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Priority Queues

• The priority queue ADT

• Implementing a priority queue with a list

• Elementary sorting using a  Priority Queue

• Selection-sort and Insertion-sort
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Queue where we can insert in any order. When 
we remove an element from the queue, it is 
always the one with the highest priority.

Priority example:

• Deadline to pay a bill

• Deadline to hand in your homework

• A student’s mark

Priority Queue

3

insert(e)

removeMin()
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Priority 
Queue

Hidden 
Implementation

Sorted List

Unsorted List
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The Priority Queue ADT

A priority queue stores a collection of entries
Each entry is a pair    (key, value)

(key, element)
or

Keys in a priority queue can be arbitrary objects on which a 
total order is defined
Two distinct entries in a priority queue can have the same 
key
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Keys and Total Order Relations

• A Priority Queue ranks its elements by key with a total 
order relation

• Keys: Every element has its own key
Keys are not necessarily unique

• Total Order Relation, denoted by ≤
Reflexive: k ≤ k
Antisymetric: if k1 ≤ k2 and k2 ≤ k1, then k1 = k2
Transitive: if k1 ≤ k2 and k2 ≤ k3, then k1 ≤ k3
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Total ordering examples

• ≤ is a total ordering
• ≥ is also a total ordering
• Alphabetical order: we define a ≤ b if ‘a’ is 

before ‘b’ in alphabetical order
• Reverse alphabetical order
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But…

• <, > are not total orderings since 
they are not reflexive 

• = is not a total ordering since we can’t 
compare any 2 elements with  =. 
Given a, b, we do not always have 

a=b or b=a
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More examples of ordering

We can order the co-ordinate pairs
p=(x1, y1) and q=(x2,y2) by

1.  p ≤ q if   x1 ≤ x2
2. p≤ q if y1 ≤ y2
3. p≤ q if   x1 ≤ x2 and y1 ≤ y2

The last one is only a partial ordering!
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Entry ADT  

• An entry in a priority queue is simply a key-
value pair (key, value)

• Priority queues store entries to allow for 
efficient insertion and removal based on 
keys

• Methods:
– key(): returns the key for this entry
– value(): returns the value associated with this 

entry
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Comparator ADT
• The most general and reusable form of a priority queue 

makes use of comparator objects.
• Comparator objects are external to the keys that are to be 

compared and compare two objects.
• Thus a priority queue can be general enough to store any 

object.
• The comparator ADT includes:

-isLessThan(a, b)
-isLessThanOrEqualTo(a,b)
-isEqualTo(a, b)
-isGreaterThan(a,b)
-isGreaterThanOrEqualTo(a,b)
-isComparable(a)
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The Priority Queue ADT

• A priority queue P supports the following methods:
-size(): Return the number of elements in P
-isEmpty(): Test whether P is empty

-insert(k,x):   Insert into P key k with value x and return 
entry storing them; error if k is invalid or cannot be 
compared with other keys

-min(): Return (but don’t remove) an entry of P smallest 
key; an error occurs if P is empty

-removeMin():     Remove from P and return an entry with the 
smallest key; an error condition occurs if P is empty
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Implementation with an Unsorted List

• Store the entries of P in a list S.

• The elements of S are entries (k, x), where the key, and x is 
the value.

• insert(k,x) on P is like insertLast(e) on S.   O(1) time.
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Implementation with an Unsorted List (contd.)

•Performance summary

insert() O(1)

min() O(n)

removeMin() O(n)

•The  sequence is not ordered .

For min(), and  removeMin() operation on P, we 
need to look at all the elements of S in the worst case 
to find and entry (k,x) of S with minimum k. 

O(n) time.
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Implementation with Sorted List
• Use a List S to store entries, sorted by increasing keys

• min() and removeMin() on P take O(1) time assuming doubly 
linked list

• However, to implement insert(), we must now scan through the     
entire list in the worst case. Thus, insert() takes O(n) time
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An observation…

With an unsorted list…

removeMin() always takes O(n)

Fast insertions and slow removals

But with a sorted list…

insert() takes at most O(n)

Fast removals and slow insertions
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An Application: Sorting  

• A Priority Queue P can be used for sorting a 
sequence S by:

– inserting the elements of S into P with a series 
of insert() operations  -- Phase 1

– removing the elements from P in increasing order 
and putting them back into S with a series of 
removeMin() operations  -- Phase 2
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Algorithm PriorityQueueSort(S, P):

Input: A sequence S storing n elements, on which a 
total order relation is defined, and a Priority      
Queue P that compares keys with the same relation

Output: The sequence S sorted by the total order relation

while ¬ S.isEmpty() do
e ← S.removeFirst() 
P.insert(e, ø)     {a null value is used}

while ¬ P.isEmpty() do
e ← P.removeMin().key()
S.insertLast(e)    {the smallest key in P is added to end of S}
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Selection Sort

• Variation of PriorityQueueSort that uses an unsorted 
sequence to implement the priority queue P.

– Phase 1, the insertion of an item into P takes O(1) time

– Phase 2, removing (selecting) an item from P takes time 
proportional to the current number of elements in P
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Insert in no specific order

Select in order

Selection Sort
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Selection Sort Example

Sequence S Priority Queue P

Input: (7,4,8,2,5,3,9) ()

Phase 1
(a) (4,8,2,5,3,9) (7)
(b) (8,2,5,3,9) (7,4)
.. .. ..
. . .
(g) () (7,4,8,2,5,3,9)

Phase 2
(a) (2) (7,4,8,5,3,9)
(b) (2,3) (7,4,8,5,9)
(c) (2,3,4) (7,8,5,9)
(d) (2,3,4,5) (7,8,9)
(e) (2,3,4,5,7) (8,9)
(f) (2,3,4,5,7,8) (9)
(g) (2,3,4,5,7,8,9) ()

Insert

Select
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Selection Sort (cont.)

Running time of Selection-sort:

Inserting the elements into the priority queue with 
n insert operations takes O(n) time

Removing the elements in sorted order from the 
priority queue with  n removeMin operations takes 
time proportional to

1 + 2 + …+ n

Selection-sort runs in O(n2) time 

unsorted 

sequence
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Insertion Sort

• PriorityQueueSort implementing the priority queue with a  
sorted sequence

Insert in order

Select   
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Insertion-Sort Example
Sequence S Priority queue P

Input: (7,4,8,2,5,3,9) ()

Phase 1
(a) (4,8,2,5,3,9) (7)
(b) (8,2,5,3,9) (4,7)
(c) (2,5,3,9) (4,7,8)
(d) (5,3,9) (2,4,7,8)
(e) (3,9) (2,4,5,7,8)
(f) (9) (2,3,4,5,7,8)
(g) () (2,3,4,5,7,8,9)

Phase 2
(a) (2) (3,4,5,7,8,9)
(b) (2,3) (4,5,7,8,9)
.. .. ..
. . .
(g) (2,3,4,5,7,8,9) ()

Insert

Select
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Insertion Sort(cont.)

Running time of Insertion-sort:
Inserting the elements into the priority queue with 
n insert operations takes time proportional to

1 + 2 + …+ n
Removing the elements in sorted order from the 
priority queue with a series of n removeMin operations 
takes O(n) time

Insertion-sort runs in O(n2) time 

sorted 

sequence


