
Higher-Order Conditional Term Rewritingin the L� Logic Programming LanguagePreliminary ResultsAmy FeltyAT&T Bell Laboratories600 Mountain AvenueMurray Hill, NJ 07974AbstractIn this paper, we extend the notions of �rst-order conditional rewrite systemsand higher-order rewrite systems to obtain higher-order conditional rewriting.Such rewrite systems can be used to directly express many operations in theo-rem proving and functional programming. We then illustrate that these rewritesystems can be naturally speci�ed and implemented in a higher-order logic pro-gramming language. This paper was presented at the Third International Work-shop on Extensions of Logic Programming, February 1992.1 IntroductionHigher-order rewrite systems extend �rst-order rewrite systems and provide amechanism for reasoning about equality in languages that include notions ofbound variables [1, 9, 12, 5]. First-order conditional rewrite systems extend �rst-order rewrite systems, providing more expressive power by allowing conditionsto be placed on rewrite rules [2, 8]. Such conditions must be satis�ed before aparticular rewrite can be applied. In this paper, we extend these two notionsto de�ne higher-order conditional rewriting. We extend �rst-order conditionalrewriting to the higher-order case in a manner that can be viewed as analogous tothe way that Nipkow [12] and Felty [5] extend �rst-order rewriting to the higher-order case. We use the simply typed �-calculus as the language for expressingrules, with a restriction on the occurrences of free variables so that matchingof terms with rewrite templates is decidable. Conditions will be expressed ina logic, called E�, which extends this restriction on free variables to variablesbound by quanti�cation.We then show how such rewrite systems can be speci�ed and implementedin a higher-order logic programming language whose logical foundation is L�[10], a variant of E�. This language replaces �rst-order terms in traditionallanguages such as Prolog with simply typed �-terms, and �rst-order uni�cationwith a simple and decidable subcase of higher-order uni�cation, called �0�-uni�cation. The rules of a higher-order rewrite system can be directly speci�ed



in this language, and uni�cation is directly available for matching terms withrewrite templates. Our extended language also permits queries and the bodiesof clauses to be both implications and universally quanti�ed. These operationsare essential for applying rewrite and congruence rules to descend through termsin order to apply rewrite rules to subterms. The programs presented here havebeen tested in the logic programming language �Prolog which is more generalthan the language L� used in this paper.In Section 2 we de�ne L� and E�, the metalanguages for logic programmingand for expressing rewriting, respectively. In Section 3, we de�ne conditionalhigher-order rewrite systems using this metalanguage. In Section 4 we describean interpreter for the logic programming language, and in Section 5 we illustrateby example how rewrite systems can be speci�ed in this language. Finally,Section 6 concludes.2 A Metalanguage for RewritingThe terms of the metalanguage are the simply typed �-terms. We present thenotation used here and some basic properties. See Hindley and Seldin [7] for afuller discussion. We assume a �xed set of primitive types. The set of types isthe smallest set of expressions that contains the primitive types and is closedunder the construction of function types, denoted by the binary, in�x symbol!. The Greek letter � is used as a syntactic variable ranging over types. Thetype constructor ! associates to the right.For each type � , we assume that there are denumerably many constants andvariables of that type. Constants and variables do not overlap and if two con-stants (variables) have di�erent types, they are di�erent constants (variables).To make the type � of constant a explicit, we often write a: � . We often speakof a �xed signature or a �nite set of constants and variables, usually denoted�. Simply typed �-terms are built in the usual way using constants, variables,applications, and abstractions. If M is a term and x1; : : : ; xn are distinct vari-ables, we often write �xn:M for �x1 : : :�xn:M and Mxn for Mx1 : : :xn. For aterm M of type �1 ! � � � ! �n ! �0 where n � 0 and �0 is primitive, we saythat n is the arity of M . In a term of the form hM1 : : :Mn where n � 0 and his a constant or variable, we say that h is the head of this term.If x is a variable and M is a term of the same type then [M=x] denotes theoperation of substitutingM for all free occurrences of x, systematically changingbound variables in order to avoid variable capture. We shall assume that thereader is familiar with the usual notions and properties of substitution and �,�, and � conversion for the simply typed �-calculus. Here, equality between�-terms is taken to mean ��-convertible. When we write a term, it actuallyrepresents an equivalence class of terms.A term is called a higher-order pattern (or simply pattern) if every occurrenceof a free variable h appears in a subterm of the form hx1 : : : xn where n � 0and x1; : : : ; xn are distinct bound variables. In Miller [10], it is shown that2



uni�cation of patterns, called �0�-uni�cation, is decidable and that for any twouni�able patterns, a most general uni�er can be computed.To de�ne L� formulas, we extend the notion of terms. We assume o isa member of the set of primitive types. A predicate p is a constant of type�1 ! � � � ! �n ! o where �1; : : : ; �n do not contain o. The logical constants aregiven the following types: ^ (conjunction) and � (implication) are both of typeo! o! o; and 8� (universal quanti�cation) is of type (� ! o)! o, for all types� not containing o. The logical constants ^ and � are written in the familiarin�x form. A formula is either atomic or non-atomic. An atomic formula is ofthe form (pt1 : : : tn), where p is a predicate and t1; : : : ; tn are terms of the types�1; : : : ; �n, respectively. Non-atomic formulas are of the form B1 ^B2, B1 � B2,or 8� (�x B), where B;B1, and B2 are formulas and � is a type not containingo. The expression 8� (�x B) is written 8�x B or simply as 8x B when typescan be inferred from context. The formula 8x1 : : :8xn B, n � 0 is also written8xnB.We de�ne two sets of L� formulas, called D and G, by placing restrictions onvariables bound by quanti�cation. These restrictions are similar to the one aboveon variables bound by �-abstraction in patterns. A variable occurrence z in aformula is said to be positive (negative) if it is bound by a positive (negative)occurrence of a universal quanti�er. A variable occurrence is �-bound if it isbound by a �-abstraction. A formula is in D (respectively G) if every positive(respectively negative) variable occurrence z appears in a subterm of the formzx1 : : : xn where n � 0 and x1; : : : ; xn are distinct either negative (respectivelypositive) variable occurrences or �-bound variable occurrences bound within thescope of the binding for z. We call this restriction on z the head restriction. Inaddition, we require that formulas in D and G are closed. A formula in D or Gis called, respectively, a D-formula or a G-formula.Provability for L� can be given in terms of sequent calculus proofs. A sequentis a pair � �! G, where G is a G-formula, and � is a �nite (possibly empty) setsofD-formulas. The set � is this sequent's antecedent and G is its succedent. Theexpression B;� denotes the set �[fBg; this notation is used even if B 2 �. Theinference rules for sequents are presented in Figure 1. The following provisosare also attached to the two inference rules for quanti�er introduction: in 8-Rc is a constant of type � not occurring free in the lower sequent, and in 8-L t isa term of type � .A proof of the sequent � �! G is a �nite tree constructed using theseinference rules such that the root is labeled with � �! G and the leaves arelabeled with initial sequents, that is, sequents �0 �! G0 such that G0 2 �0. Thenon-terminals in such a tree are instances of the inference �gures in Figure 1.Since we do not have an inference �gure for ��-conversion, we shall assume thatin building a proof, two formulas are equal if they are ��-convertible.We extend L� with equality, reducibility, join, and redex relations at prim-itive types by introducing four constants =� , �!� , #�� , and !� , respectively, oftype � ! � ! o for every primitive type � except o. Subscripts will be omittedwhen type information is not important or can be inferred from context. This3



B;C;� �! G ^-LB ^ C;� �! G � �! B � �! C ^-R� �! B ^ C� �! B C;� �! G �-LB � C;� �! G B;� �! C �-R� �! B � C[t=x]B;� �! G 8-L8�x B;� �! G � �! [c=x]B 8-R� �! 8�x BFig. 1. Left and right introduction rules for L�language will be called E�, and has the additional inference rules in Figure 2.The �rst four rules express reexivity, symmetry, transitivity, and congruenceof equality. In the CONG rule, h is a variable or constant of arity n, and fori = 1; : : : ; n, Mi and Ni are terms of arity mi. Also, the universally quanti�edvariables in the premises must not occur free in the conclusion, and must be ofthe appropriate type for the terms in the premises to be well-formed. In addi-� �!M =M REFL � �!M = N SYM� �! N = M� �!M = P � �! P = N TRANS� �!M = N� �! 8xm1 (M1xm1 = N1xm1) � � � � �! 8xmn (Mnxmn = Nnxmn ) CONG� �! hM1 : : :Mn = hN1 : : :Nn� �!M �! P � �! N �! P JOIN� �!M #� NFig. 2. Rules for equality in E�tion, E� has corresponding REFL, TRANS, and CONG rules for the �! relation.Finally, the last rule expresses the meaning of the join relation. There are norules for the ! relation. It will be used to express rewrite rules.We de�ne a set of formulas called G 0 that, unlike � and G may contain freevariables. A formula is in G 0 if all its constants are either logical connectivesor one of the equality, reducibility, join, or redex predicates. In addition, we4



place a head restriction on negative variable occurrences similar to that on Gbut we also extend it to free variables. In particular, every negative variableoccurrence or free variable occurrence z must appear in a subterm of the formzx1 : : : xn where n � 0 and x1; : : : ; xn are distinct positive variable occurrencesor �-bound occurrences bound within the scope of the binding for z. A formulain G0 is called a G-condition. Such formulas will be used to express conditionson rewrite rules.3 Higher-Order Conditional Rewrite SystemsA conditional equation is de�ned to be a triple G ) l = r such that G is aG-condition whose atomic formulas contain only the equality predicate, l andr are patterns having the same primitive type, l is not a free variable, and allfree variables in r also occur in l or G. We say that an occurrence of a freevariable in a G-condition is in reduced-term position if it occurs in an atomicformula on the right hand side of a binary relation and the atomic formula ison the right hand side of an even number of implications. A conditional rewriterule is de�ned to be a triple G ) l ! r such that all the atomic formulas ofthe G-condition G contain only reducibility, join, and redex predicates, l andr are patterns having the same primitive type, l is not a free variable, and allfree variables in r also occur in l or have occurrences in reduced-term positionin G. A Higher-Order Conditional Rewrite System (HCRS) is a �nite set ofconditional rewrite rules. In Nipkow [12] and Felty [5], higher-order rewriterules without conditions are de�ned using patterns on the left hand side andarbitrary �-terms on the right. The speci�cation of such rewrite systems in ametalanguage slightly more general than L� is discussed in [5]. This notion ofhigher-order rewriting extends the usual notion of �rst-order term rewriting.Conditional rewrite rules as de�ned here extend �rst-order conditional rewriterules (as de�ned in Dershowitz et. al. [3], for example) in an analogous way. In�rst-order rewrite rules, the condition G is often de�ned to be a conjunction ofatomic formulas using equality or one of the reducibility predicates. Thus, ourde�nition extends the de�nition by allowing an arbitrary formula from G0.For higher-order rewrite rules without conditions, the fact that uni�cationof patterns is decidable guarantees that the rewrite relation is decidable. Condi-tional rewriting, even in the �rst-order case is more complicated and not alwaysdecidable, and thus will not be decidable in our case either. Note that we do,however, retain the property that it is decidable whether a given term matchesa left hand side of a rewrite rule.In writing rewrite rules, we adopt the convention that tokens beginning withupper case initial letters are free variables. Tokens that begin with lower caseletters other than those bound by � are constants.To illustrate, we consider an example which expresses evaluation in a simplefunctional programming language consisting of primitive datatypes for booleansand natural numbers, a conditional statement, constructs for lists, function5



abstraction, application, a �x point operator, and the let operator as in ML. Weintroduce a primitive type tm for terms of this functional language and introducethe constants shown with their types in Figure 3 to represent the constructs ofthe language. We will write � and < as in�x operators. Clearly not all terms oftrue : tm nil : tmfalse : tm cons : tm! tm! tmif : tm! tm! tm! tm hd : tm! tm0 : tm tl : tm! tms : tm! tm empty : tm! tm< : tm! tm! tm app : tm! tm! tm� : tm! tm! tm abs : (tm! tm)! tmgcd : tm! tm! tm let : (tm! tm)! tm! tmfix : (tm! tm)! tmFig. 3. Constants for Representing Functional Programstype tm correspond to valid programs. Some form of type checking is needed.We only discuss evaluation here and assume terms to be evaluated correspondto valid programs. The rewrite rules expressing evaluation are given in Figure 4.Evaluation in the �rst-order fragment of this language is given by all but the lastM < M ! falseM < (s M )! true(s M ) < M ! false(s M ) < (s N )!M < N(s M )� (s N )!M � N0�M ! 0M � 0!M(N < M �! true) ) (gcd M N ! gcd (M �N ) N )(M < N �! true) ) (gcd M N ! gcd M (N �M ))gcd M M !Mif true M N !Mif false M N ! Nhd (cons M N )!Mtl (cons M N )! Nempty nil ! trueempty (cons M N )! falseabs �x:(app M x)!M8x:((x! N ) � (Mx �! P )) ) (app (abs M ) N ! P )8x:((x! N ) � (Mx �! P )) ) (let M N ! P )8x:((x! (fix M )) � (Mx �! P )) ) (fix M ! P )Fig. 4. Rewrite Rules Expressing Evaluation in a Simple Functional Languagefour rules. These rules are straightforward and it is easy to see that they satisfythe necessary constraints. The left and right hand sides are patterns since none6



of the free variables are applied to any arguments, and the two conditions areG-conditions.Now consider the last four rules. The two constants app and abs are used tocode function application and abstraction. The �rst rule speci�es �-reduction of�-terms. On the left hand side, the bound variable x will not occur in instancesof M as is required by the �-rule: any instance of M containing x would causethe variable x in the above rule to be renamed to avoid variable capture. Thesecond rule speci�es �-conversion. A term of the form (app (abs M) N) is a�-redex whose reduced form is P as long as the condition on the left is satis�ed.This condition states that for an arbitrary x, under the addition of the rewriterule that rewrites x to N , it must be the case that Mx reduces to P . Notethat instances of P cannot contain free occurrences of the variable x bound byuniversal quanti�cation for the same reason as stated above for M . Thus alloccurrences of x in Mx must be rewritten to N in order for this condition tosucceed. The let construct corresponds to a let statement in ML. In a term ofthe form (let M N), it is intended that the bound variable at the head ofM willbe assigned the value N in the body. In other words, this term is an abbreviationfor the applicationMN . This reduction is expressed by the third rule above andis similar to the rule for �-reduction. The rule which expresses the unfolding ofa �xpoint operator is also similar, but here x rewrites to (fix M).It is easy to see that the left and right hand sides of the above four rulesare patterns, since there are no arguments to any of the free variables. In theconditions, the free variable M is applied to x which is bound by a positiveoccurrence of a universal quanti�er. In the latter three rules, although P occurson the right but not on the left of the rewrite rule, it occurs in reduced-termpostition in the condition. Thus these conditions are G-conditions, and all fourrules are valid conditional rewrite rules.Note that as a rewrite system, these rules express non-deterministic eval-uation. Nothing about order of evaluation in speci�ed. In Felty [5], we showhow to implement various rewriting strategies in the �Prolog logic program-ming language. Such strategies, when given these rewrite rules as a parameter,correspond to various strategies for evaluating functional programs.4 An Interpreter for L�In the next section, we will talk about specifying higher-order conditional rewritesystems in L�. We will discuss the operational reading of these speci�cationswith respect to a logic programming interpreter for L� and provide some insightinto implementation. We provide a high-level description of this interpreterhere.A de�nite clause is a D-formula of L�, and a program is a set of de�niteclauses. A goal is a G-formula. From properties about L� presented in Miller[10], a sound and complete (with respect to intuitionistic logic) non-deterministicinterpreter can be described by the following search operations. Here, the inter-7



preter is attempting to determine if the goal formulaG follows from the program�.AND: If G is G1 ^G2 then try to show that both G1 and G2 follow from �.AUGMENT: If G is D � G0 then add D to the current program and try toshow G0.GENERIC: If G is 8�xG0 then pick a new constant c of type � and try toshow [c=x]G0.BACKCHAIN: If G is atomic, we consider the current program. If there isa universal instance of a de�nite clause which is convertible to G then weare done. If there is a de�nite clause with a universal instance of the formG0 � G then try to show G0 follows from �. If neither case holds then Gdoes not follow from �.An implementation of an interpreter must make many choices which areleft unspeci�ed in the high-level description above. We discuss a few of thechoices made by the logic programming language �Prolog, which contains animplementation of L�.First, the order in which conjuncts and disjuncts are attempted and the orderfor backchaining over de�nite clauses is determined exactly as in conventionalProlog systems: conjuncts and disjuncts are attempted in the order they arepresented. De�nite clauses are backchained over in the order they are listed in� using a depth-�rst search paradigm to handle failures. Logic variables as inProlog are used in forming a universal instance in the BACKCHAIN operation.These variables can later be instantiated through uni�cation. In this case, it is�0-uni�cation that is required.The presence of logical variables in an implementation also requires thatGENERIC be implemented slightly di�erently than is described above. In par-ticular, if the goal 8�xG0 contains logical variables, the new constant c mustnot appear in the terms eventually instantiated for the logical variables whichappear in G0 or in the current program. Any implementation must take thisconstraint into account.5 Specifying Rewrite SystemsIn this section, we discuss the speci�cation of higher-order rewrite systems in L�.Unlike E�, L� does not have the equality, reducibility, join, and redex relationsor the inference rules for them as primitives. Here, we introduce constants forthese relations and provide program clauses to specify the inference rules.We will assume that all terms from a given object language contain only con-stants from a �xed signature, say �, which at least includes all of the constantsin the rewrite rules. As an example, we take as a signature the set of constantsdeclared in Figure 3 and illustrate the speci�cation of the rewrite system forevaluation given in Figure 4. 8



To specify rewriting at a particular primitive type � , we introduce the in�xrelations =� , �!� , #�� , and !� to serve as predicates of type � ! � ! o. Ourspeci�cation will be a set of de�nite clauses from which we can attempt toprove goals representing rewriting queries. The speci�cation of rewrite rules asclauses is straightforward: we replace the rewriting relations of E� with the newrewriting predicates, we replace ) with �, and we take the universal closureover the free variables of the rewrite rule, including those in the condition. Toillustrate, the three clauses below specify a �rst-order rule without and witha condition, and a higher-order rule with a condition. All subscripts on thereducibility and redex relation should be tm. We omit them for readability.8M8N ((s M) < (s N)!M < N)8M8N((N < M �! true) � (gcd M N ! gcd (M �N) N))8N8M8P (8x:((x! N) � (Mx �! P )) � (app (abs M) N ! P ))Note that we do in fact obtainD-formulas by simply taking the universal closureat the top level. Any free variable occurrence in the rewrite rule becomes apositive variable occurrence in the closure. In the condition, both negative andfree variable occurrences become positive variable occurrences in the closure.As a formula in G 0, it was the negative and free variables that had to satisfy thehead restriction, while in a D-formula, it is the positive occurrences that mustsatisfy this restriction.Generally, in executing rewrite goals, we will often have a closed term on theleft of the arrow and a variable on the right to be instantiated with the resultof the rewrite. In using the �rst clause for example, M and N will be replacedwith logic variables which get instantiated by matching the left hand side ofthe query with the pattern (s M) < (s N). When the second clause is used inbackchaining, we will then have to solve the subgoal specifying the condition.Note that if M and N are instantiated by the backchain operation, the termson both the left and right of this subgoal will be instantiated. Backchainingon the third clause will provide instances of M and N . The subgoal that mustbe proved is slightly more complex. First, a GENERIC search operation will beapplied to generate a new constant, say c, for x. Then the AUGMENT operationwill add a clause stating that this constant c rewrites to the given instance ofN . Then, in this new context, it must be shown that Mc rewrites to some terminstantiating P . By the restriction on the GENERIC operation, this term cannotcontain c, thus the rewrite rule for c must be applied for every instance of c,replacing each one by N .For readability, in the remainder of this and the next sections, we will oftenleave o� outermost universal quanti�cation, and assume universal closure overall variables written as tokens with initial upper case letters.To specify congruence, we introduce a D-formula for each constant in �.These D-formulas have the same form as those for rewrite rules with condi-tions. For example, the following two formulas are included for the app and abs9



constants. (M �! P ) ^ (N �! Q) � (app M N ! app P Q)8x((x! x) � (Mx �! Nx)) � (abs M ! abs N)The clause for abs states that an abstraction (abs M) rewrites to (abs N) if forarbitrary x such that x rewrites to itself, Mx reduces to Nx. Operationally,in trying to solve a goal of the form (abs M 0 ! abs N 0) where, say, M 0 is aclosed term and N 0 a logic variable, we can use this clause to descend throughthe abstraction in M 0. The GENERIC operation will generate a new meta-levelsignature item, say c, and the AUGMENT operation will add the atomic formula(c ! c). This can be viewed as the dynamic addition of a new constant tothe object-level signature and a reexive rule for it. Then, �-reduction at themeta-level of M 0c performs the substitution of the new item c for the outermostbound variable in M 0. In e�ect, the new signature item plays the role of thename of the object level bound variable. The atomic clause (c! c) can be usedduring the search for a term N 0c that is reachable by some number of rewritesteps from M 0c. N 0 is the abstraction not containing c.A congruence rule for a new constant of functional type is more complex. Forexample, if we had a function constant h whose type is ((tm! tm)! tm)! tm,its corresponding congruence clause would be:8f(8P8Q((P �! Q) � (fP ! fQ)) � (Mf �! Nf)) � (h M ! h N)Operationally, after backchaining on the above clause, instead of an atomicclause, the clause (P �! Q) � (fP ! fQ) would be dynamically added byAUGMENT, serving as new congruence rule for the new function constant f .We can in fact de�ne a general function for specifying congruence rules fora particular signature. For signature item a of type � , [[a; a : � ]]� yields thenecessary congruence rule.[[M ;N : � ]]� = (M !� N if � is a primitive type8x8y([[x; y : �1]]+ � [[Mx;Ny : �2]]�) if � is �1 ! �2[[M ;N : � ]]+ = (M �!� N if � is a primitive type8x([[x; x : �1]]� � [[Mx;Nx : �2]]+) if � is �1 ! �2These functions are a (corrected) version of those used by Miller [11] to specifyequality and substitution for simply typed �-terms and are similar to those usedby Felty [4] to code a dependent typed �-calculus in a higher-order intuitionisticlogic.The remaining rules of Figure 2 are speci�ed in a straightforward manner,by including the following clauses at each primitive type.(M �! P ) ^ (P �! N) � (M �! N)(M #� P ) ^ (N #� P ) � (M �! N)(M �! N) � (M = N)(M �! N) � (N = M)10



Note that we do not include a clause specifying reexivity. We do not needone when we include \reexivity" clauses (a! a) for each constant a of primitivetype in the signature. To rewrite a term to itself, congruence rules must beused to descend through the entire term, applying reexivity rules for constantsat the leaves. For e�ciency reasons, we may want to include a reexive rule8M(M �!M). It can be used to prove the equivalence of two arbitrary terms ofprimitive type in a single step. An advantage of the former approach is that itcan also be used to verify that a term is well-formed in a particular signature.6 Some Concluding RemarksAs stated earlier, the formulation of rewrite rules in Nipkow [12] and Felty [5] isslightly di�erent than that given here. There are no conditions and right handsides are not restricted to be patterns. If terms are always matched against lefthand sides, decidability of the rewrite relation is not a�ected. In this setting,the last three rules in Figure 4 can be expressed more directly, and perhapsmore naturally, as follows.app (abs M) N ! MNfix M ! M (fix M)let M N ! MNIn applying one of these rules, instead of having to satisfy a condition which addsa rewrite rule for some new constant c, and must then reduce the term Mc in anew context, application of �-terms is used to directly substitute the appropriateterm for the bound variable inM . In that setting, a logic programming languagewith uni�cation more powerful than �0�-uni�cation is needed, such as �Prolog.Any rewrite system expressible in the more general setting can in fact beexpressed as conditional rewrite rules as de�ned here. A function can be de�nedto translate rules with arbitrary �-terms on the right to conditional rules withpatterns on the right. Such a function is de�ned by induction over types ina manner similar to the one in the previous section for generating congruenceclauses.Within theorem proving systems, capabilities for higher-order rewriting canprovide a useful tool for the manipulation of formulas and programs. In [5], weillustrate how to integrate a general component for higher-order term rewritinginto a tactic style theorem prover. The implementation discussed there builds onthe logic programming implementation of tactic style theorem provers presentedin Felty [6], and provides a setting for implementing both general and speci�crewriting strategies. These techniques can be easily extended to conditionalrewriting.References1. Peter Aczel. A general church-rosser theorem. Technical report, University ofManchester, 1978. 11



2. J. A. Bergstra and J. W. Klop. Conditional rewrite rules: Conuence and termi-nation. Journal of Computer and System Sciences, 32:323{362, 1986.3. N. Dershowitz, M. Okada, and G. Sivakumar. Conuence of conditional rewritesystems. In S. Kaplan and J.-P. Jouannaud, editors, Proceedings of the First Inter-national Workshop on Conditional Term Rewriting Systems, pages 31{44. Springer-Verlag Lecture Notes in Computer Science, 1987.4. Amy Felty. Encoding dependent types in an intuitionistic logic. In G�erard Huetand Gordon Plotkin, editors, Logical Frameworks, pages 215{251. Cambridge Uni-versity Press, 1991.5. Amy Felty. A logic programming approach to implementing higher-order termrewriting. In Lars-Henrik Eriksson, Lars Halln�as, and Peter Schroeder-Heister,editors, Proceedings of the January 1991 Workshop on Extensions to Logic Pro-gramming, pages 135{161. Springer-Verlag Lecture Notes in Arti�cial Intelligence,1992.6. Amy Felty. Implementing tactics and tacticals in a higher-order logic programminglanguage. Journal of Automated Reasoning, To appear.7. J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinatory Logic andLambda Calculus. Cambridge University Press, 1986.8. St�ephane Kaplan. Conditional rewrite rules. Theoretical Computer Science,33:175{193, 1984.9. J. W. Klop. Combinatory reduction systems. Technical Report MathematicalCentre Tracts Nr.127, Centre for Mathematics and Computer Science, Amsterdam,1980.10. Dale Miller. A logic programming language with lambda-abstraction, functionvariables, and simple uni�cation. Journal of Logic and Computation, 1(4):497{536, 1991.11. Dale Miller. Uni�cation of simply typed lambda-terms as logic programming. InEighth International Logic Programming Conference, Paris, France, June 1991.MIT Press.12. Tobias Nipkow. Higher-order critical pairs. In Sixth Annual Symposium on Logicin Computer Science, pages 342{349, Amsterdam, July 1991.
12


