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Analysis of Algorithms

• Running Time
• Upper Bounds
• Lower Bounds
• Examples
• Mathematical 

facts
An algorithm is a step-by-step procedure for
solving a problem in a finite amount of time.

AlgorithmInput Output
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Running Time of an algorithm

• The running time of an 
algorithm typically grows 
with the input size.

• Average case time is often 
difficult to determine.

• We focus on the worst 
case running time.
– Easier to analyze
– Crucial to applications such 

as games, finance and 
robotics

0

20

40

60

80

100

120

R
un

ni
ng

 T
im

e

1000 2000 3000 4000

Input Size

best case
average case
worst case

Analysis of Algorithms 3

Measuring the Running Time

• How should we measure the running time of 
an algorithm?

• Approach 1: Experimental Study
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Beyond Experimental Studies

• Experimental studies have several 
limitations:
– need to implement
– limited set of inputs
– hardware and software environments.
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Theoretical Analysis

• We need a general methodology that:

Uses a high-level description of the algorithm 
(independent of implementation).

Characterizes running time as a function of the
input size.

Takes into account all possible inputs. 

Is independent of the hardware and software environment.
6
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• Primitive Operations: Low-level computations independent 
from the programming language can be identified in 
pseudocode.

• Examples:
– calling a method and returning from a method
– arithmetic operations (e.g. addition)
– comparing two numbers, etc.

• By inspecting the pseudo-code, we can count the number 
of primitive operations executed by an algorithm.
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Example:

Algorithm arrayMax(A, n):
Input: An array A storing n integers.
Output: The maximum element in A.

currentMax ← A[0]
for i ← 1 to n -1 do
if currentMax < A[i] then

currentMax ← A[i]
return currentMax
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currentMax ← A[0]
for i ← 1 to n -1 do
if currentMax < A[i] then

currentMax ← A[i]

return currentMax

1 assignment

n-1 check
n-1 assignments (if we are not lucky)

1 return value



3

Analysis of Algorithms 9

i ← 0

while (A[i] ≠ element)

i ← i+1

return i

Looking for the rank of an element in  A of size sizeA

1 assignment

sizeA checks & assignment
(if we are not lucky)

Worst Case
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Big-Oh

– given functions f(n) and g(n), we say 
that 

f(n) is O(g(n)) 
if and only if there are positive constants 
c and n0 such that 

f(n) ≤ c g(n) for n ≥ n0

n0

c • g(n)

f(n)

n

(upper bound)
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≤

60n2 + 5n2 + n2 for n ≥ 1

= 66n2

f(n) = O(n2)

g(n) = n2f(n) = 60n2 + 5n + 1

∀

c = 66 n0 = 1

f(n) ≤ c n2 n ≥ n0

prove that  f(n) ≤ c g(n) for all  n ≥ n0 An Example

prove that f(n) ≤ c n2
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On the other hand…

n2 is not O(n) because there is no c and n0 such that:  
n2 ≤ cn for n ≥ n0 

( no matter how large a c is chosen there is an n big 
enough that n2   >  c n ) .

n2

n  

n0 n
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O(1) < O(log n) < O(n) < O(n log n) < O(n2) < 
O(n3) < O(2n) …

log(n)
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1.80 * 1030811.7 * 10635 50042n

1.07 * 10916 800 8004 1008n3

1.05 * 10665 5002564n2

10 200448642n log n

1024256162n

10841log n

3.32320log log n

1024256162n =
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Asymptotic Notation (cont.)

Note: Even though it is correct to say                        
“7n - 3 is O(n3)”, a better statement is                     
“7n - 3 is O(n)”, that is,                                                  
one should make the approximation as tight as possible

Analysis of Algorithms 16

Ex 1:  

2n3 + 3n2 = O (max(2n3, 3n2)) 

= O(2n3) = O(n3) 

Ex 2:

n2 + 3 log n – 7 = O(max(n2, 3 log n – 7)) 

= O(n2)

Theorem: 
If g(n) is O(f(n)) , then for any constant  

c >0 
g(n) is also O(c f(n))

Theorem: 
O(f(n) + g(n)) = O(max(f(n), g(n)))
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Drop lower order terms and constant factors

7n-3    is    O(n) 

8n2log n + 5n2 + n    is     O(n2log n)

12n3 + 5000n2 + 2n4 is     O(n4)

Simple Big Oh Rule: 
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•Use the smallest possible class of 
functions

–Say “2n is O(n)” instead of “2n is O(n2)”

•Use the simplest expression of the class
–Say  “3n + 5 is O(n)” instead of 

“3n + 5 is O(3n)”

Other  Big Oh Rules: 
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Asymptotic Notation 
(terminology)

• Special classes of algorithms:
constant: O(1)
logarithmic: O(log n)
linear: O(n)
quadratic: O(n2)
cubic: O(n3)
polynomial: O(nk), k >0
exponential: O(an), n > 1
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The i-th prefix average of an array X is average of 
the first (i + 1) elements of X.

That is,  A[i] = X[0] + X[1] + … + X[i]

Example of Asymptotic Analysis

An algorithm for computing prefix averages
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Example of Asymptotic Analysis

Algorithm prefixAverages1(X, n)

Input array X of n integers
Output array A of prefix averages of X #operations

A ← new array of n integers n
for i ← 0 to n − 1 do n

s ← 0 n
for j ← 0 to i do 1 + 2 + …+ n

s ← s + X[j] 1 + 2 + …+ n
A[i] ← s / (i + 1) n

return A 1
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• The running time of 
prefixAverages1 is
O(1 + 2 + …+ n)

• The sum of the first n
integers is n(n + 1) / 2
– There is a simple visual 

proof of this fact
• Thus, algorithm 

prefixAverages1 runs 
in O(n2) time 0
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Another Example

• A better algorithm for computing prefix averages:
Algorithm prefixAverages2(X):
Input: An n-element array X of numbers.
Output: An n -element array A of numbers such that A[i] is the average of 

elements X[0], ... , X[i].
Let X be an array of n numbers. # operations

s← 0 1
for i ← 0 to n-1 do n

s ← s + X[i] n
A[i] ← s/(i+ 1) n

return array A 1

O(n) time
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big-Omega
(lower bound)

f(n) is Ω(g(n))

if there exist c > 0 and n0 > 0 such that

f(n) ≥ c • g(n)     for all n ≥ n0

(thus,  f(n) is Ω(g(n)) iff g(n) is O(f(n))   )

n
n0

c • g(n)
f(n)
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… is big theta …

g(n) is Θ(f(n))

<===>

if g(n) ∈ O(f(n))

AND

f(n) ∈ O(g(n))

big-Theta
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Big Theta Θ notation allows us to say that two 
functions grow at the same rate, up to constant 
factors.   

When we say g(n) is Θ(f(n)), it means

there are two constants c1 and c2, and     n0 ≥ 1 
such that 

c1f(n) ≤ g(n) ≤ c2f(n), for n ≥ n0.
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We have seen that
f(n) = 60n2 + 5n + 1  is    O(n2)                      

but  60n2 + 5n + 1 ≥ 60n2 for n ≥ 1

So: with c = 60 and n0 = 1

f(n) ≥ c • n2  for all n ≥ 1

f(n) is O(n2)
AND

f(n) is Ω(n2)

f(n) is Θ(n2)

f(n) is Ω(n2)

An Example
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Intuition for Asymptotic 
Notation

Big-Oh
– f(n) is O(g(n)) if f(n) is asymptotically 

less than or equal to g(n)
big-Omega
– f(n) is Ω(g(n)) if f(n) is asymptotically 

greater than or equal to g(n)
big-Theta
– f(n) is Θ(g(n)) if f(n) is asymptotically 

equal to g(n)
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Math You Need to Review
Logarithms and Exponents (Appendix A)

properties of logarithms:
logb(xy) = logbx + logby
logb (x/y) = logbx - logby
logbxa = alogbx
logba= logxa/logxb

properties of exponentials:
a(b+c) = aba c

abc = (ab)c

ab /ac = a(b-c)

b = a logab

bc = a c*logab
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More Math to Review

• Floor: x = the largest integer  ≤ x
• Ceiling: x = the smallest integer ≥ x
• Summations:  (see Appendix A)
• Geometric progression: (see Appendix A)
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More Math to Review
Arithmetic Progression

n
S = Σ di =   0 +   d    +  2d     + … + nd

i=0
=   nd+(n-1)d+(n-2)d + … + 0

S   =  d/2 n(n+1)

for d=1     S   = 1/2 n(n+1)

2S =        nd + nd +  nd + …+ nd
=   (n+1) nd
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More Math to Review
Geometric Progression

n
S = Σ ri = 1 + r +  r2 + … + rn

i=0
rS =           r + r2 + … + rn + rn+1

If r=2,
S = (2n+1-1)

rS - S = (r-1)S  =   rn+1  - 1
S = (rn+1-1)/(r-1)


