Trees

Binary Trees

Properties of Binary Trees
Traversals of Trees

Data Structures for Trees

A graph 6 = (V,E) consists of an set V of VERTICES
and a set E of edges, with E={(uv):uveV,uzv

A tree is a connected graph with no cycles.
- 3 a path between each pair of vertices.

oo |,

Abstract model of a
hierarchical structure
A tree consists of
nodes with a parent-
child relation

Computers”R"Us

Manufacturing

Applications:
- Organization charts [International] [Laptops] [Desktops]
- File systems

- Programming
environments

PHILIP IT
WENZEL

PHILIP IIT

ERNEST ALBERT
MAXIMILIAN

MATHIAS

CHARLES || 2 daugthers
RUDOLPH II

Hasburg Family

Root: node without parent (A) + Subfree: tree consisting
of anode and its

-Internal node: node with at least descendants

one child (A, B,C,F)

*External node (a.k.a. leaf):
node without children (E, I, J, K, G, H, D) E

*Ancestors of a node: parent,
grandparent, grand-grandparent, etc.

Descendant of a node: child, grandchild, grand-grandchild, etc.

Distance between two nodes: number
of “edges” between them

Depth of a node: number of
ancestors (= distance from the root)

+Height of a tree: maximum depth of
any node (3)

* generic methods
- size(), isEmpty(), elements(), positions(), replace(p,e)

* query methods
- isRoot(p), isInternal(p), isExternal(p)

- accessor methods
- root(), parent(p), children(p)

+ update methods
- application specific

Note: p stands for position which is a node in the tree

size()
isEmpty()
elements()
positions()
replace(p.e)
isRoot(p)
isInternal(p)
isExternal(p)
root()
parent(p)
children(p)

o)

o(1)

O(n)

O(n)

o)

o)

o)

o)

o)

o)

O(C,), where C; is the
#children of p.

Computing the depth of a node

If v is the root the depth is O
If vis an internal node the depth is 1 + the depth of its parent

Algorithm depth(T,v)
if T.isRoot(v) then
return O
else
return 1 + depth(T, T.parent(v))

Complexity ?

Example: Depth(Tree,K)

\“" et 14223

1+1=2

return

'\

return 0

return

Preorder Traversal

A traversal visits the nodes of
a tree in a systematic manner

In a preorder traversal, a node
is visited before its
descendants

Application: print a structured

document
1
Make Money Fast!

2 5 9

1. Motivations 2. Methods References
4 6 7 8

Py 2.1 Stock 2.2 Ponzi 2.3 Bank
E2A) [Fraud] [Scheme] [Robbery]

Algorithm preOrder(v)
Visit(v)
for each child w of v
preorder (w)

Preorder Traversal

Algorithm preOrder(v)
Visit(v)
for each child w of v
preorder (w)

DBACFEHLIG

Postorder Traversal

In a postorder traversal, a Algorithm postOrd
node is visited after its gorl P os‘ rder(v)
descendants for each child w of v
Application: compute space postOrder (w)
used by files in a directory visit(v)

and its subdirectories

homeworks/

1 2 4

hic.doc hinc.doc DDR.java Stocks.java Robot.java
3K 2K 10K 25K 20K

Postorder Traversal

Algorithm postOrder(v)
for each child w of v do
recursively perform postOrder(w)

“visit” node v

ACBFLHIGED

Inorder Traversal of a tree (Depth-first)

Let d(x) be the number
of sub-trees of node x.

Start: x = root
IN-ORDER VISIT
1. Visit the first sub-tree (inorder)
2. Visit the root
3. Visit the second sub-tree (inorder)

ABCDFLHETIG

d(x)+1. Visit the d(x)™ sub-tree (inorder)

(ruvotprm) (MATHE=r

When Charles dies, Philip IT becomes King.
Charles I, If Philip IT dies as well ...

Philip IT,
Philip TIT, Charles, i X i Zi

Rudolph IT, Ernest, Mathias, Max, Albert, Wenzgl,

Binary Trees

right child

Children are ordered
Each node has at most two children:
[0,1,0r 2]

Each node: { is a leaf, or
has two children

full
not full

Full binary trees with all leaves at the same
level:

of depth h = Perfect trees of depth (h-1)
+

one or more leaves at level h.

\
Leaves go at the left ”

Notation for binary tree.

Inthe book: children are "completed” with “fake"

i

The green squared nodes are the dummy nodes.

In this way ALL the original nodes are internal.
The leaves are the fake green nodes.

All trees are FULL

nodes

Binary Trees + dummy leaves

left child right child

p*

Each internal node has two children

Decision Tree

Binary free associated with a decision process
- internal nodes: questions with yes/no answer
- external nodes: decisions

Example: dining decision

Want a fast meal?

Yes No

[How about coffee?] [On expense account?]

Yes No Yes No

| Starbucks | | Spike’s

|AI Forno | | Café Paragon |

24

Example: arithmetic expression
tree for the expression

((2x (a-1))+ (B x b))

Arithmetic Expression Tree

* Binary tree associated with an arithmetic
expression
- internal nodes: operators
- external nodes: operands

+ Notation

n #of nodes e # of leaves
i # of internal nodes A height

Maximum number of
nodes at each level ?

Level O ~ 1

Level 1 2

Level 2 4

d —
level i ------- 2i

Properties of Full Binary Trees

* Notation * Some Properties:
n number of nodes -e=/+1
? numzer‘ o1f’ leaves -n=2e-1
i number o .
internal nodes -h<i
h height -h<(n-1)/2
-e<?2h
- h>log, e

-h2log,(n+1)-1

e=/+1

n=2e-1

3
n

i+e

e = j + 1(just proved)

h<i (h = max n. of ancestors)

There must be at least one internal node for each level
(except the last) !

Ex: h=3,

o B
S

Ex: h=3,i=3

e< 2h level i ------- max n. of nodes is 2

/ h=3

23 leaves
if all at last

level h

m otherwise less
33

Since e< 24

log, e < log, 2%

log, e < h

h=>log, e

Summary & some more properties:

In binary trees

h+1<n<2i -1
I1<ex<?2h

h <i<2h-1
log(n+1) -1 < h<n-1

In FULL binary trees

2h +1<n< 21 -1
h+1< e< 2

h <i<?2h-1

log(n+1) -1 < h< (n-1)/2

In Perfect Binary Trees...
with height h there are 2"*! -1 nodes

1=0

= 2h+l _
n=241 -

=2
g .

At each level there are 2! nodes, so the tree has:
h

ZZI =1+2+4+ -+ 2h =2h11
=0

As a consequence:

In Binary trees: obviously n < 21 -1
n< 2l

n+l < 2h!

log (n+1) < h+1

h > log (n+1) -1

with height h 2" <n<2"!'.1

From previous observation: n< 2h1-1

A complete binary tree is a perfect binary tree of height

h-1 plus some more leaves ...

n> 2h

n> 2h

It follows that:
Height of a complete binary tree with

n nodes:

+ accessor methods
-left(p), right(p), hasLeft(p), hasRight(p)

* update methods
-addRoot(p), insertLeft(p,e), insertRight(p,e)
remove(p), attach(p,T;,T,)

other application specific methods

Pre-, post-, in- (order)

* Refer to the place of the parent
relative to the children

* pre is before: parent, child, child
- post is after: child, child, parent
*in is in between: child, parent, child

41

Preorder, Postorder,

Algorithm preOrder(T,v)
visit(v)
if v is internal:
preOrder (T, T.Left(v))
preOrder (T,T.Right(v))

Algorithm postOrder(T,v)
if v is internal:
postOrder (T, T.Left(v))
postOrder(T, T.Right(v))
visit(v)

Inorder
(Depth-first)

Algorithm inOrder(T,v)
if v is internal:
inOrder (T,T.Left(v))
visit(v)
if v is internal:
inOrder(T, T.Right(v))

43

Arithmetic Expressions

e Inorder: a-b
Postorder: ab -
la] [b] Preorder -ab
Inorder:
2xa-1+3xb

Postorder:
2al-x3bx+

at(bec—d)e

PRE-ORDER:

+a/—*bcde

Evaluate Arithmetic Expressions

Specialization of a
postorder traversal
- recursive method
returning the value of a
subtree
- when visiting an internal
node, combine the values
of the subtrees

Algorithm evalExpr(v)

if isExternal (v)
return v.element ()

else
x < evalExpr(left(v))
y <« evalExpr(right(v))
O « operator stored at v
returnx Q y

POST-ORDER:
abced—e/+
IN-ORDER:
atbec—d/e 45 W
+
Print Arithmetic Expressions
Specialization of an Algorithm printExpression(v)
inorder traversal if isInternal (v
Eval Eval - print operand or N
operator when visiting .
node inOrder (left(v))
+ - print "(" before
traversing left subtree .
- print *)" after traversing if isInternal (v)
right subtree inOrder (right(v))
Eval Eval

Eval Eval
X X
et . 2

E 47

2xa-1+ 3xb
(2x@-1))+ (@3 xb))

Algorithm preOrder TraversalwithStack(T)
Stack S
TreeNode N

S.push(T) // push the reference to T in the empty stack
While (not S.empty())
N = S.pop()
if (N I= null) {
print(N.elem) // print information
S.push(N.rightChild) // push the reference to
the right child
S.push(N.leftChild) /7 push the reference to
the left child

49

Algorithm preOrder TraversalwithStack(T)

S.push(T) // push the reference to T in the empty stack
N = S pop()
print(N.elem)

Algorithm preOrder TraversalwithStack(T)

S.push(T) // push the reference to T in the empty stack
N = 5.pop()
print(N.elem)

Algorithm preOrder TraversalwithStack(T)
S.push(N.rightChild) // push the reference to
the right child

S.push(N.leftChild) // push the reference to
the left child

Algorithm preOrder TraversalwithStack(T)

N = 5 pop()

Algorithm preOrder TraversalwithStack(T)

N = 5 pop()

print(N.elem)

Algorithm preOrder TraversalwithStack(T)

S,push(N.rightChild)

S.push(N.leftChild)

Algorithm preOrder TraversalwithStack(T)

N = 5.pop()

print(N.elem)

Algorithm preOrder TraversalwithStack(T)

N = 5 pop()

print(N.elem)

ab cd

Algorithm preOrder TraversalwithStack(T)

S.push(N.rightChild)

S.push(N.leftChild)

Algorithm preOrder TraversalwithStack(T)

N = 5.pop()

print(N.elem)

Algorithm preOrder TraversalwithStack(T)

N = 5.pop()

print(N.elem)

ab cd ef

Algorithm preOrder TraversalwithStack(T)

Algorithm preOrder TraversalwithStack(T)

S.push(N.rightChild)

S.push(N.leftChild)

ab cd ef g

Euler Tour Traversal

Generic traversal of a binary tree

Includes a special cases the preorder, postorder and inorder

traversals

Walk around the free and visit each node three fimes:
- onthe left (preorder)
- from below (inorder)
- on the right (postorder) \ i

Algorithm eulerTour(T v)

visit v (from the left)
if v is internal:
eulerTour (T, T.Left(v))
visit v (from below)
if v is internal:
eulerTour(T, T.Right(v))
visit v (from the right)

IMPLEMENTATION

A node is represented

by an object storing | @]
- Element ..
- Parent node

- Left child node
- Right child node

Node objects Y 7
implement the Position [gl—'z l—
ADT b b

BTNode
Object Element o) o
BTNode left, right, parent size, isEmpty, replace, root, parent, children, left, right,
sibling, hasLeft, hasRight, isInternal, isExternal,
isRoot, insertLeft, insertRight, attach, remove
Element - All take O(1) time.
left(v): returnv.left
right(v): return v.right elements, positions
L - All take O(n) time
sibling(v): replace(v, obj) @)
p < parent(v) temp < v.element
q < left(p) v.element <« obj

if (v = q) return right(p) return temp
else return q

Complete

i » I:>

3 4 5 6 7
[nlo[i [efefefofalc[r[a]n]n]

10

left(p), right(p), sibling(p),

replace(p,e), isRoot(p),
isInternal(p),
isExternal(p)

They all have

complexity O(1)
Leftchild of Th | 7y " vi<n
Right child of
] T[Ri+] if 2i+1<n
Parent of T[i] T[i div 2] if i>1
The Root (1] it T#0
Leaf? T[i] TRUE if 2i>n

A node is represented
by an object storing
- Element
- Parent node
- Sequence of children
nodes

Node objects implement
the Position ADT

Representing General Trees

tree T

binary tree T' representing T

RULES

uinT uinT

first child of uin Tis left child of u'in T'

first sibling of uin Tis right child of u'in T'

RULE:
touin T corresponds u'in T

if uis aleaf in T and has no siblings, @ |ﬁ@>\|:|

then the children of u' are leaves

If uisinternal in T and v is its first child
then v' is the left child of U'in T'

If v has a sibling w immediately following it, @
w' is the right child of V' in T B

