Assignment #1 - CSI 2111

Due Friday, **September 30,** 2005 before 16:00, in box marked CSI2111 (#**31**) 1st floor of SITE building.

This assignment could be done in teams of two people.

Clearly identify all steps for each question.

The number of points of each question is indicated between brackets, for a total of 70 points.

Q1.	Consider binary words of length N = 8 bits, representing signed numbers. a) Find the 2's CF representation of the numbers: $(+63)_{10}$, $(-63)_{10}$, $(+115)_{10}$, $(-115)_{10}$. b) Using 2's CF representation, calculate: $(+115)_{10} + (-63)_{10}$ c) Using 2's CF representation, calculate: $(-115)_{10} - (-63)_{10}$	(4) (2) (2)
Q2.	Consider signed numbers of length $N = 6$ bits in 2's CF representation. Using Booth algorithm, calculate: $(-30)_{10} * (-17)_{10}$.	(8)
Q3.	a) Identify the decimal number in floating point represented in IEEE 754 form by: $(1\ 10001011\ 11101000000000000000000000$	(4)(4)
Q4.	By indicating the axioms and theorems used in each step, where applicable: a) Complement the Boolean function: $f(w, x, y, z) = (w + x + y)(w' + xz) + y'z'$ b) Prove algebraically that: $B + C'D = AB + BC'D' + A'BC + C'D$	(4) (6)
Q5.	Let $f(w, x, y, z) = \Pi M (0, 2, 4, 5, 6, 8, 12)$: a) Determine the <u>minimal SOP</u> form of f . b) Determine the <u>minimal POS</u> form of f .	(4) (4)
Q6.	Let $f(w, x, y, z) = \Sigma m (1, 3, 4, 6, 8, 11) X (0, 5, 14)$: a) Determine the <u>minimal SOP</u> form of f . b) Determine the <u>minimal POS</u> form of f .	(4) (4)
Q7.	Using Max+plus II (without VHDL): a) Give graphical representation (using the <i>Graphic Editor</i>) for the following two functions: $F1(X,Y,Z) = (XY+Z')(X+Y'Z') \text{ and } F2(X,Y,Z) = ((XY+Z')(X+Y'Z'))'$ Use only the components: and2, or2, not, input, output	(10)
	b) Simulate your circuit using all the combinations of 0's and 1's for X, Y and Z. Include in your assignment the timing diagram resulting with, (in this order) the input signals X , Y and Z and the outputs $F1$ and $F2$. You can use the total time interval of 800ns (100ns clock period).	(10)

Note: You may simply include a screen capture (using cut/paste) of your circuit diagram and the resulting timing diagram (signals). They must however be readable.