
1

Overview

• Abstract Data Types
• Stacks
• Queues
• Deques

Abstract Data Types (ADTs)

• An Abstract Data Type is an abstraction of a data
structure.

The ADT specifies:
– what can be stored in the ADT
– what operations can be done on/by the ADT

• For example, if we are going to model a bag of marbles as
an ADT, we could specify that:
– this ADT stores marbles
– this ADT supports putting in a marble and getting out a marble.

Modularity - “Information Hiding”

Example of Modularity:

… lemma 1

… lemma 2
… lemma 3

Lemma 1
Lemma 2

Lemma 3

Theorem 1

I could change the “implementation” (proof) of lemma 2
without changing the theorem.

- Specify precisely the operations that can be
performed

-The implementation is HIDDEN and can easily
change

EXAMPLES

Objects of type: Phone Book

Operations: find, add, remove
…

Abstract Data Types (ADTs)

2

• There are lots of formalized and standard ADTs.

• In this course we are going to learn a lot of different
standard ADTs. (stacks, queues, dictionary...)

ADT Stack
Implementation with Arrays
Implementation with Singly Linked List

ADT Queue
Implementation with Arrays
Implementation with Singly Linked List

ADT Double Ended Queues
Implementation with doubly Linked List

Stacks, Queues, and Deques

POP

PUSH

Stacks The Stack Abstract Data Type

• Main methods:
– push(o): Inserts object o onto top of stack
– pop(): Removes the top object of stack and returns it;

if the stack is empty, an error occurs

• Support methods:
– size(): Returns the number of objects in stack
– isEmpty(): Return a boolean indicating if stack is empty.
– top(): Return the top object of the stack, without

removing it; if the stack is empty, an error occurs.

3

Applications of Stacks

• Direct applications
– Page-visited history in a Web browser
– Undo sequence in a text editor
– Chain of method calls in the Java Virtual

Machine

• Indirect applications
– Auxiliary data structure for algorithms
– Component of other data structures

Examples

Evaluating an expression with two stacks

(((10+5) + 5) / ((2+3) * 2))

Hypothesis:
parenthesis are correct
only positive numbers

How do we solve it ?

(((10+5) + 5) / ((2+3) * 2))

((+ 5) / (* 2))15 5

20 10(/)

2

One possible sequence of operations

(((10+5) + 5) / ((2+3) * 2))

((+ 5) / ((2+3) * 2))15

20(/ ((2+3) * 2))

5(20 / (* 2))

10(20 /)

2

Another one

4

With two Stacks

(((10+5) + 5) / ((2+3) * 2))

One for the operands
One for the operators

10 +

5

S1 S2

With two Stacks

(((10+5) + 5) / ((2+3) * 2))

One for the operands
One for the operators

+

S1 S2 Evaluate: 10 + 5 = 15

10
5

POP S1 5

POP S2 +

POP S1 10

PUSH S1 the result

15

when find CLOSED parenthesis
((15 + 5) / ((2+3) * 2))

With two Stacks

(((10+5) + 5) / ((2+3) * 2))

One for the operands
One for the operators

S1 S2

15 +

5

CLOSED parenthesis

Evaluate: 15 + 5 = 20

POP S2 +

POP S1 5

POP S1 15

PUSH S1 the result

20

(20 / ((2+3) * 2))

With two Stacks

(((10+5) + 5) / ((2+3) * 2))

One for the operands
One for the operators

S1 S2

20 /

2
+

3

Evaluate 2+ 3 = 5

POP S1 2

POP S1 3

POP S2 +

(20 / ((2+3) * 2))

PUSH S1 the result

5

CLOSED parenthesis

5

With two Stacks

(((10+5) + 5) / ((2+3) * 2))

One for the operands
One for the operators

S1 S2

20 /

5

(20 / (5 * 2))

*
/

5

With two Stacks

(((10+5) + 5) / ((2+3) * 2))

One for the operands
One for the operators

S1 S2

20

(20 / (5 * 2))

2

CLOSED parenthesis

Evaluate: 5 * 2 = 10

POP S1 2

POP S1 5

PUSH S1 result

10

POP S2 *

With two Stacks

(((10+5) + 5) / ((2+3) * 2))

One for the operands
One for the operators

S1 S2

20 /

(20 / 10)

10

CLOSED parenthesis

20 / 10= 2

10

20
/

Examples

Checking for balanced parenthesis

{ [(a+b) -c]/d} { [a+b) -c]/d}

you will se
e this in

 the lab

6

Implementing a Stack with an
Array

The stack consists of an N-element array S and an integer
variable t, the index of the top element in array S.

Algorithm size():
return t +1

Algorithm isEmpty():
return (t < 0)

Algorithm top():
if isEmpty() then

ERROR
return S[t]

Algorithm pop():
if isEmpty() then

ERROR
e ← S[t]
S[t] ← null
t ← t-1
return e

Algorithm push(obj):
if size() = N then

ERROR
t ← t + 1
S[t] ← obj

Performance and Limitations

• Performance

• Limitations

size() O(1)
isempty() O(1)
top() O(1)
push(obj) O(1)
pop() O(1)

Space: O(n)

n = size of
the Array

Time

STATIC STRUCTURE

What does
O(1) mean ?

we will see the
formal definition
next week

Implementing a Stack with a Singly
Linked List

TOP

size = 4

-Singly linked list plus a variable containing the
current size of the list

DYNAMIC STRUCTURE

7

PUSH: Add at the front

POP: Take the first

Algorithm pop():
if isEmpty() then

ERROR
temp ← top.item
top ← top.next
size- -
return temp

Algorithm push(obj):
n ← new Node
n.item ← obj
n.next ← top
top ← n
size++

n

top

top

temp

node:
node.item
node.next

size() O(1)
isempty() O(1)
top() O(1)
push(obj) O(1)
pop() O(1)

Time:

Space: Variable

Performance

Limitations: ?

The Queue

8

first-in-first-out (FIFO)

Elements are inserted at the rear (enqueued) and removed
from the front (dequeued)

The Queue

• Direct applications
– Waiting lists, bureaucracy
– Access to shared resources (e.g.,

printer)
– Multiprogramming

• Indirect applications
– Auxiliary data structure for algorithms
– Component of other data structures

Applications of Queues

The Queue Abstract Data Type

• Fundamental methods:
enqueue(o): Insert object o at the rear of the queue
dequeue(): Remove the object from the front of the
queue and return it; an error occurs if the queue is empty

• Support methods:
size(): Return the number of objects in the queue
isEmpty(): Return a boolean value that indicates

whether the queue is empty
front(): Return, but do not remove, the front object in
the queue; an error occurs if the queue is empty

Implementing a Queue with an
Array

••••
109876543210

FRONT
REAR

Insert at the rear and
remove from front

••••
109876543210

FRONT REAR

9

Implementing a Queue with an
Array

••••
109876543210

FRONT REAR

Remove: Front = (Front+1) mod n

mod nInsert: Rear = (Rear+1)

•••
109876543210

FRONTREAR0n-1

1

2•
•

• • •

• Array in a circular fashion
• Size fixed at the beginning

•The queue consists of an N-element array Q and
two integer variables:

-f, index of the front element
-r, index of the element after the rear one 0n-1

1

2

Questions:

••••
10987654321 0

f r

How do we compute the number of elements in
the queue from f and r?

The queue is empty

What does f = r mean?

•••••••
10987654321 0

r f

(N - f + r) mod N

In the example:
(11 - 8 + 4) mod 11 = 7

10

Algorithm size():
return (N - f + r) mod N

Algorithm isEmpty():
return (f = r)

Algorithm front():
if isEmpty() then

ERROR
return Q[f]

Algorithm dequeue():
if isEmpty() then

ERROR
temp ← Q[f]
Q[f] ← null
f ← (f + 1) mod N
return temp

Algorithm enqueue(o):
if size = N - 1 then

ERROR
Q[r] ← o

size() O(1)
isempty() O(1)
front() O(1)
enqueue(o) O(1)
dequeue() O(1)

Time:
Space: O(N)

Performance

Implementing a Queue with a Singly
Linked List

Nodes connected in singly linked list
We keep a pointer to the head and one to the tail

The head of the list is the front of the queue, the
tail of the list is the rear of the queue.

Why not the opposite?

Removing at the Head

11

Inserting at the Tail

size() O(1)
isempty() O(1)
front() O(1)
enqueue(o) O(1)
dequeue() O(1)

Time:

Space: Variable

Performance

If we know in advance a reasonable
upper bound for the number of
elements in the queue, then

ARRAYS
Otherwise

LISTS

A more general ADT:
Double-Ended Queues (Deque)

A double-ended queue, or deque, supports insertion and
deletion from the front and back.

Main methods:
insertFirst(e): Insert e at the beginning of deque.
insertLast(e): Insert e at end of deque
removeFirst(): Removes and returns first element
removeLast(): Removes and returns last element

Support methods:
first()
last()
size()
isEmpty()

12

Implementing Deques with Doubly
Linked Lists

Deletions at the tail of a singly linked list cannot be done
efficiently

To implement a deque, we use a doubly linked list
with special header and trailer nodes

trailerheader

•The header node goes before the first list element. It has
a valid next link but a null prev link.

•The trailer node goes after the last element. It has a valid
prev reference but a null next reference.

NOTE: the header and trailer nodes
are sentinel or “dummy” nodes
because they do not store elements.

trailerheader

insertFirst(e):

trailerheader

e

header.next ← e

e.prev ← header

e.next ← header.next

e.next.prev ← e

trailerheader

removeFirst():

header.next ← header.next.next
header.next.prev ← header

13

Here’s a
visualization of
the code for
removeLast().

With this implementation, all methods have complexity O(1)

Implementing Stacks and Queues
with Deques

Stacks with Deques:

Queues with Deques:

