
1

Analysis of Algorithms 1

Analysis of Algorithms

• Running Time
• Upper Bounds
• Lower Bounds
• Examples
• Mathematical

facts
An algorithm is a step-by-step procedure for
solving a problem in a finite amount of time.

AlgorithmInput Output

Analysis of Algorithms 2

Running Time of an algorithm

• The running time of an
algorithm typically grows
with the input size.

• Average case time is often
difficult to determine.

• We focus on the worst
case running time.
– Easier to analyze
– Crucial to applications such

as games, finance and
robotics

0

20

40

60

80

100

120

R
un

ni
ng

 T
im

e

1000 2000 3000 4000

Input Size

best case
average case
worst case

Analysis of Algorithms 3

Measuring the Running Time

• How should we measure the running time of
an algorithm?

• Approach 1: Experimental Study

50 1000

t (ms)

n

10

20

30

40

50

60

Analysis of Algorithms 4

Beyond Experimental Studies

• Experimental studies have several
limitations:
– need to implement
– limited set of inputs
– hardware and software environments.

2

Analysis of Algorithms 5

Theoretical Analysis

• We need a general methodology that:

Uses a high-level description of the algorithm
(independent of implementation).

Characterizes running time as a function of the
input size.

Takes into account all possible inputs.

Is independent of the hardware and software environment.
6

Analysis of Algorithms

• Primitive Operations: Low-level computations independent
from the programming language can be identified in
pseudocode.

• Examples:
– calling a method and returning from a method
– arithmetic operations (e.g. addition)
– comparing two numbers, etc.

• By inspecting the pseudo-code, we can count the number
of primitive operations executed by an algorithm.

Analysis of Algorithms 7

Example:

Algorithm arrayMax(A, n):
Input: An array A storing n integers.
Output: The maximum element in A.

currentMax ← A[0]
for i ← 1 to n -1 do
if currentMax < A[i] then

currentMax ← A[i]
return currentMax

Analysis of Algorithms 8

currentMax ← A[0]
for i ← 1 to n -1 do
if currentMax < A[i] then

currentMax ← A[i]

return currentMax

1 assignment

n-1 check
n-1 assignments (if we are not lucky)

1 return value

3

Analysis of Algorithms 9

i ← 0

while (A[i] ≠ element)

i ← i+1

return i

Looking for the rank of an element in A of size sizeA

1 assignment

sizeA checks & assignment
(if we are not lucky)

Worst Case

Analysis of Algorithms 10

Big-Oh

– given functions f(n) and g(n), we say
that

f(n) is O(g(n))
if and only if there are positive constants
c and n0 such that

f(n) ≤ c g(n) for n ≥ n0

n0

c • g(n)

f(n)

n

(upper bound)

Analysis of Algorithms 11

≤

60n2 + 5n2 + n2 for n ≥ 1

= 66n2

f(n) = O(n2)

g(n) = n2f(n) = 60n2 + 5n + 1

∀

c = 66 n0 = 1

f(n) ≤ c n2 n ≥ n0

prove that f(n) ≤ c g(n) for all n ≥ n0 An Example

prove that f(n) ≤ c n2

Analysis of Algorithms 12

On the other hand…

n2 is not O(n) because there is no c and n0 such that:
n2 ≤ cn for n ≥ n0

(no matter how large a c is chosen there is an n big
enough that n2 > c n) .

n2

n

n0 n

4

Analysis of Algorithms 13

O(1) < O(log n) < O(n) < O(n log n) < O(n2) <
O(n3) < O(2n) …

log(n)

5

n2

n +1

n0

n0 n

n

Analysis of Algorithms 14

1.80 * 1030811.7 * 10635 50042n

1.07 * 10916 800 8004 1008n3

1.05 * 10665 5002564n2

10 200448642n log n

1024256162n

10841log n

3.32320log log n

1024256162n =

Analysis of Algorithms 15

Asymptotic Notation (cont.)

Note: Even though it is correct to say
“7n - 3 is O(n3)”, a better statement is
“7n - 3 is O(n)”, that is,
one should make the approximation as tight as possible

Analysis of Algorithms 16

Ex 1:

2n3 + 3n2 = O (max(2n3, 3n2))

= O(2n3) = O(n3)

Ex 2:

n2 + 3 log n – 7 = O(max(n2, 3 log n – 7))

= O(n2)

Theorem:
If g(n) is O(f(n)) , then for any constant

c >0
g(n) is also O(c f(n))

Theorem:
O(f(n) + g(n)) = O(max(f(n), g(n)))

5

Analysis of Algorithms 17

Drop lower order terms and constant factors

7n-3 is O(n)

8n2log n + 5n2 + n is O(n2log n)

12n3 + 5000n2 + 2n4 is O(n4)

Simple Big Oh Rule:

Analysis of Algorithms 18

•Use the smallest possible class of
functions

–Say “2n is O(n)” instead of “2n is O(n2)”

•Use the simplest expression of the class
–Say “3n + 5 is O(n)” instead of

“3n + 5 is O(3n)”

Other Big Oh Rules:

Analysis of Algorithms 19

Asymptotic Notation
(terminology)

• Special classes of algorithms:
constant: O(1)
logarithmic: O(log n)
linear: O(n)
quadratic: O(n2)
cubic: O(n3)
polynomial: O(nk), k >0
exponential: O(an), n > 1

Analysis of Algorithms 20

The i-th prefix average of an array X is average of
the first (i + 1) elements of X.

That is, A[i] = X[0] + X[1] + … + X[i]

Example of Asymptotic Analysis

An algorithm for computing prefix averages

6

21

Example of Asymptotic Analysis

Algorithm prefixAverages1(X, n)

Input array X of n integers
Output array A of prefix averages of X #operations

A ← new array of n integers n
for i ← 0 to n − 1 do n

s ← 0 n
for j ← 0 to i do 1 + 2 + …+ n

s ← s + X[j] 1 + 2 + …+ n
A[i] ← s / (i + 1) n

return A 1

Analysis of Algorithms 22

• The running time of
prefixAverages1 is
O(1 + 2 + …+ n)

• The sum of the first n
integers is n(n + 1) / 2
– There is a simple visual

proof of this fact
• Thus, algorithm

prefixAverages1 runs
in O(n2) time 0

1

2

3

4

5

6

7

1 2 3 4 5 6

Analysis of Algorithms 23

Another Example

• A better algorithm for computing prefix averages:
Algorithm prefixAverages2(X):
Input: An n-element array X of numbers.
Output: An n -element array A of numbers such that A[i] is the average of

elements X[0], ... , X[i].
Let X be an array of n numbers. # operations

s← 0 1
for i ← 0 to n-1 do n

s ← s + X[i] n
A[i] ← s/(i+ 1) n

return array A 1

O(n) time
Analysis of Algorithms 24

big-Omega
(lower bound)

f(n) is Ω(g(n))

if there exist c > 0 and n0 > 0 such that

f(n) ≥ c • g(n) for all n ≥ n0

(thus, f(n) is Ω(g(n)) iff g(n) is O(f(n)))

n
n0

c • g(n)
f(n)

7

Analysis of Algorithms 25

… is big theta …

g(n) is Θ(f(n))

<===>

if g(n) ∈ O(f(n))

AND

f(n) ∈ O(g(n))

big-Theta

Analysis of Algorithms 26

Big Theta Θ notation allows us to say that two
functions grow at the same rate, up to constant
factors.

When we say g(n) is Θ(f(n)), it means

there are two constants c1 and c2, and n0 ≥ 1
such that

c1f(n) ≤ g(n) ≤ c2f(n), for n ≥ n0.

Analysis of Algorithms 27

We have seen that
f(n) = 60n2 + 5n + 1 is O(n2)

but 60n2 + 5n + 1 ≥ 60n2 for n ≥ 1

So: with c = 60 and n0 = 1

f(n) ≥ c • n2 for all n ≥ 1

f(n) is O(n2)
AND

f(n) is Ω(n2)

f(n) is Θ(n2)

f(n) is Ω(n2)

An Example

Analysis of Algorithms 28

Intuition for Asymptotic
Notation

Big-Oh
– f(n) is O(g(n)) if f(n) is asymptotically

less than or equal to g(n)
big-Omega
– f(n) is Ω(g(n)) if f(n) is asymptotically

greater than or equal to g(n)
big-Theta
– f(n) is Θ(g(n)) if f(n) is asymptotically

equal to g(n)

8

Analysis of Algorithms 29

Math You Need to Review
Logarithms and Exponents (Appendix A)

properties of logarithms:
logb(xy) = logbx + logby
logb (x/y) = logbx - logby
logbxa = alogbx
logba= logxa/logxb

properties of exponentials:
a(b+c) = aba c

abc = (ab)c

ab /ac = a(b-c)

b = a logab

bc = a c*logab

Analysis of Algorithms 30

More Math to Review

• Floor: x = the largest integer ≤ x
• Ceiling: x = the smallest integer ≥ x
• Summations: (see Appendix A)
• Geometric progression: (see Appendix A)

Analysis of Algorithms 31

More Math to Review
Arithmetic Progression

n
S = Σ di = 0 + d + 2d + … + nd

i=0
= nd+(n-1)d+(n-2)d + … + 0

S = d/2 n(n+1)

for d=1 S = 1/2 n(n+1)

2S = nd + nd + nd + …+ nd
= (n+1) nd

Analysis of Algorithms 32

More Math to Review
Geometric Progression

n
S = Σ ri = 1 + r + r2 + … + rn

i=0
rS = r + r2 + … + rn + rn+1

If r=2,
S = (2n+1-1)

rS - S = (r-1)S = rn+1 - 1
S = (rn+1-1)/(r-1)

