
1

1

CSI2114
Data Structures

Spring 2006

CSI 2114 (Spring 2006)
Data Structures

Prof: Amiya Nayak

Office: SITE 5001

Email: nayak@uottawa.ca

Office Hours: Thurs (13:00-15:00), Fri (13:30-14:30)

http://www.site.uottawa.ca/~anayak/CSI2114S06/

Course Web site

For slides, assignments, information ...

Michael Goodrich, Roberto Tamassia
Data Structures and Algorithms in Java
(3rd or 2nd ed.), Wiley, 2004 (2000)

available at AGORA
(104.11 $ +tax)

Textbook

Available free on the website:
Hints for the Exercises
Animations

http://ww3.java3.datastructures.net

2

What are they ?
Why are they important ?

Lab Schedule:

Wednesday 12:30-14:30 STE 2060

Labs Evaluation

Assignments 30 %

Midterm exam
(closed book, 2 hours) 20 %

Final exam
(closed book, 3 hours) 50 %

To pass the course you must get at least 50 %
in the average of the two exams

- 4 assignments

Assignments

NOTE: Plagiarism will not be tolerated

Each assignment will be composed by two parts:
- theory questions
- programming exercises

Data Structures ?

Example:
Electronic Phone Book

Lis
a

Michele
John

11
0
Ba

nk

622-98
23

112-44
33

75
Bronson

Pierre

Contains different DATA:

- names
- phone numbers
- addresses

Need to perform certain OPERATIONS:

- add
- delete
- look for a phone number
- look for an address

How to organize the data so
to optimize the efficiency of
the operations

3

Data Structures ?

Lis
a

MicheleJohn
11

0
Ba
nk

622-98
23

112-44
33

75
Bronson

Pierre

Example:

Lisa
223-4433

Pierre
543-1234

Michael
123-4567

Anne
321-6745

Lisa
223-4433

Pierre
543-1234

Michael
123-4567

Anne
321-6745

Lisa
223-4433

Pierre
543-1234

Michael
123-4567

Anne
321-6745

Data Structures ?

Lis
a

MicheleJohn
11

0
Ba
nk

622-98
23

112-44
33

75
Bronson

Pierre

Example:

Lisa
223-4433

Pierre
543-1234

Michael
123-4567

Anne
321-6745

Data Structures ?

Lis
a

MicheleJohn
11

0
Ba
nk

622-98
23

112-44
33

75
Bronson

Pierre

Data Structures ?

How to represent the data

so to perform the operations efficiently

4

Data Structures ?

Keep in mind the operations you need to perform

Choose the best structure for your data

How to understand if a data structure is good

Study different data structures

Present in a systematic fashion the most
commonly used data structures, emphasizing
their abstract properties.

Discuss typical algorithms that operate on
each kind of data structure, and analyze
their performance.

Compare different Data Structures for
solving the same problem, and choose the
best.

Objectives of the course

• Review ….
• Stacks, queues, deques (review)
• Algorithm analysis techniques
• Vectors, Lists, Sequences
• Trees
• Heaps
• Dictionaries
• Search trees
• Tries
• Graphs
• Sorting

Overview of the course

Arrays and Pointers 16

• Arrays

• Linked Structures

Review

76543210

NULL

5

Arrays and Pointers 17

Array

• Static structure
• Direct access

Numbered collection of variables of the same
type. Fixed length.

A:
76543210

Insertion ?
Deletion ?

76543210

omdca

Array

f

example of insertion in a sorted array

76543210

omfdca

Array

move “m” and “o”
to make room for “f”

example of insertion in a sorted array

76543210

zpomfdca

Array

1) For insertions and deletions
elements MUST BE MOVED

2) What happens when the array is FULL ?

6

Arrays and Pointers 21

• Dynamic structure (never full)
• Sequential access (no direct access)
• Insertion and deletion occur without

moving elements

NULL

Linked Structures

Arrays and Pointers 22

NULL

Single Linked Lists

Node v

vObject element

Node next

v.next

v.element

Arrays and Pointers 23

Insertion

Original configuration:

Goal: to insert the element q into list h.

NULL

h

q

Arrays and Pointers 24

Insertion at the beginning

NULL

h

q

(easy)
h ← q

… we are using pseudocode …

q.next ← h

7

q.next ← h

pseudocode

variable q.next gets the value of variable h

(q.next:= h)

Arrays and Pointers 26

Insertion after r

NULL

h

q

r

(easy)

q.Next ← r.Next

r.Next ← q

Arrays and Pointers 27

Insertion before r

(more
difficult)

• Must maintain a pointer to
the preceding element
or

• Exchange the contents
pointed to by r and q, and
insert q after r.

NULL

h

q

r

Arrays and Pointers 28

Search

Traverses the list

NULL

h

tmp

Node tmp;
tmp ← h;
while (tmp != null) {

if tmp .element is what-I-m-looking-for {
return tmp ; }

else

8

Arrays and Pointers 29

Search

Traverses the list

NULL

h

tmp
Node tmp;
tmp ← h;
while (tmp != null) {

if tmp .element is what-I-m-looking-for {
return tmp ; }

else {tmp ← tmp .next; }
return tmp ;
} 30

Deletion

NULL

h
r

Element at r (difficult)

Element after r (easy)

First element (easy)

(Deleting the element after r)

h ← h.Next

r.Next ← r.Next.Next

• Use a pointer to the preceding element, or
• Exchange the content of the element at r with
the contents of the element following r, and delete
the element after r. (this is impossible if r points to the last
element)

• Nodes store:
– element
– link to the previous node
– link to the next node

• Special trailer and header nodes

prev next

trailerheader

node

Doubly Linked List

trailerheader

header.next ← header.next.next

header.next.prev ← header

Deletion (first element)

9

Deletion (element p)

p

p
←p.Prev.Next p.Next

←p.Next.Prev p.Prev

Insertion (beginning)

trailerheader

X

header.next ← X

X.prev ← header

X.next ← header.next

X.next.prev ← X

Insertion (before p)

p

q

q

insert before p

p

p

