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Trees

• Trees
• Binary Trees
• Properties of Binary Trees
• Traversals of Trees
• Data Structures for Trees
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Trees

A graph G = (V,E) consists of an set V of VERTICES

and a set E of edges, with  E = {(u,v): u,v ∈V, u ≠ v

A tree is a connected graph with no cycles. 

∃ a path between each pair of vertices.
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What is a Tree
• Abstract model of a 

hierarchical structure
• A tree consists of 

nodes with a parent-
child relation

• Applications:
– Organization charts
– File systems
– Programming 

environments

Computers”R”Us

Sales R&DManufacturing

Laptops DesktopsUS International

Europe Asia Canada
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Example: Genealogical Tree

CHARLES I

PHILIP II MARIA
JOAN

PHILIP III

CHARLES

RUDOLPH II

ERNEST

MATHIAS

2 daugthers
MAXIMILIAN

ALBERT

WENZEL

Hasburg Family
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subtree

Tree Terminology
• Root: node without parent (A)

A

B DC

G HE F

I J K

•Descendant of a node: child, grandchild, grand-grandchild, etc.

•Internal node: node with at least 
one child    (A, B, C, F)

•Ancestors of a node: parent, 
grandparent, grand-grandparent, etc.

•External node (a.k.a. leaf ): 
node without children (E, I, J, K, G, H, D)

• Subtree: tree consisting 
of a node and its 
descendants
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•Depth of a node: number of 
ancestors (= distance from the root)
•Height of a tree: maximum depth of 
any node (3)

Tree Terminology

A

B DC

G HE F

I J K

Distance between two nodes: number 
of “edges” between them 
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Methods for Tree ADT
• generic methods

- size(), isEmpty(), elements(), positions(), replace(p,e)

• query methods
- isRoot(p), isInternal(p), isExternal(p)

• accessor methods
- root(), parent(p), children(p)

• update methods
- application  specific

Note: p stands for position which is a node in the tree
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Performance
size() O(1)
isEmpty() O(1)
elements() O(n)
positions() O(n) 
replace(p,e) O(1)
isRoot(p)  O(1)
isInternal(p) O(1)
isExternal(p) O(1)
root() O(1)
parent(p) O(1)
children(p) O(Cp), where CP is the

#children of p.
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Algorithm depth(T,v)
if T.isRoot(v) then

return 0
else
return 1 + depth(T, T.parent(v))

Computing the depth of a node

If v is the root the depth is 0
If v is an internal node the depth is 1 + the depth of its parent

Complexity ?
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Depth    (Tree K) 

call

call

call return 

return 

return 

return 

A

B DC

G HE F

I J K

Depth    (Tree F) 

Depth    (Tree B) 

Depth    (Tree A) 

0

1+0 = 1

1+1=2

1+2=3

Example:  Depth(Tree,K)

Tree

call
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Preorder Traversal

• A traversal visits the nodes of 
a tree in a systematic manner

• In a preorder traversal, a node 
is visited before  its 
descendants

• Application: print a structured 
document

Make Money Fast!

1. Motivations References2. Methods

2.1 Stock
Fraud

2.2 Ponzi
Scheme1.1 Greed 1.2 Avidity 2.3 Bank

Robbery

1

2

3

5

4 6 7 8
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Algorithm preOrder(v)
visit(v)
for each child w of v

preorder (w)

Traversing Trees
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Traversing Trees
Preorder Traversal

D  B  A  C  F  E  H  L  I  G

Algorithm preOrder(v)
visit(v)
for each child w of v

preorder (w)
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Postorder Traversal
• In a postorder traversal, a 

node is visited after its 
descendants

• Application: compute space 
used by files in a directory 
and its subdirectories

Algorithm postOrder(v)
for each child w of v

postOrder (w)
visit(v)

cs16/

homeworks/ todo.txt
1Kprograms/

DDR.java
10K

Stocks.java
25K

h1c.doc
3K

h1nc.doc
2K

Robot.java
20K

9

3

1

7

2 4 5 6

8

Traversing Trees
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Traversing Trees

Algorithm postOrder(v)
for each child w of v do
recursively perform postOrder(w)

“visit” node v

A  C  B  F  L  H  I  G  E  D

Postorder Traversal
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Let d(x) be the number
of sub-trees of node x.     

Start: x = root

IN-ORDER VISIT

1. Visit the first sub-tree (inorder)

2. Visit the root

3. Visit the second sub-tree (inorder)

M M

d(x)+1. Visit the d(x)th sub-tree (inorder)

Inorder Traversal of a tree (Depth-first)

A  B  C  D  F L  H  E  I  G

Traversing Trees
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?

orderWhat

traverse post-

intree
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do obtain
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sequence

nodes the
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CHARLES I

PHILIP II

PHILIP III

CHARLES

RUDOLPH II

ERNEST

MATHIAS

MAXIMILI
AN

ALBERT

WENZEL

Philip III, Charles,

When Charles dies, Philip II becomes King.
If Philip II dies as well ….

Philip II,
Charles I,

Rudolph II, Ernest, Mathias, Max, Albert, Wenzel,
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Children are ordered

Each node has at most two children:

[0, 1, or 2]

right childleft child

Binary Trees
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“Full” Binary Trees (or “Proper”)

is a leaf, or

has two children{Each node:

Full binary trees with all leaves at the same 
level:

Perfect Binary Trees

full
not full
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Complete Binary Trees

of depth h = Perfect trees of depth (h-1)
+

one or more leaves at level h.

Leaves go at the left

h - 1
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Notation for binary tree.

In the book: children are “completed” with “fake” nodes

The green squared nodes are the dummy nodes.

In this way ALL the original nodes are internal.
The leaves are the fake green nodes.

All trees are FULL
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Binary Trees + dummy leaves

right childleft child

Each internal node has two children
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Decision Tree

• Binary tree associated with a decision process
– internal nodes: questions with yes/no answer
– external nodes: decisions

• Example: dining decision

Want a fast meal?

How about coffee? On expense account?

Starbucks Spike’s Al Forno Café Paragon

Yes No

Yes No Yes No

Examples of Binary Trees
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Arithmetic Expression Tree
• Binary tree associated with an arithmetic 

expression
– internal nodes: operators
– external nodes: operands

Examples of Binary Trees

+

××

−2

a 1

3 b

Example: arithmetic expression 
tree for the expression 
((2 × (a - 1)) + ((3 × b)))
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Properties of   Binary Trees
• Notation

n # of nodes    e # of leaves
i # of internal nodes   h height

Maximum number of 
nodes at each level ?

Level 0

Level 1

1

2

4

8

Level 2

level i ------- 2i
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Properties of Full Binary Trees

• Notation
n number of nodes
e number of leaves
i number of 

internal nodes
h height

• Some Properties:
– e = i + 1
– n = 2e - 1
– h ≤ i
– h ≤ (n - 1)/2
– e ≤ 2h

– h ≥ log2 e
– h ≥ log2 (n + 1) - 1

28

e = i + 1
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e = i + 1

30

e = i + 1

31

n = 2e - 1

n = i +  e

n = 2e +i

e = i + 1 (just proved)

i = e -1
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h ≤ i (h = max n. of ancestors)

Ex: h=3, 
i=7

Ex: h=3, i=3

There must be at least one internal node for each level 
(except the last) !
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e ≤ 2h level i ------- max n. of nodes is 2i

h = 3

23 leaves
if all at last
level h

otherwise less
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Since   e ≤ 2h

h ≥ log2 e

log2 e ≤ log2 2h 

log2 e ≤ h
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Summary & some more properties:

h +1 ≤ n ≤ 2h+1 -1 
1 ≤ e ≤ 2h 

h  ≤ i ≤ 2h -1
log(n+1) -1  ≤ h ≤ n-1

2h +1 ≤ n ≤ 2h+1 -1 
h+1 ≤ e ≤ 2h 

h  ≤ i ≤ 2h -1
log(n+1) -1  ≤ h ≤ (n-1)/2

In FULL binary trees

In binary trees
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In Perfect Binary Trees…
with  height h there are 2h+1 -1 nodes

At each level there are 2l nodes, so the tree has:
h

∑ 2l = 1+ 2 + 4 + … + 2h = 2h+1-1

l=0

n = 2h+1 -1 l=1

l=2

l=3

l=0
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In Binary trees:

log (n+1) ≤ h+1 

h ≥ log (n+1)  -1

As a consequence:

n ≤ 2h+1-1 

n+1  ≤ 2h+1

obviously n ≤ 2h+1 -1
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In Complete Binary Trees …

with height h 2h ≤ n ≤ 2h+1 - 1

From previous observation:  n ≤ 2h+1 - 1

n ≥ 2h 

h - 1

A complete binary tree is a perfect binary tree of height 
h-1 plus some more leaves …

2h- 1

39

Height of a complete binary tree with 

n nodes:

 log n 

It follows that:

n ≥ 2h 
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Methods for Binary Tree ADT

• accessor methods
-left(p), right(p), hasLeft(p), hasRight(p)

• update methods
-addRoot(p), insertLeft(p,e), insertRight(p,e)
remove(p), attach(p,T1,T2)

other application specific methods
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Pre-, post-, in- (order)

• Refer to the place of the parent 
relative to the children

• pre is before:       parent, child, child
• post is after:        child, child, parent
• in is in between: child, parent, child

Traversing Binary Trees
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Traversing Binary Trees
Preorder, Postorder,  

Algorithm preOrder(T,v)
visit(v)
if v is internal:

preOrder (T,T.Left(v))
preOrder (T,T.Right(v))

Algorithm postOrder(T,v)
if v is internal:

postOrder (T,T.Left(v))
postOrder(T,T.Right(v))

visit(v)
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Inorder
(Depth-first)

Algorithm inOrder(T,v)
if v is internal:

inOrder (T,T.Left(v))
visit(v)
if v is internal:
inOrder(T,T.Right(v))

Traversing Binary Trees
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−

a b

Arithmetic Expressions

Inorder:     a – b
Postorder:  a b –
Preorder    – a b

+

××

−2

a 1

3 b

2 × a − 1 + 3 × b
Inorder:

2  a  1 - × 3  b × +

Postorder:
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a + (b • c – d)/e

PRE-ORDER:

+ a / – • b c d e

+

a /

- e

• d

b c

POST-ORDER:

a b c • d – e / +
IN-ORDER:

a + b • c – d / e 46

Evaluate Arithmetic Expressions

• Specialization of a 
postorder traversal
– recursive method 

returning the value of a 
subtree

– when visiting an internal 
node, combine the values 
of the subtrees

Algorithm evalExpr(v)
if isExternal (v)

return v.element ()
else

x ← evalExpr(left(v))
y ← evalExpr(right(v))
◊ ← operator stored at v
return x ◊ y+

××

−2

5 1

3 2
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+
××

−2
5 1

3 2

+

Eval
×

−2

5 1

×
3 2

Eval

−

152

Eval Eval
× 3 2

Eval Eval
×

5 1
−
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Print Arithmetic Expressions

• Specialization of an 
inorder traversal
– print operand or 

operator when visiting 
node

– print “(“ before 
traversing left subtree

– print “)“ after traversing 
right subtree

Algorithm printExpression(v)
if isInternal (v)

print(“(’’)
inOrder (left(v))

print(v.element ())
if isInternal (v)

inOrder (right(v))
print (“)’’)+

××

−2

a 1

3 b
((2 × (a − 1)) + (3 × b))

2 × a − 1  + 3 × b 
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Algorithm preOrderTraversalwithStack(T)
Stack S
TreeNode N

S.push(T)   // push the reference to T in the empty stack
While (not S.empty())

N = S.pop()
if (N != null) {

print(N.elem)           // print information 
S.push(N.rightChild) // push the reference to 

the right child
S.push(N.leftChild) // push the reference to 

the left child
}
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Algorithm preOrderTraversalwithStack(T)

gb

dc

e f

h i

a
T

S.push(T)   // push the reference to T in the empty stack

N = S.pop()

print(N.elem) 
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Algorithm preOrderTraversalwithStack(T)

gb

dc

e f

h i

a
T

S.push(T)   // push the reference to T in the empty stack

N = S.pop()

print(N.elem) 

N

a
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Algorithm preOrderTraversalwithStack(T)

gb

dc

e f

h i

a
T

S.push(N.rightChild) // push the reference to 
the right child

a

S.push(N.leftChild) // push the reference to 
the left child
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Algorithm preOrderTraversalwithStack(T)

gb

dc

e f

h i

a
T

N = S.pop()

a
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Algorithm preOrderTraversalwithStack(T)

gb

dc

e f

h i

a
T

N = S.pop()

a

N

print(N.elem)

b
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Algorithm preOrderTraversalwithStack(T)

gb

dc

e f

h i

a
T

ba

S.push(N.rightChild)

S.push(N.leftChild)
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Algorithm preOrderTraversalwithStack(T)

gb

dc

e f

h i

a
T

ba

N = S.pop()

print(N.elem)

c
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Algorithm preOrderTraversalwithStack(T)

gb

dc

e f

h i

a
T

ba

N = S.pop()

c

print(N.elem)

d
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Algorithm preOrderTraversalwithStack(T)

gb

dc

e f

h i

a
T

ba c d

S.push(N.rightChild)

S.push(N.leftChild)
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Algorithm preOrderTraversalwithStack(T)

gb

dc

e f

h i

a
T

ba c d

N = S.pop()

print(N.elem)

e
60

Algorithm preOrderTraversalwithStack(T)

gb

dc

e f

h i

a
T

ba c d

N = S.pop()

print(N.elem)

e f
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Algorithm preOrderTraversalwithStack(T)

gb

dc

e f

h i

a
T

ba c d

N = S.pop()

print(N.elem)

e f g
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Algorithm preOrderTraversalwithStack(T)

gb

dc

e f

h i

a
T

ba c d e f g

S.push(N.rightChild)

S.push(N.leftChild)
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Euler Tour Traversal

• Generic traversal of a binary tree
• Includes a special cases the preorder, postorder and inorder 

traversals
• Walk around the tree and visit each node three times:

– on the left (preorder)
– from below (inorder)
– on the right (postorder)

+

×

−2

5 1

3 2

L
B

R×
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Algorithm eulerTour(T,v)

visit v (from the left)
if v is internal:

eulerTour (T,T.Left(v))
visit v (from below)

if v is internal:
eulerTour(T,T.Right(v))

visit v (from the right)
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Implementations of Binary trees….

66

Implementing Binary Trees 
with a Linked Structure

• A node is represented 
by an object storing
– Element
– Parent node
– Left child node
– Right child node

• Node objects 
implement the Position 
ADT

B

DA

C E

∅ ∅

∅ ∅ ∅ ∅

B

A D

C E

∅
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BTNode
Object Element
BTNode left, right, parent

Element
left(v):   return v.left

right(v):  return v.right

sibling(v):   
p  ← parent(v)
q  ← left(p)
if (v = q) return right(p)

else return q

replace(v, obj)   
temp    ← v.element
v.element ← obj
return temp

68

Performance of LinkedBinary Implementation

• size, isEmpty, replace, root, parent, children, left, right, 
sibling, hasLeft, hasRight, isInternal, isExternal, 
isRoot, insertLeft, insertRight, attach, remove 

All take O(1) time.

• elements, positions 
All take O(n) time
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Implementing Complete Binary Trees
with Vectors (Array-based)

C

9

F

10

G

11

H

12

N

13

AOLEBIDH

87654321

1

32

4 5 6 7

8 9 10 11 12 13

H

D I

B E L O

A C F G H N

i

2i 2i+1
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Leaf? T[i]
The Root

Parent of T[i]

Right child of 
T[i]

Left child of T[i]

replace(p,e), isRoot(p), 
isInternal(p), 
isExternal(p)

1

2

4 5 6 7

8 9 10 11

I
3

left(p), right(p), sibling(p),
n = 11

They all have 
complexity O(1)

T[2i] if 2i ≤ n

T[2i+1] if 2i + 1 ≤ n

T[i div 2] if i > 1

T[1] if T ≠ 0

TRUE if 2i > n
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∅

Implementing General Trees 
with a Linked Structure

• A node is represented 
by an object storing
– Element
– Parent node
– Sequence of children 

nodes
• Node objects implement 

the Position ADT

B

DA

C E

F

B

∅ ∅

A D F

∅

C

∅

E
72

Representing General Trees

tree T

binary tree T' representing T
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u in T u’ in T’

first child of u in T is left child of u’ in T’

first sibling of u in T is  right child of u’ in T’

RULES
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T

T’

stupid

A

B

C

D

E

F

G H

I

L
B

A

D

I
C

E

G
F

H
L
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RULE:
to u in T corresponds u’ in T’

If u is internal in T and v is its first child
then v’ is the left child of u’ in T’

if u is a leaf in T and has no siblings, 
then the children of u’ are leaves

If v has a sibling w immediately following it, 
w’ is the right child of v’ in T’

L L

C

D

E G

D

C

D

C

E


