
1

1

Priority Queues

• The priority queue ADT

• Implementing a priority queue with a list

• Elementary sorting using a Priority Queue

• Selection-sort and Insertion-sort

2

Queue where we can insert in any order. When
we remove an element from the queue, it is
always the one with the highest priority.

Priority example:

• Deadline to pay a bill

• Deadline to hand in your homework

• A student’s mark

Priority Queue

3

insert(e)

removeMin()

4

Priority
Queue

Hidden
Implementation

Sorted List

Unsorted List

2

5

The Priority Queue ADT

A priority queue stores a collection of entries
Each entry is a pair (key, value)

(key, element)
or

Keys in a priority queue can be arbitrary objects on which a
total order is defined
Two distinct entries in a priority queue can have the same
key

6

Keys and Total Order Relations

• A Priority Queue ranks its elements by key with a total
order relation

• Keys: Every element has its own key
Keys are not necessarily unique

• Total Order Relation, denoted by ≤
Reflexive: k ≤ k
Antisymetric: if k1 ≤ k2 and k2 ≤ k1, then k1 = k2
Transitive: if k1 ≤ k2 and k2 ≤ k3, then k1 ≤ k3

7

Total ordering examples

• ≤ is a total ordering
• ≥ is also a total ordering
• Alphabetical order: we define a ≤ b if ‘a’ is

before ‘b’ in alphabetical order
• Reverse alphabetical order

8

But…

• <, > are not total orderings since
they are not reflexive

• = is not a total ordering since we can’t
compare any 2 elements with =.
Given a, b, we do not always have

a=b or b=a

3

9

More examples of ordering

We can order the co-ordinate pairs
p=(x1, y1) and q=(x2,y2) by

1. p ≤ q if x1 ≤ x2
2. p≤ q if y1 ≤ y2
3. p≤ q if x1 ≤ x2 and y1 ≤ y2

The last one is only a partial ordering!
10

Entry ADT

• An entry in a priority queue is simply a key-
value pair (key, value)

• Priority queues store entries to allow for
efficient insertion and removal based on
keys

• Methods:
– key(): returns the key for this entry
– value(): returns the value associated with this

entry

11

Comparator ADT
• The most general and reusable form of a priority queue

makes use of comparator objects.
• Comparator objects are external to the keys that are to be

compared and compare two objects.
• Thus a priority queue can be general enough to store any

object.
• The comparator ADT includes:

-isLessThan(a, b)
-isLessThanOrEqualTo(a,b)
-isEqualTo(a, b)
-isGreaterThan(a,b)
-isGreaterThanOrEqualTo(a,b)
-isComparable(a)

12

The Priority Queue ADT

• A priority queue P supports the following methods:
-size(): Return the number of elements in P
-isEmpty(): Test whether P is empty

-insert(k,x): Insert into P key k with value x and return
entry storing them; error if k is invalid or cannot be
compared with other keys

-min(): Return (but don’t remove) an entry of P smallest
key; an error occurs if P is empty

-removeMin(): Remove from P and return an entry with the
smallest key; an error condition occurs if P is empty

4

13

Implementation with an Unsorted List

• Store the entries of P in a list S.

• The elements of S are entries (k, x), where the key, and x is
the value.

• insert(k,x) on P is like insertLast(e) on S. O(1) time.

14

Implementation with an Unsorted List (contd.)

•Performance summary

insert() O(1)

min() O(n)

removeMin() O(n)

•The sequence is not ordered .

For min(), and removeMin() operation on P, we
need to look at all the elements of S in the worst case
to find and entry (k,x) of S with minimum k.

O(n) time.

15

Implementation with Sorted List
• Use a List S to store entries, sorted by increasing keys

• min() and removeMin() on P take O(1) time assuming doubly
linked list

• However, to implement insert(), we must now scan through the
entire list in the worst case. Thus, insert() takes O(n) time

16

An observation…

With an unsorted list…

removeMin() always takes O(n)

Fast insertions and slow removals

But with a sorted list…

insert() takes at most O(n)

Fast removals and slow insertions

5

17

An Application: Sorting

• A Priority Queue P can be used for sorting a
sequence S by:

– inserting the elements of S into P with a series
of insert() operations -- Phase 1

– removing the elements from P in increasing order
and putting them back into S with a series of
removeMin() operations -- Phase 2

18

Algorithm PriorityQueueSort(S, P):

Input: A sequence S storing n elements, on which a
total order relation is defined, and a Priority
Queue P that compares keys with the same relation

Output: The sequence S sorted by the total order relation

while ¬ S.isEmpty() do
e ← S.removeFirst()
P.insert(e, ø) {a null value is used}

while ¬ P.isEmpty() do
e ← P.removeMin().key()
S.insertLast(e) {the smallest key in P is added to end of S}

19

Selection Sort

• Variation of PriorityQueueSort that uses an unsorted
sequence to implement the priority queue P.

– Phase 1, the insertion of an item into P takes O(1) time

– Phase 2, removing (selecting) an item from P takes time
proportional to the current number of elements in P

20

Insert in no specific order

Select in order

Selection Sort

6

21

Selection Sort Example

Sequence S Priority Queue P

Input: (7,4,8,2,5,3,9) ()

Phase 1
(a) (4,8,2,5,3,9) (7)
(b) (8,2,5,3,9) (7,4)
..
. . .
(g) () (7,4,8,2,5,3,9)

Phase 2
(a) (2) (7,4,8,5,3,9)
(b) (2,3) (7,4,8,5,9)
(c) (2,3,4) (7,8,5,9)
(d) (2,3,4,5) (7,8,9)
(e) (2,3,4,5,7) (8,9)
(f) (2,3,4,5,7,8) (9)
(g) (2,3,4,5,7,8,9) ()

Insert

Select

22

Selection Sort (cont.)

Running time of Selection-sort:

Inserting the elements into the priority queue with
n insert operations takes O(n) time

Removing the elements in sorted order from the
priority queue with n removeMin operations takes
time proportional to

1 + 2 + …+ n

Selection-sort runs in O(n2) time

unsorted

sequence

23

Insertion Sort

• PriorityQueueSort implementing the priority queue with a
sorted sequence

Insert in order

Select

24

Insertion-Sort Example
Sequence S Priority queue P

Input: (7,4,8,2,5,3,9) ()

Phase 1
(a) (4,8,2,5,3,9) (7)
(b) (8,2,5,3,9) (4,7)
(c) (2,5,3,9) (4,7,8)
(d) (5,3,9) (2,4,7,8)
(e) (3,9) (2,4,5,7,8)
(f) (9) (2,3,4,5,7,8)
(g) () (2,3,4,5,7,8,9)

Phase 2
(a) (2) (3,4,5,7,8,9)
(b) (2,3) (4,5,7,8,9)
..
. . .
(g) (2,3,4,5,7,8,9) ()

Insert

Select

7

25

Insertion Sort(cont.)

Running time of Insertion-sort:
Inserting the elements into the priority queue with
n insert operations takes time proportional to

1 + 2 + …+ n
Removing the elements in sorted order from the
priority queue with a series of n removeMin operations
takes O(n) time

Insertion-sort runs in O(n2) time

sorted

sequence

