Priority Queues

+ The priority queue ADT
+ Implementing a priority queue with a list

- Elementary sorting using a Priority Queue

+ Selection-sort and Insertion-sort

Priority Queue

Queue where we can insert in any order. When
we remove an element from the queue, it is
always the one with the highest priority.
Priority example:

+ Deadline to pay a bill

+ Deadline to hand in your homework

+ A student’s mark

insert(e)

removeMin()

Unsorted List

-D>CO®

Priority

Queue
Sorted List

The Priority Queue ADT Keys and Total Order Relations

+ A Priority Queue ranks its elements by key with a total

A priority queue stores a collection of entries order relation

Each entry is a pair (key, value) *+ Keys: Every element has its own key

or Keys are not necessarily unique

(key, element)
+ Total Order Relation, denoted by <

Keys in a priority queue can be arbitrary objects on which a Reflexive: k < k
tofal order is defined Antisymetric: if k1 < k2 and k2 < k1, then k1 = k2
Two distinct entries in a priority queue can have the same Transitive: if k1 < k2 and k2 <k3, then k1 <k3
key
5 6
Total ordering examples But

* <, >are not total orderings since

Do . ‘
< is a total ordering they are not reflexive

* >is also a total ordering

* Alphabetical order: we definea <bif ‘a’is

: , * = is not a total ordering since we can't
before ‘b’ in alphabetical order

compare any 2 elements with =.
Given a, b, we do not always have
a=b or b=a

* Reverse alphabetical order

More examples of ordering

We can order the co-ordinate pairs
p=(x1, Y1) and q=(xz,y2) by

1L peqif xlex2

2.p<qif yity,

3.p<qif xl<x2andy;<y,

The last one is only a partial ordering!

Entry ADT

+ An entry in a priority queue is simply a key-
value pair (key, value)

* Priority queues store entries to allow for
efficient insertion and removal based on
keys

*+ Methods:

- key(): returns the key for this entry

- value(): returns the value associated with this
entry

Comparator ADT

+ The most general and reusable form of a priority queue
makes use of comparator objects.

+ Comparator objects are external to the keys that are o be
compared and compare two objects.

* Thus a priority queue can be general enough to store any
object.

+ The comparator ADT includes:
-isLessThan(a, b)
-isLessThanOrEqual To(a,b)
-isEqualTo(a, b)
-isGreaterThan(a,b)
-isGreater ThanOrEqual To(a,b)
-isComparable(a)

The Priority Queue ADT

+ A priority queue P supports the following methods:
-size(): Return the number of elements in P
-isEmpty(): Test whether P is empty

-insert(k x): Insert into P key k with value x and return
entry storing them; error if k is invalid or cannot be
compared with other keys

-min(): Return (but don't remove) an entry of P smallest
key: an error occurs if P is empty

-removeMin(): Remove from P and return an entry with the
smallest key; an error condition occurs if P is empty "

Implementation with an Unsorted List

+ Store the entries of Pinalist S.

+ The elements of S are entries (k, x), where the key, and x is
the value.

- insert(k,x) on P is like insertLast(e) on S. (1) time.

D @ @ G o €

Implementation with an Unsorted List (contd.)

*The sequence is not ordered .

For min(), and removeMin() operation on P, we
need to look at all the elements of S in the worst case
to find and entry (k,x) of S with minimum k.

| O(n) time.
P T A T e

-Performance summary

insert() o)
min() O(n)
removeMin() O(n) M

Implementation with Sorted List

+ UseaList S to store entries, sorted by increasing keys

+ min() and removeMin() on P take O(1) time assuming doubly
linked list

» However, to implement insert(), we must now scan through the
entire list in the worst case. Thus, insert() takes O(n) time

. L. T . . T

(D ED L ED D EP €D

An observation...
With an unsorted list...
removeMin() always takes O(n)

->Fast insertions and slow removals

But with a sorted list...
insert() takes at most O(n)

->Fast removals and slow insertions

An Application: Sorting

+ A Priority Queue P can be used for sorting a
sequence S by:

- inserting the elements of S into P with a series
of insert() operations -- Phase 1

- removing the elements from P in increasing order
and putting them back into S with a series of
removeMin() operations -- Phase 2

Algorithm PriorityQueueSort(S, P):

Input: A sequence S storing h elements, on which a
total order relation is defined, and a Priority
Queue P that compares keys with the same relation

Output: The sequence S sorted by the total order relation

while = S.isEmpty() do
e « S.removeFirst()
P.insert(e,) {a null value is used}
while — P.isEmpty() do
e « P.removeMin().key()
S.insertlast(e) {the smallest key in P is added to end of S}

Selection Sort

Variation of PriorityQueueSort that uses an unsorted
sequence to implement the priority queue P.

- Phase 1, the insertion of an item into P takes O(1) time

- Phase 2, removing (selecting) an item from P takes time

proportional to the current number of elements in P

Selection Sort

Insert in no specific order

O
LA
£ vty
PE o
e teaes

Select in order

Selection Sort Example

Seqguence S Priority Queue P
Input: (748253)9) 0
Phase 1
(a) (48253)9) @)
Thsert ® (8,25,3,9) (7.4
@ 0 (7482539)
Phase 2
(@) @ (7,4,85,39)
(b) (23) (7485)9)
Select (9 (234) (7.859)
(d) (2,3,45) (7.8,9)
(e) (23457) (89)
f) (2,3,45,78) %
(C)] (234578)9) 0 21

unsorted

Selection Sort (cont.)

sequence

#Running time of Selection-sort:

Inserting the elements into the priority queue with
n insert operations takes () time

Removing the elements in sorted order from the
priority queue with # removeMin operations takes

time proportional to
1+2+ . .+n

#Selection-sort runs in A7) time ”

Insertion Sort

Insertion-Sort Example

+ PriorityQueueSort implementing the priority queue with a
sorted sequence

Insert in order

Select

Seguence S Priority queue P
Input (748253)9) 0
Phase 1
(@) (4.8,25,3,9) 7)
(b) (8.2,5,3,9) (47)
Insert (c) (25.39) (47.8)
(d) (5.3.9) (2/4,7.8)
(e) (3.9) (245,7.8)
() 9 (2,345,78)
(9 0 (2345,78)9)
Phase 2
(a) @ (34578)9)
Select (b) (23) (45,7.89)
(9 (2.3,4578,9) 0

sorted

sequence Insertion Sort(cont.)

Running time of Insertion-sort:
Inserting the elements into the priority queue with
n insert operations takes time proportional to
1+2+ . .+n
Removing the elements in sorted order from the
priority queue with a series of n removeMin operations
takes O(n) time

Insertion-sort runs in O(r?) time

