CSI 2111 (Fall 2004) Assignment # 2 Solution

Q1. For this question, use Max+plus II in *Functional SNF Extractor* mode. Use a different directory for each question (same name as your VHDL file / graph file).

Consider the following POS form for f: $f(w, x, y, z) = (x + z') \cdot (w + y + z')$

a) Realize f graphically using only NAND gates of suitable sizes (no NOT gates). Call it a2q1a. (15)

Solution 1 – a

f(w, x, y, z)

$$= (x + z') . (w + y + z')$$

$$= wx + xy + xz' + wz' + yz' + z'$$

$$= wx + xy + z'$$

$$= ((wx)'. (xy)'. z)'$$

$$= (w ↑ x) ↑ (x ↑ y) ↑ z$$

9	Z	У	х	W		f	olo
0.0>	0	0	0	0	=	1	
100.0>	1	0	0	0	=	0	
200.0>	0	1	0	0	=	1	
300.0>	1	1	0	0	=	0	
400.0>	0	0	1	0	=	1	
500.0>	1	0	1	0	=	0	
600.0>	0	1	1	0	=	1	
700.0>	1	1	1	0	=	1	
800.0>	0	0	0	1	=	1	
900.0>	1	0	0	1	=	0	
1000.0>	0	1	0	1	=	1	
1100.0>	1	1	0	1	=	0	
1200.0>	0	0	1	1	=	1	
1300.0>	1	0	1	1	=	1	
1400.0>	0	1	1	1	=	1	
1500.0>	1	1	1	1	=	1	
1600.0>	Х	Х	Х	Х	=	Х	
;							

b) Realize f again in VHDL, and use only NOR gates this time. Call it a2q1b.

Solution 1 – b

```
f(w, x, y, z)
                                 =
                                       (x + z') \cdot (w + y + z')
                                 =
                                       ((x + z')' + (w + y + z')')'
                                       ((x + z')' + ((w + y)'' + z')')'
                                 =
                                 =
                                       (x \downarrow z') \downarrow ((w \downarrow y)' \downarrow z')
                                 =
                                       (x \downarrow (z \downarrow z)) \downarrow (((w \downarrow y) \downarrow (w \downarrow y)) \downarrow (z \downarrow z))
-- Implementation of f(w, x, y, z) = (x+z')(w+y+z') using NOR gates.
LIBRARY ieee;
USE ieee.std logic 1164.all;
ENTITY a2q1b IS
        PORT ( w, x, y, z : IN STD_LOGIC;
                f
                              : OUT STD LOGIC );
END a2q1b;
ARCHITECTURE nor only OF a2q1b IS
SIGNAL s1, s2 : STD_LOGIC;
BEGIN
     s1 <= z NOR z;
     s2 <= w NOR y;
    f <= (x NOR s1) NOR ((s2 NOR s2) NOR s1);
END nor only;
8
      zyxw f%
   0.0 > 0 0 0 0 = 1
 100.0> 1 0 0 = 0
 200.0 > 0 1 0 0 = 1
 300.0 > 1 1 0 0 = 0
 400.0 > 0 0 1 0 = 1
 500.0> 1 0 1 0 = 0
 600.0> 0 1 1 0 = 1
 700.0> 1 1 1 0 = 1
 800.0> 0 0 0 1 = 1
 900.0>1001=0
1000.0> 0 1 0 1 = 1
1100.0 > 1 1 0 1 = 0
1200.0> 0 0 1 1 = 1
1300.0 > 1 0 1 1 = 1
1400.0> 0 1 1 1 = 1
1500.0 > 1 1 1 1 = 1
1600.0 > X X X X = X
;
```

c) Realize f again **graphically**, but use a 16 to 1 multiplexer (i.e., *161mux* symbol) this time. Call it *a2q1c*. (15)

<u>Solution 1 – c</u>

```
f(w, x, y, z) = \Sigma m(0, 2, 4, 6, 7, 8, 10, 12, 13, 14, 15)
```

(15)

8 f % гух w 0.0> 0 0 0 0 = 1100.0 > 1 0 0 0 = 0200.0 > 0 1 0 0 = 1300.0 > 1 1 0 0 = 0400.0> 0 0 1 0 = 1500.0 > 1 0 1 0 = 0600.0 > 0 1 1 0 = 1700.0>1110=1800.0> 0 0 0 1 = 1 900.0>1001=01000.0 > 0 1 0 1 = 11100.0 > 1 1 0 1 = 01200.0 > 0 0 1 1 = 11300.0 > 1 0 1 1 = 11400.0> 0 1 1 1 = 11500.0 > 1 1 1 1 = 11600.0> X X X X = X;

Compare the results of the three cases for all the combinations of w, x, y, z (0 to 15). They should be similar. You can compare the signals (*waveforms*) or the truth tables generated by the tool (for one or the other of the diagrams).

The truth tables for the three cases are same !!

Q2. Consider the functions P(x,y,z), which generates the parity bit *P* according to the even parity scheme, and C(x,y,z,P), which checks the parity according to the even parity scheme. The function *P* takes the value 0 if and only if the number of 1's in the sequence xyz is even, otherwise it takes the value 1. The function *C* takes the value 0 if and only if the number of 1's in the sequence xyzP is even (correct), otherwise it takes the value 1 (error detected).

a) Give the canonical SOP form of the functions P and C.

P(x, y, z)	=	$\Sigma m(1, 2, 4, 7)$
C (x, y, z, P)	=	Σ m(1, 2, 4, 7, 8, 11, 13, 14)

b) Realize P(x,y,z) on paper with a 4 to 1 MUX, with y and z as command inputs. Assume you also have all variables in complemented form. <u>Identify</u> the inputs/outputs of the MUX. (15)

Solution 2 – b

	I ₀	I_1		I ₃
x'	0	(1)	2	3
х	4	5	6	$\overline{)}$

c) Realize C(x,y,z,P) on paper with two 8 to 1 decoders with *Enable* input, one NOT gate, and one NOR gate (of suitable size) only. Use x,y,z as the control inputs. <u>Identify</u> the inputs/outputs of the decoders. (15)

Q3. a) Among the following functions, which one is implemented using this circuit? Why? (5)

(1) $f(A,B,C,D) = \Sigma m(4,5,6,7,8,9,10) + X(12,13,14,15)$ (2) $f(A,B,C,D) = \Sigma m(4,5,6,8,9,10,14)$ (3) $f(A,B,C,D) = \Sigma m(0,1,2,3,6,7,14,15)$ (4) $f(A,B,C,D) = \Sigma m(0,1,2,3,7,11,15)$ (5) $f(A,B,C,D) = \Sigma m(4,5,6,8,9,10,12,13,14) + X(7,11)$

Solution 3 – a

$$f(A, B, C, D) = ((A' . B')' . (C . D)')'' = (A' . B')' . (C . D)' = (A' . B')' . (C . D)' = (A + B) . (C' + D') = AC' + BC' + AD' + BD' = \Sigmam (4, 5, 6, 8, 9, 10, 12, 13, 14)$$

The correct answer is : (5) $f(A,B,C,D) = \Sigma m(4,5,6,8,9,10,12,13,14) + X(7,11)$

b) Among the following functions, which one is implemented using the following circuit? Why? (5)

(1) $f(A,B,C,D) = \Sigma m(2,5,9,10,11,12,13,15)$ (2) $f(A,B,C,D) = \Sigma m(0,7,8,10,11,13,14,15)$ (3) $f(A,B,C,D) = \Sigma m(3,4,9,10,11,12,13,15)$ (4) $f(A,B,C,D) = \Sigma m(3,5,6,7,8,12,13,15)$ (5) $f(A,B,C,D) = \Sigma m(1,6,9,10,11,12,14,15)$

<u>Solution 3 – b</u>

	I ₀	I ₁	I ₂	I ₃	I ₄	I ₅	I ₆	I ₇
D'	0	2	4	6	8	10	(12)	(14)
D (3	5	7	\bigcirc		13	15

The correct answer is : (5) $f(A,B,C,D) = \Sigma m(1,6,9,10,11,12,14,15)$

Q4. a) At least, how many 8 to 1 MUX are necessary to build a 4096 to 1 MUX? How many external control inputs will this large MUX have?

(5)

(5)

To build a 4096 to 1 MUX, we need a total of **585** (8x1) MUX. We need a 4-layer circuit – with 512 MUX in the first layer, 64 MUX in the second layer, 8 MUX in the second layer and a single MUX in the final layer. The large MUX would have **12** control inputs.

b) At least, how many 4 x 16 decoders with *Enable* input are necessary to build a 8 x 256 decoder with *Enable* input?

We need 17 (4x16) decoders to build a a (8x256) decoder. One decoder would control the other 16 decoders.