Trees

- Trees
- Binary Trees
- Properties of Binary Trees
- Traversals of Trees
- Data Structures for Trees

Trees

A graph G = (V,E) consists of an set V of VERTICES and a set E of edges, with E = {(u,v): $u,v \in V, u \neq v$

 \sim

-0

Q 2

A tree is a connected graph with no cycles.

 $\rightarrow \exists$ a path between each pair of vertices.

1

Methods for Tree ADT

- generic methods

 size(), isEmpty(), elements(), positions(), replace(p,e)
- query methods
 - isRoot(p), isInternal(p), isExternal(p)
- accessor methods
 - root(), parent(p), children(p)
- update methods
 - application specific

Note: p stands for position which is a node in the tree

Performance		
size() isEmpty() elements() positions() replace(p,e) isRoot(p) isInternal(p) isExternal(p) root() parent(p) children(p)	O(1) O(1) O(n) O(n) O(1) O(2) (2)	
	8	

Since $e \leq 2^h$	
$\log_2 e \leq \log_2 2^h$	
$\log_2 e \leq h$	
$h \ge \log_2 e$	
	34

Summary & some more properties:	
In binary trees	
$h + 1 \le n \le 2^{h+1} - 1$	
$1 \leq e \leq 2^h$	
$h \leq i \leq 2^h - 1$	
<i>log(n+1) −1 ≤ h</i> ≤ n−1	
In FULL binary trees	
$2h + 1 \le n \le 2^{h+1} - 1$	
$h+1 \leq e \leq 2^h$	
$h \leq i \leq 2^h - 1$	
<i>log(n+1) −1 ≤ h ≤ (</i> n-1)/2	
	35

Traversing Binary Trees

Pre-, post-, in- (order)

- Refer to the place of the parent relative to the children
- pre is before: parent, child, child
- post is after: child, child, parent
- in is in between: child, parent, child

41

Algorithm preOrder(T,v) visit(v) if v is internal: preOrder(T,T.Left(v)) preOrder(T,v.Right(v))

