
1

Sequences 1

Vectors, Lists, and Sequences

Sequences 2

STACK
ADT QUEUE

ADT

DEQUE
ADT

“last in first out”

Insert = PUSH
Remove = POP Insert = ENQUEUE

Remove = DEQUEUE

“first in first out”

Insert: InsertFirst, InsertLast
Remove: RemoveFirst, RemoveLast

Sequences 3

VECTOR LIST

SEQUENCE

1st 2nd

By “rank” By “position”
(by address)

Vector, List, and Sequence ADTs are collections of linearly
arranged elements and provide methods for accessing,
inserting, and removing arbitrary elements.

Sequences 4

Vectors ADT

• Can access any element directly, not
just first or last.

• Elements are accessed by rank, the
number of elements which precede
them.

2

Sequences 5

1st 2nd 3rd 4th 5th 6th 7th 8th

Who is 5th ?

Questions like:

VECTOR

Sequences 6

The Vector ADT

• A sequence S (with n elements) that supports the following methods:

-elemAtRank(r): Return the element of S with rank r;
an error occurs if r < 0 or r > n -1

-replaceAtRank(r,e): Replace the element at rank r with e
and return the old element; an error
condition occurs if r < 0 or r > n - 1

-insertAtRank(r,e): Insert a new element into S which
will have rank r; an error occurs if
r< 0 or r > n

-removeAtRank(r): Remove from S the element at rank r;
an error occurs if r < 0 or r > n - 1

Sequences 7

Applications of Vectors

• Direct applications
– Sorted collection of objects (elementary

database)

• Indirect applications
– Auxiliary data structure for algorithms
– Component of other data structures

Sequences 8

Natural Implementation: with an
Array

• Array V of size N

• A variable n keeps track of the size of the
vector (number of elements stored)

• Operation elemAtRank(r) is implemented in O(1)
time by returning V[r]

V
0 1 2 nr

3

Sequences 9

Insertion

• In operation insertAtRank(r, o), we need to
make room for the new element by shifting
forward the n - r elements V[r], …, V[n - 1]

• In the worst case (r = 0), this takes O(n) time

V
0 1 2 nr

V
0 1 2 nr

V
0 1 2 n

o
r

insertAtRank(r,o):
for i = n - 1, n - 2, ... , r do

S[i+1] ← s[i]
S[r] ← o
n ← n + 1

Sequences 10

Deletion
• In operation removeAtRank(r), we need to fill the

hole left by the removed element by shifting
backward the n - r - 1 elements V[r + 1], …, V[n - 1]

• In the worst case (r = 0), this takes O(n) time

V
0 1 2 nr

V
0 1 2 n

o
r

V
0 1 2 nr

removeAtRank(r):
e ← S[r]

for i = r, r + 1, ... , n - 2 do
S[i] ← S[i + 1]

n ← n - 1
return

Sequences 11

Performance

• In the array based implementation of a Vector
– The space used by the data structure is O(n)
– size, isEmpty, elemAtRank and replaceAtRank

run in O(1) time
– insertAtRank and removeAtRank run in O(n)

time

• In an insertAtRank operation, when the array is
full, instead of having an ERROR, we can replace
the array with a larger one

Sequences 12

Performance (contd.)

• Time complexity of the various methods:

4

Sequences 13

Implementation
with a Doubly Linked List

trailerheader

prev next

elem node

Sequences 14

Finding an element at a certain rank

Algorithm nodeAtRank (rank)
if (rank <= size()/2) { //scan forward from head

node ← header.next
for (int i=0; i < rank; i++)
node ← node.next

}else { // scan backward from the tail
node ← trailer.prev
for (int i=0; i < size()-rank-1 ; i++)
node ← node.prev

}
return node;

Sequences 15

the list before insertion

creating a new node
for insertion:

the list after insertion:

insertAtRank

Inserting at a certain rank

Sequences 16

Algorithm insertAtRank (rank,element)
if (rank < 0 or rank > size())

ERROR
next ← nodeAtRank(rank) // the new node

//will be right before this
prev ← next.prev // the new node will be right after this

newnode.prev ← prev
newnode.next ← next
next.prev← newnode
prev.next← newnode
size++

newnode: node to insert.

….….

next

prev

5

Sequences 17

Algorithm insertAtRank (rank,element)
if (rank < 0 or rank > size())

ERROR
next ← nodeAtRank(rank) // the new node

//will be right before this
prev ← next.prev // the new node will be right after this

newnode.prev ← prev
newnode.next ← next
next.prev← newnode
prev.next← newnode
size++

newnode: node to insert.

….….

prev

next

Sequences 18

Algorithm insertAtRank (rank,element)
if (rank < 0 or rank > size())

ERROR
next ← nodeAtRank(rank) // the new node

//will be right before this
prev ← next.prev // the new node will be right after this

newnode.prev ← prev
newnode.next ← next
next.prev← newnode
prev.next← newnode
size++

newnode: node to insert.

….….

prev

next

Sequences 19

the list before
deletion:

deleting a node

after deletion:

removeAtRank

Removing at a certain rank

Sequences 20

Algorithm removeAtRank (rank)
if (rank < 0 or rank > size()-1)

ERROR
node ← nodeAtRank(rank) // node to be removed
after ← node.next // node after it
before ← node.prev // node before it
before.next ← next
after.prev ← prev
size--
return node.element // returns the element of the deleted node

afternodebefore

6

Sequences 21

Performance

– elemAtRank , insertAtRank, removeAtRank, and
replaceAtRank run in O(n) time

– size, isEmpty, : O(1)

Sequences 22

Lists ADT
Container of elements that store each element at a

position and that keeps these positions arranged in
a linear order

Cannot access any element directly, can access just
first or last.

Elements are accessed by position.
Positions are defined relatively to other positions

(before/after relation)

(address)
(place)

Sequences 23

first

nextprevious

me

I don’t know my “rank” - there is no notion of rank.
I only know who is next and who is before

Sequences 24

12 Bank

17 Bronson

next

31 Laurier

previous

first last

7

Sequences 25

17 Bronson

12 Bank

previous

1 Lees

next

first last

Sequences 26

12 Bank

31 Laurier 17 Bronson

nextprevious

17 Bronson

12 Bank

previous
next

Sequences 27

.....

12 Bank

Who is after 12 Bank ?

If I know an address,
questions like:

Who is first ?
Who is after first ?

Sequences 28

The List ADT

ADT with position-based methods
• generic methods size(), isEmpty()
• query methods isFirst(p), isLast(p)
• accessor methods first(), last()

before(p), after(p)
• update methods

swapElements(p,q), replaceElement(p,e)
insertFirst(e), insertLast(e)
insertBefore(p,e), insertAfter(p,e)
remove(p)

8

Sequences 29

• A doubly linked list provides a
natural implementation of the List
ADT

• Nodes implement Position and store:
– element
– link to the previous node
– link to the next node

• Special trailer and header nodes

prev next

elem

trailerheader nodes/positions

elements

node

Natural Implementation: with a Linked List

Sequences 30

Insertion
• We visualize operation insertAfter(p, X), which returns

position q

A B X C

A B C

p

A B C

p

X

q

p q

Sequences 31

Deletion

• We visualize remove(p), where p = last()

A B C D

p

A B C

D

p

A B C
Sequences 32

Performance

• In the implementation of the List ADT by means of
a doubly linked list

– The space used by a list with n elements is O(n)

– The space used by each position of the list is
O(1)

– All the operations of the List ADT run in O(1)
time

9

Sequences 33

A more general ADT:
The Sequence

• Combines the Vector and List ADT

• Adds methods that bridge between ranks
and positions (i.e. provides access to its
elements using both ranks and positions)

– atRank(r) returns a position
– rankOf(p) returns an integer rank

Sequences 34

• The Sequence ADT is a basic, general-purpose,
data structure for storing an ordered collection of
elements

• Direct applications:
– Generic replacement for stack, queue, vector, or

list
– small database (e.g., address book)

• Indirect applications:
– Building block of more complex data structures

Applications of Sequences

Sequences 35

Array-based Implementation

• Circular
array storing
positions

• A position
object
stores:
– Element
– Rank

• Indices f and
l keep track
of first and
last positions

0 1 2 3
positions

S

lf
Sequences 36

0 1 2 3
positions

elements

lf

2

insert at rank(2)

10

Sequences 37

Implementation
with Doubly Linked List

• Position methods are O(1)

• Rank methods require scanning
through the list: O(n)

Sequences 38

Sequence Implementations

O(n)O(n)insertAtRank, removeAtRank
O(1)O(1)insertFirst, insertLast
O(1)O(n)insertAfter, insertBefore

O(n)O(1)replaceAtRank
O(1)O(1)replaceElement, swapElements

O(n)O(1)atRank, rankOf, elemAtRank
O(1)O(1)size, isEmpty

O(1)O(n)remove

O(1)O(1)first, last, before, after

ListArrayOperation

Sequences 39

SEQUENCE

insertFirst(12) 12

Let variables p1, … pk
be positions

returns position of 12: p1

returns position of 19: p2

insertFirst(19)

19, 12

insertAfter(p2,44)

19, 44, 12returns position of 44: p3

p2 p3 p1
Sequences 40

19, 44, 12

p2 p3 p1

last() ? returns p1

rankOf(p1) ? 3

atRank(1) ? p2

removeAtRank(2) 19, 12

p2 p1Returns 44

remove(p2)

Returns 19
12

p1

11

Sequences 41

Traversing a Sequence (march through the elements)
depends on the actual implementation ….

Accessing the “next element” in a Sequence
depends on the actual implementation ….

We would like to have a general way of doing this ….

Sequences 42

Iterators
• Abstraction of the process of scanning through a

collection of elements
• Encapsulates the notions of “place” and “next”
• Extends the position ADT
• Generic and specialized iterators

• ObjectIterator hasNext()
next()

• PositionIterator elements()
positions()

Sequences 43

Richardprevious

next

First

Who is after Richard ?

If I know Richard, questions like

LIST

Sequences 44

First SEQUENCE

1st 2nd

3rd

4th

5th6th

7th

8th

