A summary of the 680X0’s instrudion types {excluding floating-point instructions).

Tustruction type |

Data teansfer

Data processing

Program control

Opcode

EXG
MOVE
SWAP

ABCD
ADD
AND
ASx
CLR
Div
EOR
EXT
LSy
MUL
NBCD
NEG
NOT
OR
ROx
SBCD
suB

Bee
BRA
BSR

CMP
DBee

mp
JSR

NOP
RTS
Sec
TST

Description

Exchange (swap) contents of two registers
Move {copy) data unchanged from source to destination
Swap lelt and right halves of register

Add decimal (BCD) numbers with carry (extend) flag
Add binary (two's-complement) numbers

Bitwise logical AND

Asithimetic shift left {x = L) or right (x = R) with sign extensi
Clear operand by resctting all bits to 0

Divide binary numbers ’

Bitwise logical EXCLUSIVE OR

Extend the sign bit of subword to il register

Logical shift left (x = L) or right (x = R)

Multiply binary numbers

Negate decimal number (subtract with carry from zero)
Negate binary number (subtract from Zero)

Bitwise logical complement '

Bitwise logical OR

" Rotate feft (v = L) orright {x = R}

Subtract decimal (BCD) numbers
Subtract binary (two's-complement) numbers.

Branch relative to PC if specified condition cc is true

Branch usconditionally, relative to PC -

Call (branch to) subroutine at address relative to PC; save PC st
(return address) in stack _

Compare two operand values and set flags based on resuit

Loop instruction: Test condition c¢ and perform no operation if
condition is true; otherwise, decrement specified register and.
branch to specifiecd address

Branch unconditionally to specified address

Call (jump to) subroutine at specified address; save PC state
{return address) in stack

No operation, but instruction execution continues

Return from subroutine -

Set operand to Is (Os) if condition cc is true {false) .

Test an operand by comparing it to zero and sciting flags

(Address)
{Quick)

(Address)

SOME INSTRUCTIONS OF 68000

Transfer of Data

MOVE.size <s>,<d>
MOVEA. size <s>,<d>
MOVEQ.size <s>,<d>

SWAP Di
EXG Xi, Xj

Addition
ADD.size <s>,<d>
ADDA.size <s>,<d>

(Immediate) ADDLsize <s><d>

(Unsigned)
(Signed)

(Unsigned)
(Signed)

Subtraction

Multiplication
MULU <s>, Di
MULS <s>, Di

Division
PIVU <s>, Di
DIVS <>, Di

Other
CLR.size <d>
NEG.size <d>

Logical
AND.size <s>,<d>

(Immediate) ANDILsize <s>,<d>

OR.size <s>.<d>

(Immediate) ORlL.size <s><d>

EOR.size <s>,<d>

(Immediate) EORI.size <s>,<d>

NOT.size <d>

Effecd Pesbrickims
<d> e <s> (<d># Ai)
<d> ¢ <s> (<d> = Al) (size # B)
<d> ¢ <s> (<s> = Imm) (<d> # Ai) (size #B | W)

Di(31:16) « Di(15:00)
Xi(31:00) ¢« Xj(31:00)

(<d> # Al) («s> | <d> = Di)
(<d> = A1) (size # B)
(<s> = Imm) (<d> # Al)

<d> ¢ <d> + <s>
<d> ¢ <d> + <8>
<d> ¢ <d> + <s>

Same as ADD, but with keyword SUB

(restricted size: both operands are words) |

Di(31:00) « Di(15:00) * <s> (<s> # Al)
Di(31:00) « Di(15:00) * <s> (s> # Al)
(restricted size: size of <s> = W)

Di(31:00) « Di(31:00) / <s> (<s> # Al)
Di(31:00) < Di(31:00) / <s> (<s> # Al)

Remainder= Di(31:16) & Quotient = Di(15:00)

<d> ¢ 0
<d> ¢ 2's C of <d>

(<d> # Al)
(<d># A1)

<d> e <d> M <s>
<d> ¢ <d> N <>

(<d> # Al) (<s> | <d> = Di)
(<s> = Imm) (<d> # Al)

<d> ¢ <d> U <s>
<d> ¢ <d> U <s>

(<d> # Al) (<s> | <d> = Di)
(<s>= Imm) (<d> # Ai)

<d> ¢ <d> D <>
<ds» ¢ <d> P <s>

(<s> = Di) (<d> # Al)
(<s>= Imm) (<d> # Ail) (size#W)

<d> ¢ <d>’ (<d> # Ai)

Transfer of Control

Bec <relative address or label>
Branch to (relative address or label) if condition@is true

A) Conditimal Fronager

@ Name Flag Conditions
':'c Carry clear cC=20

¢S | Carry set C =1

EQ | Egual to {0) Z =1

GE | Greatexr than or egual to | N@®V = 0

GT | Greater than (N@V) + 2= 0 ‘
RI' Higher than C+2 =0

LE | Lass t':han or egual to (N®V) + 2 =1
LS wthan or the same ag | C+ Z = 1

LT | Less than N@®V = 1

MI [Minus, or negative N=l

NE | Mot egual to {0} z2 =9

PL {Plus, or positive Nw»g

VC | Ho overflow v

V8 [Result is too large v=1

B) Uncrrbotimal Taposfe

IMP <relative address or label>
BRA <relative address or label>

Branch to (relative address or label) unconditionally

Compare et

CMP size <s>, <d> 7 = <d> - <85>
(Address) CMPA size <s>, <d> 7=<d>-<s>

CMPlL.size <s>, <d> ? = <d> - <s>

(Immediate)

(Memory) CMPM.size <s>, <d>

T=<d> - <85>

R ot o

(<d>=Di)

(<d> = Ai) (size #B)

(<s> = Imm) (<d> # Ai)
(Both <s> and <d> = (Ai)+)

68000"s shift and rotate instructions

Class teft shift Right shift

. MSB
ASL, arithmetic shift left

ASR, arithmetic shift right Operand [*—0 {.—' Operand

LSL, logical shift feft -

LSR, logical shift right Og‘“"mn ¢ F—0 | 0= operang

AOL, rotate teft

- =] | L=
ROR, rotate right B Operand Operand

Note X bit not affected

ROXL, rotate left ' e

through extend . *

Operand Operand
ROXR, rotate right
through extend

Arithmetic shifts update all bits of the CCR. The N and Z bits are set or cleared
as we would expect. The V bit is set if the most significant bit of the operand is
changed at any time during the shift operation. The C and X bits are set according to
the last bit shifted out of the operand. However, if the shift count is zero, C is
cleared and X is unaffected. Logical shifts and rotates clear the V bit.

Assembly Language Form of Shift Operations

All eight shift instructions are expressed in one of three ways. These are illustrated
by the ASL (arithmetic shift left) instruction.

Mode f. ASL DxDy Shift Dy by Dx bits
Mode 2. ASL #{data).Dy Shift Dy by idata bits
Mode 3. ASL {ea) Shift the contents of ea by one place

A shift instruction can be applied to a byte, word, or longword operand, with the
exception of mode 3 shifts, which act only on words.

In mode 1, the “source” operand, Dx, specifies how many places the destina-
tion operand, Dy, needs to be shifted. Dy may be shifted by 1 to 32 bits. In mode 2,
the literal, # (data), specifies how many places Dy needs to be shifted; this must be
in the range 1 to 8. In mode 3, the memory location specified by the effective
address, (ea), is shifted one place. Many microprocessors permit only the siatic shifts
of modes 2 and 3. The 68000 permits dynamic shifts (e, mode 1) because the
number of bits to be shifted is computed at run-time.

PR

ASSEMBLER DIRECTIVES 22

(Allocate storage, Define constants, Link identifiers to values, control assembling)

bs DC EU

A line starting at column 1 with an * is a comment.

Any other line is composed of three parts:
- Labei (starts at column 1 with a letter and consists of at most 8 characters)
- 1ns£mctzon or assembler directive
- Comment "
(1st and 3rd parts are optional. If label is :mt used then column 1 is empty)

TTL | (gives the title of the program)
identifier EQU value | (links an identifier to a value)

ORG $HHHHHH (Origin of data)
identifier .DS.size length (reserves memory space for variables)
identifier DC.size value (defines constants)

ORG $HHHHHH (Origin of program)

nnnnn

.....

END (indicates the end of the program)

a) Given two vectors of 20 one-byte numbers each,
located at addresses VECT1 and VECT?2.

VECT VECT2 -
C-{lj’#o«i _/—"P‘O ﬂ

i

 Add these vectors and put the resulting vector at address VECT2.

AddVect: |
CLR.L DO », &0
MOVEA.L VECTI, A0 Ap £ VECT|
MOVEA.L VECTZ, Al A, &— VECT2
Loop: | | | ot
MOVEB (A0)+ D1 y, « MRl A€ T
ADD.B D1, (AD+ MIA[] < MIAT+Dr; AL< At
ADDLB #$1,D0 b, < Dt
CMPLB #20, DO D20 (31 7
BNE Loop ‘5 T Bmck 4e Ln-f
Done:
Note that .
ADD.B D1, (Al)+
can be replaced by

ADDB = Di, (Al)
ADDA.L #1, Al

124

b) Given a vector of 10 one-byte numbers,
located at address NUMBERS.
Find the sum (address SUM) and
the average (address AVERAGE) of these numbers.

Stats:

CLR.L DO e
MOVE.B #10, D1 D, «— 10
CLR.L D2 B, «— O
MOVEA.L NUMBERS, A0 P, & NUMBERS
Loop: - A
MOVEB (A0)+, D2 D, <— ™Al A, & AT
ADD.L D2,D0 N < D, + B,
SUBLB #1, D1 O, < B, -
BNE Loop P!
9F (b, #F0Y) bvomch do Leop
MOVEW DO, SUM M[sum] & D,
DIVU #S$A, DO Dy wW & 1},/ 10
MOVE.B DO, :

Done:

