Analysis of Algorithms

Running Time

Upper Bounds -

Lower Bounds til i =) 1@

Examples

Mathematical ~ MPut Algorithm — Output
facts

An algorithm is a step-by-step procedure for
solving a problem in a finite amount of time.

Analysis of Algorithms 1

Running Time of an algorithm

O best case
W average case

+ The running time of an B worst case
algorithm typically grows 120
with the input size. 100

+ Average case time is often
difficult to determine.

+ We focus on the worst
case running time.

- Easier to analyze

- Crucial to applications such
as games, finance and
robotics

80

Running Time
3

ok
1000 2000 3000 4000
Input Size

Analysis of Algorithms 2

Measuring the Running Time %

How should we measure the running ftime of
an algorithm?

Approach 1: Experimental Study

t (ms)
60+
501

0T "

30T

20 :- L -

0T

Analysis of Algorithms T=

Beyond Experimental Studies

- Experimental studies have several
limitations:
- need to implement
- limited set of inputs
- hardware and software environments.

Analysis of Algorithms 4

Theoretical Analysis ()

* We need a general methodology that:

Uses a high-level description of the algorithm
(independent of implementation).

Characterizes running time as a function of the
input size.

Takes into account all possible inputs.

Is independent of the hardware and software environment.

Analysis of Algorithms 5

Analysis of Algorithms

* Primitive Operations: Low-level computations independent

from the programming language can be identified in
pseudocode.

Examples:

- calling a method and returning from a method
- arithmetic operations (e.g. addition)

- comparing two numbers, etc.

By inspecting the pseudo-code, we can count the number
of primitive operations executed by an algorithm.

Example:

Algorithm arrayMax(A, n):
Input: An array A storing n integers.
Output: The maximum element in A.
currentMax < A[O]
for /< 1to n-Ido
if currentMax < Afi]then
currentMax < Afi]
return currentMax

Analysis of Algorithms 7

currentMax « A[Q] =~ —~=~~—=------ + 1assignment

fori<—1lton-1do
if currentMax < A[i] then }_ n-1 check

currentMax « A[i] | --» 4 assignments (if we are not lucky

return currentMax - - === === ——--- + 1 return value

Analysis of Algorithms 8

Looking for the rank of an element in A of size sizeA

i<0 —---mmmm—--—- - 1assignment

while (A[i] # element)
————————————— ~ sizeA checks & assignmen

Big-Oh
(upper bound)

- given functions £(n)and g(n), we say
that

f(n)is O(g(n))
if and only if there are positive constants
and 7, such that

f(n) < for n>

‘n,

Analysis of Algorithms

i« i+l (if we are not lucky)
return i
Worst Case
Analysis of Algorithms ?
< >
prove that f(n) < forall n> An Example
f(n) = 60n2+ 5n + 1 g(n) =1
< prove that f(n) <
60n2+ 5n2 + n2 forn>1
= 66n?2

BSO5> c=66 mny=1

fln) <cn®> V n2n,

RS

Analysis of Algorithms 11

On the other hand...

2 is not O(n) because there is no ¢ and 7, such that:
MW <cnfornz

(no matter how large a c is chosen there is an n big
enough that nz >)

Analysis of Algorithms

O(1) < O(log n) < O(n) < O(n log n) < O(n?) <
O(n?) <0(2" ...

2

n

[%S
»

1 log(n)

n, n
5

n, n
Analysis of Algorithms 13

n= 2 16 256 1024
log logn 0 2 3 3.32
log n 1 4 8 10
n 2 16 256 1024
nlogn 2 64 448 10 200
n’ 4 256 65500 1.05*10°
n’ 8 4100 16800800 1.07 * 10°
2" 4 35500 11.7*10° 1.80*10°*

Analysis of Algorithms

Asymptotic Notation (cont.)

Note: Even though it is correct to say
“7n - 3 is O(n3)", a better statement is
"7n - 3is O(n)", that is,
one should make the approximation as tight as possible

Analysis of Algorithms 15

Theorem:
If g(n)is O(f(n)) , then for any constant
c>0
g(n) is also O(c f(n))

Theorem:
O(f(n) + g(n)) = O(max(f(n), g(n)))
Ex 1:
2n3 + 3n2 = O (max(2n3, 3n?))
=0(2n%) = 0(n?)
Ex 2:
n2+ 3 logn—7=0(max(n? 3 log n—7))
=0(n2)

Analysis of Algorithms

Simple Big Oh Rule:

Drop lower order terms and constant factors

7n-3 is O(n)
8n2logn+5n2+n is O(n?log n)

12n3 + 5000n2+ 2n* is O(n%)

Analysis of Algorithms 17

Other Big Oh Rules:

‘Use the smallest possible class of
functions

-Say “2nis On)" instead of “2nis)"
Use the simplest expression of the class
-Say “3n + 5is O(n)" instead of

“3n+ 5is O3n)"

Analysis of Algorithms 18

Asymptotic Notation

(terminology)
+ Special classes of algorithms:
constant o(1)
logarithmic: O(log n)
linear. O(n)
quadratic: o(n?)
cubic: o(n3)
polynomial Oo(n¥), k >0
exponential O(@"), n > 1

Analysis of Algorithms 19

Example of Asymptotic Analysis

An algorithm for computing prefix averages

The i-th prefix average of an array X is average of
the first (i + 1) elements of X.

That is, A[i]=X[0]+X[1]+ ... + X[i]

Analysis of Algorithms 20

Example of Asymptotic Analysis

Algorithm prefixAverages1(X, n)

Input array X of n integers
Output array 4 of prefix averages of X #operations

A < new array of n integers n
fori<Oton—1do n
s« 0 n
forj< Otoido 1+2+..+n
s < s+ X[j] 1+2+..+n
Alil «s/(i+1) n
return A 1

21

* The running time of
prefixAveragesl1 is

Al+2+ . .+n)

* The sum of the first n

integersis mM{n+1)/ 2
- There is a simple visual
proof of this fact
* Thus, algorithm
prefixAveragesl runs
in () time

S = N W A 0N

Analysis of Algorithms

22

Another Example

A better algorithm for computing prefix averages:
Algorithm prefixAverages2(X):
Input: An n-element array X of numbers.

Output: An n -element array A of numbers such that A[7] is the average of
elements X[0], ..., X[i].

Let X be an array of n numbers. # operations
s 0 1
for i «— 0 to n-/ do n
s« s+ X[i] n
Afi] < s/(i+ 1) n

return array A 1

O(n) time

Analysis of Algorithms

23

big-Omega

(lower bound)

f(n) is Q(g(n))
if there exist ¢ > 0 and n, > 0 such that

f(n)=c-g(n) foralnz=n,

(thus, f(n)is Q(g(n)) iff g(n) is O(f(n)))

¢« g(n)

Analysis of Algorithmg

big-Theta

... is big theta ...
g(n) is ©(f(n))

<==>=>

if g(n) € O(f(n))

AND

f(n) € O(g(n))

Analysis of Algorithms

25

Big Theta ® notation allows us to say that two
functions grow at the same rate, up to constant
factors.

When we say g(n) is ©(f(n)), it means

there are two constants ¢c;and ¢;, and ng>1
such that

¢,f(n) < g(n) < c,f(n), for n>n,.

Analysis of Algorithms 26

An Example

We have seen that

f(n) = 60n%+5n+1 is

but 60n2+ 5n+ 1 2 60n?

O(n?)

So:with ¢=60 andn,=1

f(n) 2 ¢ * n?

foralln =1

f(n) is O(n?)
AND
f(n) is Q(n?)

Analysis of Algorithms

}
f(n) is O(n?)

forn>1

[f(n) is Q(n2)

27

Intuition for Asymptotic
Notation

Big-Oh

- f(n) is O(g(n)) if f(n) is asymptotically
less than or equal to g(n)

big-Omega

- f(n) is Q(g(n)) if f(n) is asymptotically
greater than or equal to g(n)

big-Theta

- f(n) is ©(g(n)) if f(n) is asymptotically
equal to g(n)

28

Analysis of Algorithms

Math You Need to Review
Logarithms and Exponents (Appendix A)

properties of logarithms:
log,(xy) = log,x + log,y
log, (x/y) = log,x - log,y
log,x* = alogyx
log a= log.a/log,b
properties of exponentials:
a(b+c) = aba c
abe = (ab)c
ab /ac = ab-©)
b=a logab
bc=a c*logab

Analysis of Algorithms

29

More Math to Review

* Floor: Lx| = the largest integer < x

- Ceiling: [x]= the smallest integer » x

+ Summations: (see Appendix A)

*+ Geomeftric progression: (see Appendix A)

Analysis of Algorithms 30

More Math to Review
Arithmetic Progression

S=3di= 0+ d +2d +.+nd
“ - nds(n-1)d+(n-2)d + ..+ 0
2S = nd+nd + nd +.+nd
= (n+1) nd
S = d/2n(n+l)
ford=1 S =1/2 n(n+1)

Analysis of Algorithms

31

More Math to Review
Geometric Progression

n .

S=Xriz=l+r+ r2+ +rn
i=0

rS = r+r2+ +ph+ pnd

r$-S=(r-1)s = el -1
S = (r1-1)/(r-1)

If r=2,
r S = (2m1-1)

Analysis of Algorithms 32

