DIGITAL COMPUTER

(Discrete Information Processing System)

System

is an organized collection of **components** that interact via **links** among themselves and with their environment to provide a pre-defined **functionality**

System Structure

defines the composition of the system in terms of system components and links

System Functionality

defines the behavior of the system in terms of system inputs and outputs

The structure of a system is given at different levels of detail e.g.,

- a) Compositional
- b) Logical
- c) Physical

The functionality of a system with

n inputs
$$x_1, x_2, \dots, x_n$$

m outputs z_1, z_2, \dots, z_m
is defined by
$$z_1 = \mathbf{f}(x_1, x_2, \dots, x_n)$$

$$z_2 = \mathbf{f}(x_1, x_2, \dots, x_n)$$

$$z_m = \mathbf{f}(x_1, x_2, \dots, x_n)$$

e.g.,

Discrete Information

Numeric Information is in Binary Number System

- .. Number Systems (Binary, Octal, Decimal, Hexadecimal)
 - Representation
 - Conversion
 - Arithmetic Operations

Alphanumeric Information is in Binary Coding Systems

- :. Coding Systems
 - Encoding
 - Decoding
 - Error Detecting Codes
 - Error Correcting Codes

Discrete Information Processing

- * is expressed in a two valued Boolean Algebra as Boolean functions
- .. Switching Algebra
 - Boolean Expressions (e)
 - Truth Tables (TT)
 - Conversion between e and TT
- * is realized by means of Logic Circuits
- : Logic Circuits
 - Logic Gates
 - Minimization
 - Combinational Circuits
 - Sequential Circuits

Combinational Circuits (CC)

i.e.,

where

$$z_i=f(x_1,\,x_2,\,\ldots\,,\,x_n),\,1\leq i\leq m$$

- Half Adder
- Full Adder
- Binary Ripple Adder/Subtractor
- Look-Ahead Carry Adder
- Magnitude Comparator
- Code Converter
- Decoder
- Encoder
- Demultiplexer
- Multiplexer
- ROM (Read-Only Memory)
- PLA (Programmable Logic Array)
- ALU (Arithmetic Logic Unit)

Sequential Circuits (SC) ... Circuits with Memory

where
$$z_i = f(y_1, y_2, \dots, y_k, x_1, x_2, \dots, x_n), 1 \le i \le m$$

$$Y_j = f(y_1, y_2, \dots, y_k, x_1, x_2, \dots, x_n), 1 \le j \le k$$

- Asynchronous Sequential Circuits (ASC) ... without clock
 - Latches
 - Analysis
 - Design
- Synchronous Sequential Circuits (SSC) with clock
 - Flip-Flops
 - Analysis
 - Design
- Counters
- Registers

{ Examples of Sequential Circuits

Basic Computer Organization and Design

- Data/Address/Control Transfer Units
- Memory Units
- Input/Output Control Units
- Central Processing Units
- Interrupts
- Addressing Modes
- Instruction Types
- Instruction Sets
- Assembly Language Programming

THEN, ...

CSI2121. Computer Architecture II (2 h.p.w.t., 2 h.lab.t.--3 cr.). Data representations. Assembly language concepts. Programming a typical microprocessor, e.g. 386. Basic input/output devices. Programming input/output operations; interrupts, e.g. disk controllers. Prerequisite(s): CSI2111.