(child)

4

6

207

811

5

9

1214

15

2516

REMEMBER:
complete binary tree
all levels are full, except the

last one, which is left-filled

3

Max-heap

key(parent) ≥ key(child)

40

26

2017

811

35

19

1214

15

131

4

We store the keys in the internal nodes only

5

915

16

After adding the leaves the resulting tree is full

2

5

Height of a Heap
• Theorem: A heap storing n keys has height O(log n)

Proof:
– Let h be the height of a heap storing n keys
– Since there are 2i keys at depth i = 0, … , h - 2 and at least one

key at depth h - 1, we have n ≥ 1 + 2 + 4 + … + 2h-2 + 1
– Thus, n ≥ 2h-1 , i.e., h ≤ log n + 1

1

2

2h−2

at least 1

keys
0

1

h−2

h−1

depth

h
6

• We could use a heap to implement a priority queue
• We store a (key, element) item at each internal

node

(2, Sue)

(6, Mark)(5, Pat)

(9, Jeff) (7, Anna)

removeMin():

Remove the root

Re-arrange the heap!

Notice that ….

7

Removal From a Heap

• The removal of the top
key leaves a hole

• We need to fix the
heap

• First, replace the hole
with the last key in
the heap

• Then, begin Downheap
… 8

Downheap

• Downheap compares the parent with the smallest
child. If the child is smaller, it switches the two.

3

9

Downheap Continues

10

Downheap Continues

11

End of Downheap

• Downheap terminates when the key is greater than the
keys of both its children or the bottom of the heap is
reached. 12

Heap Insertion

The key to insert is 6

4

13

Heap Insertion

14

Upheap
• Swap parent-child keys out of order

15

Upheap Continues

16

End of Upheap

• Upheap terminates when new key is greater than the key
of its parent or the top of the heap is reached

• (total #swaps) (h - 1), which is O(log n)

5

17

Heap Construction

We could insert the Items one at the time with
a sequence of Heap Insertions:

Σ log k = O(n log n)
k=1

n

But we can do better ….

18

• We can construct a heap
storing n given keys using a
bottom-up construction

Bottom-up Heap
Construction

19

Construction of a Heap

Idea: Recursively re-arrange each sub-tree
in the heap starting with the leaves

begin here

HEAP

HEAPHEAP

1st2nd3rd4th

5th6th

begin here

20

Example 1 (Max-Heap)

3 ↔ 6

2

4 5

10 87 3

1 9 6

6

3

2

4 5

10 87 6

1 9 3

2

4 5

10 89 6

1 7 3

7 ↔ 9 5 ↔ 10

I am not drawing the
leaves anymore here

2

4 10

5 89 6

1 7 3

--- keys already in the tree ---

6

21

This is not a heap !

4 ↔ 9

Example 1

9

4

1 7

9

7

1 4

4 ↔ 7

2

9 10

5 87 6

1 4 3

2

4 10

5 89 6

1 7 3

22

Example 1

10

9 8

5 27 6

1 4 3

2

9 10

5 87 6

1 4 3
Finally: 2 ↔ 10

10

2

5 8

10

2

5 8

2 ↔ 8

23

Example 2 (min-heap)
[20,23,7,6,12,4,15,16,27,11,5,25,8,7,10]

1516 124 76 2023

25

1516

5

124

11

76

27

2023

--- keys given one at a time ---

24

Example 2
20,23,7,6,12,4,15,16,27,11,5,25,8,7,10]

25

1516

5

124

11

76

27

2023

15

2516

4

125

6

711

20

2723

7

25

Example 2
20,23,7,6,12,4,15,16,27,11,5,25,8,7,10]

7

15

2516

4

125

8

6

711

20

2723

4

15

2516

5

127

6

8

711

20

2723

26

Example 2
20,23,7,6,12,4,15,16,27,11,5,25,8,7,10]

4

15

2516

5

127

10

6

7

811

20

2723

5

15

2516

7

1210

4

6

7

811

20

2723

27

Analysis of Heap Construction

Number of swaps

2

4 5

10 87 3

1 9 6

level 0
level 1

level 2

level 30 swaps

1 swap

2 swaps
3 swaps

level i -------- L - i swaps

h = 4

Let L be the max level

at most

28

Analysis of Heap Construction

level 0
1

LAt level i, the number of swaps is

≤ L – i for each node

At level i, there are ≤ 2i nodes

Total: ≤ Σ(L – i)·2i

i=0

L

Number of swaps?

8

29

Calculating O(Σ(L – i)·2i)
Let j = L-i, then i = L-j and
Σ(L – i)·2i = Σj 2L-j = 2L Σ j 2-j

Consider Σj·2-j:

Σ j·2-j = 1/2 + 2 1/4 + 3 1/8 + 4 1/16 + …
= 1/2 + 1/4 + 1/8 + 1/16 + … <= 1
+ 1/4 + 1/8 + 1/16 + … <= 1/2
+ + 1/8 + 1/16 + … <= 1/4

Σj·2-j <= 2
So 2L Σj 2-j <= 2.2L = 2L+1

i=0

L

j=0

L

j=0

L

30

j=1

L

Σj/2j2L

So, the number of swaps is ≤ O(n)

≤ 2L+1

31

A heap can be nicely represented by a vector (array-based),
where the node at rank i has

- left child at rank 2i

and

- right child at rank 2i + 1

The leaves do no need to be explicitly stored

1 2 3 4 5 7

1
2 3

4 5 6 7

8

6 8

Implementing a Heap with an
Array

32

Example

C

9

F

10

G

11

H

12

N

13

AOLEBIDH

87654321

1

32

4 5 6 7

8 9 10 11 12 13

H

D I

B E L O

A C F G H N

i

2i 2i+1

9

33

2i > nifTRUELeaf? T[i]
T ≠ 0ifT[1]The Root

i > 1ifT[i div 2]Parent of T[i]

2i + 1 ≤ nifT[2i+1]Right child of
T[i]

2i ≤ nifT[2i]Left child of T[i]

n = 111

2

4 5 6 7

8 9 10 11

I
3

Reminder …..

34

Implementation of a Priority
Queue with a Heap

35

O(log n)

O(log n)
O(1)

(remove root + down-heap bubbling)

(up-heap bubbling)

insert

removeMin
min

Each PQ ADT method can be performed in O(1) or O(log n) time.
36

Application: Sorting
Heap Sort

Construct initial heap O(n)

remove root O(1)

re-arrange O(log n)

remove root O(1)

re-arrange O(log (n-1))

L M

L

n

times

10

37

When there are i nodes left in the PQ: log i

TOT =
i=1

n

Σlog i

= O(n log n)

