
Assignment # 4 - CSI 2111 (Solutions)

Q1. You are asked to design a 3-bit synchronous counter that starts at 1 and cycles through

prime numbers (i.e., number divisible by 1 or itself). The counter counts up when the mode
M = 1 and down when M = 0.

a) Design the counter using JK flipflops, transitioning on positive edge. Show all the steps. (15)

 Present
 State

Next
State

FF
Input

FF
Input

FF
Input

M ABC A’B’C’ JA KA JB KB Jc Kc
0 0 0 1 1 1 1 1 x 1 x x 0
0 0 1 0 0 0 1 0 x x 1 1 x
0 0 1 1 0 1 0 0 x x 0 x 1
0 1 0 1 0 1 1 x 1 1 x x 0
0 1 1 1 1 0 1 x 0 x 1 x 0
1 0 0 1 0 1 0 0 x 1 x x 1
1 0 1 0 0 1 1 0 x x 0 1 x
1 0 1 1 1 0 1 1 x x 1 x 0
1 1 0 1 1 1 1 x 0 1 x x 0
1 1 1 1 0 0 1 x 1 x 1 x 0

JA = M’B’ + MBC; KA = M’B’ + MB
JB = 1; KB = A + MC + M’C’
JC = 1; KC = M’A’B + MA’B’

(Figure courtesey of Jamie Parsons & Brent Martel)

 b) Is the counter self-correcting? Justify your answer. (5)

Yes, it is self-correcting.
For M = 0:
0 -> 7; 4 -> 3; 6 -> 5

For M = 1:
0 -> 3; 4 -> 7; 6 -> 1

Q2. Using the following 4K x 8 bits RAM chip (the enable input is also called chip select):

read/write
enable

address
8input 8 output

12

4K x 8 bits
RAM

a
i
e
rw

o

 a) Describe the circuits necessary by filling out the blanks as shown below for the

realization of a 1M x 64 bits RAM. (5)

 2048 4K x 8 bits RAM chips
 64 OR gates with 256 inputs
 One 8 to 256 decoder with enable input

 b) Implement a 12K x 24 bits RAM. Clearly show the inputs/outputs of your RAM blocks

and decoders, and show connections clearly (with different colors). For the OR gates,
you can simply draw some of them and explain how the others would be connected. (10)

(Figure courtesey of Brett Michol)

Q3. Given the contents of the following memory addresses and registers (available before each

of the following MC68000 instructions), determine for each instruction, when possible, the
contents of the modified memory addresses and registers. (15)

Some registers: Memory ([address] = content):
[A0] = $0000 2002 [$002000] = $B020
[A1] = $0000 2006 [$002002] = $BBBB
[D0] = $0000 0010 [$002004] = $8000
[D1] = $ABCD 5432 [$002006] = $1111
[D2] = $0001 0002 [$002008] = $7000
[D3] = $0000 2002 [$00200A] = $1234

a) MOVE.L A0,D3 i) MOVE.L $FFFC(A1), D0
b) MOVE.L #80,D1 j) MOVE.B $4(A1),D1
c) MOVEA.W D1,A1 k) ADDA.W -(A1),A0
d) MOVE.W (A1),A1 l) ADD.B D1,D1
e) MOVEA.B (A1),D0 m) MULU D0,D2

f) MOVE.L D1,(A1) n) DIVS D0,D2
g) MOVE.W -(A1),(A0)+ o) ROR.W $#5, D2
h) MOVE.B D2,-(A1)

a) [D3] = $0000 2002
b) [D1] = $0000 0050
c) [A1] = $0000 5432
d) Prohibited because <d> = A1
e) Prohibited because (.B is not supported and <d> = D0)
f) [$002006] = $ABCD; [$002008] = $5432
g) [A0] = $0000 2004; [$002002] = $8000; [A1] = $0000 2004
h) [A1] = $0000 2005; [$002002] = $8002
i) [D0] = $BBBB 8000
j) [D1] = $ABCD 5412 (A1 is unchanged)
k) [A1] = $0000 2004; [A0] = $0000 A002
l) [D1] = $ABCD 5464
m) [D2] = $0000 0020
n) [D2] = $0002 1000
o) [D2] = $0001 1000 (invalid instruction if $#5 is treated as an error)

Q4. Consider an array of N bytes located in memory at the address B. Write a program in

Sim68K assembly language (“maximum.68a”) which will find the largest and the second-
largest value in this array and store them in the locations First and Second, respectively.
Your program should also display the values of First and Second in the end. Test your
program using an array of at least 10 elements. (Suggestion: You can put N and B at the end
of your program after the HLT.B) (15)

; ***
; *** CSI2111 Assignment-4 Question-4 ***
; *** max2.68a ***
; *** Sim68 program to the maximum and second maximum ***
; *** value in an array of bytes ***
; ***
;

; Main program
 MOVEA.W @B, A0 ; move starting address of array to A0
 CLR.L D0 ;
LABEL @Loop ;
 CMP.B D0, @N ; Are we at the end of the array?
 BEQ.W @Done ;
 CMP.B @First,(A0) ; compare array element with First
 BGE.W @Found1 ; if greater, found new max
 CMP.B @Second,(A0) ; else compare with Second
 BGE.W @Found2 ; if greater, found new 2nd-max
LABEL @Continue ;
 ADDQ.B #$1, A0 ; go to next element
 ADDQ.B #$1, D0 ; increment counter
 BRA.W @Loop ;

LABEL @Found1 ;
 MOVE.B @First, @Second ;
 MOVE.B (A0), @First ;
 BRA.W @Continue ;

LABEL @Found2 ;
 MOVE.B (A0), @Second ;

 BRA.W @Continue ;

LABEL @Done ;
; display First and Second.
 DSP.B D0 ; display the size of array
 DSP.B @First ; display maximum value
 DSP.B @Second ; display second maximum
 HLT.B ;

DEF.B @First, #$00 ; Initialize to zero
DEF.B @Second, #$00 ; ''
DEF.B @N, #$0C ; N = 12 (size of array)
DEF.L @B, #$90080706 ; Array starts here
DEF.L @B4, #$05040302 ;
DEF.W @B8, #$12345678 ;

Q5. Here is a binary Sim68k program. Decode it and provide the corresponding Sim68k

assembly language program. You can check your answer by translating your assembly
program… (15)

/ ; Assembler Language OpCode Oper1 Oper2 /
/ ; MSB LSB MSB LSB MSL LSB /
/ ;--- /
/ ; Input the number N /

/ INP.B @N ; / $E0 $60 $00 $2C
/ MOVEQ.L #$2, D1 / $CC $21

/ LABEL @Loop /
/ CLR.L D0 / $3C $00
/ MOVE.B @N, D0 / $C1 $60 $00 $2C
/ CMP.B D1, D0 / $81 $10
/ BLE.W @done / $BA $60 $00 $26
/ DIVS.L D1, D0 / $2D $10
/ EOR.W D0, D0 / $5B $00
/ TST.L D0 / $8C $00
/ BEQ.W @Composite / $A2 $60 $00 $22
/ ADDQ.B #$1, D1 / $08 $11
/ BRA.W @Loop / $92 $60 $00 $06

/ LABEL @Composite /
/ MOVEQ.B #$1, @Result / $C8 $16 $00 $2D

/ LABEL @done /
/ DSP.B @Result / $E8 $60 $00 $2D
/ HLT.B / $F8 $00

/ DEF.B @N, #$00 / $00
/ DEF.B @Result, #$00 / $00

(b) Can you guess what this program does? (Bonus 5)

The program inputs a number and checks whether it
is prime or composite. If the input number is
prime then the Result is zero, else the Result is
one.

