
A Logic Program for Transforming SequentProofs to Natural Deduction Proofs ?Amy FeltyINRIA Sophia-Antipolis2004, Route des Lucioles06565 Valbonne Cedex, FranceAbstractIn this paper, we show that an intuitionistic logic with second-order functionquanti�cation, called hh2 here, can serve as a meta-language to directly andnaturally specify both sequent calculi and natural deduction inference systemsfor �rst-order logic. For the intuitionistic subset of �rst-order logic, we presenta set of hh2 formulas which simultaneously speci�es both kinds of inference sys-tems and provides a direct and concise account of the correspondence betweencut-free sequential proofs and normal natural deduction proofs. The logic ofhh2 can be implemented using such logic programming techniques as providingoperational interpretations to the connectives and implementing uni�cation on�-terms. With respect to such an interpreter, our speci�cation provides a de-scription of how to convert a proof in one system to a proof in the other. Theoperation of converting a sequent proof to a natural deduction proof is functionalin the sense that there is always one natural deduction proof corresponding toeach sequent proof. Our speci�cation, in fact, provides a direct implementationof the transformation in this direction.1 IntroductionIntuitionistic logic with quanti�cation at all function types has been proposedas a meta-language for the direct and natural speci�cation of a wide range oflogics [5, 12]. As illustrated by these papers, the second-order subset of this logic,called hh2 here, is all that is required to suitably specify both sequent calculi andnatural deduction for �rst-order logic. From these speci�cations, it is possibleto obtain a description of goal-directed theorem proving and proof checking forthese inference systems by providing simple operational interpretations for theconnectives of hh2.The correspondence between cut-free sequential proofs and normal naturaldeduction proofs for �rst-order intuitionistic logic has been formalized in [16, 13].? This paper appears in Proceedings of the 1989 International Workshop on Extensions ofLogic Programming, Peter Schroeder-Heister, editor, Springer-Verlag Lecture Notes in AI,1991.

(There, the formal relation between cut-elimination and proof normalization isalso explored in detail.) In this paper, we show that it is possible to mergean hh2 speci�cation of a sequent system for �rst-order intuitionistic logic withone for natural deduction, resulting in a speci�cation which demonstrates thecorrespondence between these two systems in a concise and natural manner.The operational interpretations of the connectives of hh2 provide descriptionsfor simultaneous proof construction and proof checking in these two inferencesystems, as well as a description of how to convert a proof in one system to aproof in the other.The transformation from sequent proofs to natural deduction proofs is \func-tional" since the relation between sequent proofs and natural deduction proofsis many to one, i:e:, there will always be exactly one normal natural deductionproof corresponding to each cut-free sequent proof. Our speci�cation in factprovides a direct implementation of the transformation in this direction withrespect to a deterministic logic programming interpreter which implements hh2.Our speci�cation cannot, however, serve directly as a program for the transfor-mation in the other direction. More control information must be added in orderto obtain a program that can transform a natural deduction proof to one of thepossibly many sequent proofs to which it is related.The logic of hh2 is a sublanguage of higher-order hereditary Harrop formulaswhich serve as the foundation of the logic programming language �Prolog [11].In particular, it is the sublanguage with function quanti�cation restricted tosecond-order and with no predicate quanti�cation. Thus, an implementationof �Prolog includes an interpreter for hh2. The transformation from sequentproofs to natural deduction proofs has in fact been implemented and tested in�Prolog.In Sect. 2 we present the meta-logic hh2 and an interpreter for it. In Sect. 3we discuss the speci�cation of a sequent system for �rst-order intuitionistic logicusing this meta-logic. In Sect. 4 we will see that there are many options in spec-ifying natural deduction. We �rst present a direct speci�cation of the inferencerules and then discuss alternatives, leading to a speci�cation in which only nor-mal proofs can be constructed and which can be merged directly with the sequentspeci�cation. Then, in Sect. 5 we demonstrate how these two speci�cations canbe merged, and �nally, in Sect. 6 we conclude.2 The Meta-Logic and LanguageThe logic of hh2 extends positive Horn clauses in essentially two ways. First, itreplaces �rst-order terms with the more expressive simply-typed �-terms. Sec-ond, it permits richer logical expressions in both goals and the bodies of programclauses. In particular, implication and second-order universal quanti�cation overfunctions are permitted.The types and terms of this language are essentially those of the simpletheory of types [1]. We assume a �xed set of primitive types, which includes atleast the symbol o, the type for propositions. Function types are constructed2

using the binary in�x symbol !; if � and � are types, then so is � ! �. Thetype constructor ! associates to the right. The order of a primitive type is 0while the order of a function type �1 ! � � � ! �n ! �0 where �0 is primitive isone greater than the maximum order of �1; : : : ; �n.For each type � , we assume that there are denumerably many constants andvariables of that type. A signature is a �nite set of constants, such that foreach constant c, the type of c has the form �1 ! � � � ! �n ! �0 where n � 0,�0 is primitive, and �1; : : : ; �n do not contain o. If �0 is o, then c is a predicateconstant. In this paper, the types of constants in signatures will always be oforder 2 or less.Simply typed �-terms are built in the usual way using constants, variables,applications, and abstractions. Equality between �-terms is taken to mean ��-convertible. We shall assume that the reader is familiar with the usual notionsand properties of substitution and �, �, and � conversion for the simply typed�-calculus. See [7] for a fuller discussion of these basic properties.The logical connectives are de�ned by introducing suitable constants as in [1].The constants ^ (conjunction) and � (implication) are both of type o! o! o,and 8� (universal quanti�cation) is of type (� ! o) ! o, for all types � notcontaining o. The expression 8�(�z t) is written simply as 8�z t. An atomicformula is of the form (pt1 : : : tn), where n � 0, p is a predicate constant ofthe type �1 ! � � � ! �n ! o, and t1; : : : ; tn are terms of the types �1; : : : ; �n,respectively. We write A to denote a syntactic variable for atomic formulas.We de�ne two classes of non-atomic formulas called goal formulas and de�niteclauses. Let G be a syntactic variable for goal formulas and let D be a syntacticvariable for de�nite clauses. These two classes are de�ned by the followingmutual recursion. G := A j G1 ^ G2 j D � G j 8�x GD := A j G � A j 8�x DHere � is a type of order 0 or 1 not containing o. We say that a formula has ordern if in each of its subformulas of the form 8�z t, type � has order strictly less thann. Thus all goal formulas and de�nite clauses are second-order. A logic programor just simply a program is a �nite set, generally written as P , of closed de�niteclauses. In de�nite clauses of the form 8�1x1 : : :8�nxn (G1 ^ � � � ^ Gn � A), wecall A the head and G1^� � �^Gn the body. The subformulas G1; : : : ; Gn are alsocalled subgoals.Based on properties shown for the full logic of higher-order hereditary Harropformulas in [9], a sound and complete (with respect to intuitionistic logic) non-deterministic search procedure can be described using the following four searchprimitives.AND: G1 ^G2 is provable from P if and only if both G1 and G2 are provablefrom P .GENERIC: 8�xG is provable from P if and only if [c=x]G is provable from Pfor some new constant c of type � not in P or G.3

AUGMENT: D � G is provable from P if and only if G is provable fromP [fDg.BACKCHAIN: The atomic formulaA is provable fromP if and only if there iseither (1) a universal instance of a de�nite clause in P that is ��-convertibleto A, or (2) a universal instance of the form G � A such that G is provablefrom P .In order to implement a deterministic interpreter, it is necessary to makechoices left unspeci�ed in the high-level description above. We will make choicesas in the �Prolog language, many of which are similar to those made in Prolog.For example, logic variables are employed in the BACKCHAIN operation to createuniversal instances of de�nite clauses. As a result, second-order uni�cationis necessary since logic variables for functions (with types of order one) canoccur inside �-terms. Also the equality of terms is not a simple syntactic checkbut a more complex check of ��-conversion. Second-order uni�cation is notin general decidable. In �Prolog, full higher-order uni�cation is required andthis issue is addressed by implementing a depth-�rst version of the uni�cationsearch procedure described in [8]. (See [10, 9].) In this paper, the second-orderuni�cation problems that result from programs we present are all rather simple:it is easy to see, for example, that all such problems are decidable.In the AUGMENT search operation, clauses get added to the program dynam-ically. Note that as a result, clauses may in fact contain logic variables. TheGENERIC operation must be implemented so that the new constant c introducedfor x, must not appear in the terms eventually instantiated for logic variablesfree in the goal or in the program when c is introduced.Finally, we assume conjuncts are attempted in the order they are presented,and de�nite clauses are backchained over in the order they are listed in P usinga depth-�rst search paradigm to handle failures.In presenting example hh2 formulas in this paper, we will adopt the syntaxof the eLP [3] implementation of �Prolog. Fortunately, very little of this syntaxis needed here. In particular, a signature member, say f of type a ! b ! c, isrepresented as simply the line:type f a -> b -> c.Tokens with initial capital letters will denote either bound or free variables. Allother tokens will denote constants. �-abstraction is written using backslash \as an in�x operator. Universal quanti�cation is written using the constant pi inconjunction with a �-abstraction, e:g:, pi X\ represents universal quanti�cationover variable X. We omit type subscripts for this quanti�er. They can always beinferred from context. The symbols , and => represent ^ and �, respectively.The symbol :- denotes the converse of => and is used to write the top-levelimplication in de�nite clauses. We omit universal quanti�ers at the top level inde�nite clauses, and assume implicit quanti�cation over all free variables.Consider a set of primitive types that includes the types a and a l. Here,4

a l is meant to represent the type for lists of elements of type a. Consider asignature which includes the following declarations:type nil_a a_l.type ::_a a -> a_l -> a_l.type memb_a a -> a_l -> o.where nil a represents the empty list of elements of type a, :: a is the cons op-erator for a-lists, and memb a is a predicate which takes as arguments an elementand a list of elements of type a. We will write :: a using in�x notation. Thefollowing hh2 de�nite clauses axiomatize the membership relation for type a.memb X (X ::_a L).memb X (Y ::_a L) :- memb X L.With respect to the deterministic interpreter described above, these formulasimplement the standard program testing list membership as often written inProlog. In this case, the program is restricted to lists of type a. In the programsin this paper, we will make use of such a membership predicate at two primitivetypes. We will omit type subscripts from the constants nil, ::, and memb since itwill be clear from context which of the two is meant. In �Prolog, these constantscan be treated in a polymorphic fashion similar to their treatment in ML.3 Specifying Sequent CalculiSince we will be specifying �rst-order logic within the logic of hh2, to avoidconfusion we will refer to �rst-order logic as the object-logic to distinguish itfrom hh2, the meta-logic. To represent �rst-order logic in hh2, we introduce twoprimitive types: form for object-level formulas and tm for �rst-order terms. Thenew type form serves to distinguish formulas of the object-logic from formulasof the meta-logic (which have type o). Given these new primitive types, weintroduce the following constants for the object-level connectives.type and form -> form -> form.type or form -> form -> form.type imp form -> form -> form.type neg form -> form.type forall (tm -> form) -> form.type exists (tm -> form) -> form.type false form.The constant and, for example, takes two formulas as arguments and constructstheir conjunction. For readability, we write and, or, and imp using in�x notation.By declaring forall and exists to take functional arguments, we have de�nedobject-level binding of variables by quanti�ers in terms of lambda abstraction,the meta-level binding operator, as is done in [1]. Thus, bound variables of theobject-language are identi�ed with bound variables of type tm at the meta-level.Meta-constants representing object-level constants, function symbols, proposi-tions, and predicates can also be introduced and given appropriate types. For5

example, a constant p of type tm -> form represents an object-level unarypredicate. Using these de�nitions, the �rst-order formula 8x9y(px � py), forinstance, is represented by the �-term below where X and Y are meta-variablesof type tm.(forall X\ (exists Y\ ((p X) imp (p Y))))Figure 1 contains a complete set of inference rules for a sequent calculusfor �rst-order intuitionistic logic. This inference system, which we call LI , isa variant of the L system in [2]. In this system a sequent is written � �! Awhere � is a set of formulas, and A is a formula. � is called the antecedent ofthe sequent and A the succedent. Following convention, we write A;� to denotethe set � [fAg. An initial sequent has the form � �! A where A 2 �. The� �! A � �! B ^-R� �! A ^B A;B;� �! C ^-LA ^B;� �! C� �! A _-R� �! A _B � �! B _-R� �! A _B A;� �! C B;� �! C _-LA _B;� �! CA;� �! B �-R� �! A � B � �! A B;� �! C �-LA � B;� �! CA;� �!? :-R� �! :A � �! A :-L:A;� �!?� �! [y=x]A 8-R� �! 8xA [t=x]A;� �! C 8-L8xA;� �! C� �! [t=x]A 9-R� �! 9xA [y=x]A;� �! C 9-L9xA;� �! C� �!? ?-R� �! A � �! A A;� �! C cut� �! CThe 8-R and 9-L rules have the proviso that the variable y cannot appear free in thelower sequent.Fig. 1. The LI sequent calculus for �rst-order intuitionistic logicLI inference system di�ers from the sequent system originally given in [6] inthat we consider sets instead of sequences of formulas as antecedents and allowa more general form of initial sequent. As a result, in our formulation there isno need for explicit structural rules in the antecedent. The ?-R rule is as in thespeci�cation of sequent systems in [15], and corresponds to the usual rule forthinning on the right.To represent sets of formulas in antecedents, we will use lists of elementsof type form where the order and number of copies of each element is notsigni�cant. Thus we introduce the primitive type form l. In addition, weintroduce the primitive type seq for sequents and add the signature item -->of type form l -> form -> seq. We will write --> as an in�x operator whoseantecedent is a list of formulas and succedent is a single formula.6

Finally, we introduce the primitive type lprf for the type of sequent proofs.The basic relation between a sequent and its proofs will be represented as abinary predicate at the meta-level by the in�x constant >- of type lprf ->seq -> o. Each inference rule of the sequent calculus will be expressed as asimple declarative fact about this relation. Operationally, with respect to theinterpreter described in the previous section, >- can be viewed as the theoremproving predicate.For illustration purposes, we present the speci�cation of a small subset of theinference rules of LI . The others can be speci�ed similarly. In specifying theserules, there are often many choices in choosing a representation of sequent proofs.In this presentation, we simply choose one. For a more thorough discussion ofthe issues involved in specifying inference rules and proofs for this inferencesystem and others in hh2, see [5, 4].First, consider the ^-R inference rule in Fig. 1 which introduces a conjunctionon the right side of the sequent. This rule has a natural rendering as the followingde�nite clause.(and_r Q1 Q2) >- (Gamma --> (A and B)) :- Q1 >- (Gamma --> A),Q2 >- (Gamma --> B).This formulamay be read as: if Q1 is a proof of (Gamma --> A) and Q2 is a proofof (Gamma --> B), then (and r Q1 Q2) is a proof of (Gamma --> (A and B)).The constant and r is a \proof constructor" which takes two proofs as arguments(the premises of the ^-R rule) and builds a new proof (its conclusion). Its typeis lprf -> lprf -> lprf.The following clause speci�es the �-L rule and illustrates that introductionsof logical constants into the antecedent of a sequent can be achieved similarly.(imp_l (A imp B) Q1 Q2) >- (Gamma --> C) :- memb (A imp B) Gamma,Q1 >- (Gamma --> A),Q2 >- ((B::Gamma) --> C).The main di�erence here is that the antecedent is a list instead of a singleformula. We use the memb predicate (on type form) de�ned in Sect. 2 to choosean implication (A imp B) from the list Gamma. Note that the proof term in thehead of the clause contains a record of the particular implication from Gamma towhich the rule is applied.We now consider the quanti�er introduction rules. The declarative readingof the 9-R inference rule is captured by the following de�nite clause.(exists_r T Q) >- (Gamma --> (exists A)) :- Q >- (Gamma --> (A T)).The existential formula of the conclusion of this rule is written (exists A)where the variable A has functional type tm -> form. Thus A is an abstractionover �rst-order terms and (A T) represents the formula that is obtained bysubstituting T for the bound variable in A. Declaratively, this clause reads: for�rst-order term T, if Q is a proof of (Gamma --> (A T)), then (exists r T Q)is a proof of (Gamma --> (exists A)). Note that the proof term contains a7

record of the substitution term T. Operationally, the existential instance (A T)is obtained via the interpreter's operation of �-reduction. Thus �-conversion atthe meta-level is used to specify substitution at the object-level.Next, we consider the 8-R rule, which has the additional proviso that y isnot free in � or 8xA. This proviso is handled by using a universal quanti�er atthe meta-level as in the following de�nite clause.(forall_r Q) >- (Gamma --> (forall A)) :-pi Y\ ((Q Y) >- (Gamma --> (A Y))).As in the previous clause, A has functional type. In this case, so does Q; ithas type tm -> lprf, and thus the type of the constant forall r is (tm ->lprf) -> lprf. Declaratively, this clause reads: if we have a function Q thatmaps arbitrary terms Y to proofs (Q Y) of the sequent (Gamma --> (A Y)),then (forall r Q) is a proof of (Gamma --> (forall A)). Operationally, theGENERIC search operation is used to insert a new constant of type tm into thesequent. Since that constant will not be permitted to appear in Gamma or A theproviso will be satis�ed.As a �nal example, consider the cut rule which has the straightforwardspeci�cation as the following formula.(cut A Q1 Q2) >- (Gamma --> C) :- Q1 >- (Gamma --> A),Q2 >- ((A::Gamma) --> C).A complete set of hh2 formulas specifying the rules of LI serves as a speci�-cation of a theorem prover for this inference system. To prove sequent (Gamma--> A), we start with a goal of the form (Q >- (Gamma --> A)) where Q is alogic variable to be �lled in with a term representing a proof of (Gamma --> A).Note, though, that there may be multiple de�nite clauses that can be used inbackchaining to prove a particular sequent, or a single clause that can be usedrepeatedly. For example, if there is an implication in Gamma, it will always bepossible to backchain on the clause specifying the �-L rule. Thus, this set offormulas cannot serve as an implementation with respect to a depth-�rst inter-preter that backchains over de�nite clauses in a particular order. (See [5] formore on implementing theorem provers and controlling search in this setting.)On the other hand, when Q is a closed term in the original goal, this programbehaves as a proof checker and is complete even with respect to the determin-istic interpreter. The top-level constant of a proof term completely determinesthe unique de�nite clause to be used in backchaining at each step.By Gentzen's cut-elimination result [6], LI without the cut rule is a completeset of rules for �rst-order intuitionistic logic. Thus, by simply eliminating theformula for the cut rule, we obtain a set of hh2 formulas which serves as aspeci�cation for both building and proof checking cut-free proofs.4 Specifying Natural DeductionFigure 2 presents the inference rules for natural deduction in intuitionistic logicas presented in [15], called NI here. The premise of an elimination rule (E-8

A B ^-IA ^B A ^B ^-EA A ^B ^-EBA _-IA _B B _-IA _B A _B (A)C (B)C _-EC(A)B �-IA � B A A � B �-EB(A)? :-I:A A :A :-E?[y=x]A 8-I8xA 8xA 8-E[t=x]A[t=x]A 9-I9xA 9xA ([y=x]A)B 9-EB? ?IAThe 8-I rule has the proviso that the variable y cannot appear free in 8xA, or in anyassumption on which [y=x]A depends.The 9-E rule has the proviso that the variable y cannot appear free in 9xA, in B, or inany assumption on which the upper occurrence of B depends.Fig. 2. The NI natural deduction inference system for �rst-order intuitionistic logicrule) containing the connective for which the rule is named is called the majorpremise, and other premises are minor premises. The discharge of assumptionsis indicated by parentheses. For example, in the �-I rule, (A) indicates thatoccurrences of A at the leaves are discharged by the application of this rule. Aformula occurrence B in a tree is said to depend on an assumption A if A occursas a leaf and is not discharged by a rule application above B. A tree with rootB constructed using these inference rules is a deduction of B from the set offormulas � if all assumptions on which B depends occur in �. Such a tree is aproof of B if � is empty.The inference rules of natural deduction can be speci�ed directly in thesame manner as those for the LI sequent system, where the conclusion of therule corresponds to the head of the clause and the premises to the subgoals. Inthe next subsection, we discuss this speci�cation. The corresponding notion tocut-free proofs in LI is normal proofs [15] in NI . To specify NI so that onlynormal proofs are built is more complicated than simply adding or removingclauses, which was all that was required to eliminate the use of cut in sequent9

proofs. Here, it is a matter of specifying the rules in a di�erent manner. Insubsection 4.2, we present such a speci�cation. In subsection 4.3, we discussalternative ways to specify some of the inference rules retaining the propertythat only normal proofs are built. The alternatives we present are in fact thoseneeded to be able to merge theNI speci�cation with the cut-free LI speci�cation.Finally, in subsection 4.4, we present an alternative way of handling assumptionsso that assumptions in NI correspond to antecedents of sequents in LI . Theresult is a speci�cation that can be merged directly with the one for LI discussedin the previous section.4.1 A Direct Speci�cationTo represent natural deduction proofs, we introduce the new primitive typenprf. Here, the basic proof relation is between proofs and formulas (insteadof sequents). We introduce the in�x predicate # of type nprf -> form -> ofor this relation. In the previous section, we adopted the convention of usingvariable names Q, Q1, Q2, etc., to represent sequent proofs. We use P, P1, P2,etc., here for natural deduction proofs. Several of the introduction rules (I-rules)for this system resemble rules that apply to succedents in the sequential systemjust considered. The ^-I, 9-I, and 8-I rules correspond to examples given in theprevious section and can be speci�ed similarly as follows.(and_i P1 P2) # (A and B) :- P1 # A, P2 # B.(exists_i T P) # (exists A) :- P # (A T).(forall_i P) # (forall A) :- pi Y\ ((P Y) # (A Y)).Note that universal quanti�cation is used to handle the proviso on the 8-I rulein the same way that it is used for the 8-R sequent rule.In natural deduction, unlike sequential systems, we have the additional taskof specifying the operation of discharging assumptions. Consider the implicationintroduction rule in Fig. 2. This rule can very naturally be speci�ed as thede�nite clause below.(imp_i P) # (A imp B) :- pi W\ ((W # A) => ((P W) # B)).This clause represents the fact that if P is a \proof function" which maps anarbitrary proof W of formula A, to a proof (P W) of formula B, then (imp i P)is a proof of (A imp B). Here, the proof of an implication is represented bya function from proofs to proofs. The constant imp i has the type (nprf ->nprf) -> nprf. Notice that while sequential proofs only contain abstractionsof type tm, natural deduction proofs may contain abstractions of both types tmand nprf.Operationally, when backchaining on this clause, the GENERIC operation isused to choose a new object, say c, to replace W and play the role of a proof ofthe formula A. The AUGMENT goal is then used to add the assumption (c # A)to the current set of program clauses. This clause is then available to use in thesearch for a proof of B, i:e:, in solving the goal ((P c) # B). The proof of B10

may contain instances of the proof of A (the constant c). The function P is theabstraction over this constant.The elimination rules and ?-I can be speci�ed similarly to the introductionrules. For example the following formulas specify the ^-E and 9-E rules.(and_e1 B P) # A :- P # (A and B).(and_e2 A P) # B :- P # (A and B).(exists_e A P1 P2) # B :- P1 # (exists A),pi Y\ (pi W\ ((W # (A Y)) => ((P2 Y W) # B))).The 9-E rule contains both a proviso handled by a universal quanti�er at themeta-level, and the discharge of an assumption, again handled by meta-leveluniversal quanti�cation and implication. Here, P2 is an abstraction over boththe �rst-order term Y and the proof term W. Note that the proof terms in theheads of these clauses contain more than just the subproofs of the premises asarguments. For example, the missing conjunct in the conclusion of the ^-E rulesis included in the proof terms for these rules.As for LI , the set of hh2 formulas resulting from the direct speci�cation ofthe rules of NI serves both as a speci�cation of a theorem prover and as animplementation of a proof checker with respect to the deterministic interpreter.As before, in proof checking, the top-level constant of a proof term completelydetermines the unique de�nite clause to be used in backchaining at each step.4.2 A Speci�cation of NI That Constructs Normal ProofsBefore discussing speci�cations of NI that construct normal proofs, several def-initions are required. We begin by de�ning the notion of normal NI proofs asin [15]. The main condition for an NI deduction to be normal is that it mustcontain no maximal formula, that is, a formula that is the conclusion of an I-ruleor ?I and the major premise of an E-rule, since such applications are redundant(as in the example in Fig. 3 (a)). For the fragment of NI without the _ and 9connectives, this condition is taken as the de�nition of normal. With these con-nectives in the logic the condition must be made slightly stronger, and requiressome further de�nitions. A segment in a deduction is de�ned to be a sequenceof formula occurrences A1; : : : ; An such that the following hold.1. A1 is not the conclusion of an application of _-E or 9-E.2. For i = 1; : : : ; n� 1, Ai is a minor premise of an application of _-E or 9-E.3. An is not the minor premise of an application of _-E or 9-E.All occurrences in a segment are occurrences of the same formula. The deductionin Fig. 3 (b) contains a segment of length 3 of occurrences of A^B. As in [15], wewill say a segment is the premise of an application of a rule when its last formulais the premise of the rule. A maximal segment is a segment that begins with aconclusion of an application of an I-rule or ?I and ends with a major premise ofan E-rule. The segment of length 3 in Fig. 3 (b) is in fact maximal. Note that11

a maximal formula is a special case of a maximal segment. A normal deductionis then de�ned to be a deduction that contains no maximal segment. Figure 3(c) contains a normal deduction of r � s from fp _ q; p � (r � s); q � (r � s)g.A B ^-IA ^B ^-EA 9yD 9xC A B ^-IA ^B 9-EA ^B 9-EA ^B ^-EA(a) (b)r p _ q p p � (r � s) (1) �-Er � s (2) q q � (r � s) �-Er � s _-Er � s (2) �-Es (3) �-Ir � s (4) (c)Fig. 3. Maximal formulas, maximal segments, and paths in NI deductionsNormal deductions can be characterized in terms of the form of certainsequences of formulas called paths. A path in a deduction is a sequence ofoccurrences A1; : : : ; An such that the following conditions hold.1. A1 is a leaf that is not discharged by an application of _-E or 9-E.2. For i = 1; : : : ; n � 1, Ai is not the minor premise of an application of �-Eor :-E. If Ai is the major premise of an application of _-E or 9-E, thenAi+1 is an assumption discharged by this application. Otherwise, Ai+1 isthe conclusion of the rule for which Ai is a premise.3. An is either the minor premise of �-E or :-E or the root of the deduction.A path of length 5 (containing 4 segments) in a normal deduction is indicatedin Fig. 3 (c). Note that the second segment, indicated by the number (2), haslength 2. The other paths in this deduction are:1. a similar path starting with q � (r � s)2. p _ q; p3. p _ q; q4. r.We de�ne an E-path to be a subsequence of a path such that each segment exceptthe last is a major premise of an E-rule, and an I-path to be a subsequence of apath such that each segment except the �rst is a conclusion of an I-rule or ?I .12

We say that a deduction is an E-deduction if all paths containing the root areE-paths. Note that the subtree rooted at s in Fig. 3 (c) is an E-deduction.In a normal deduction, each path contains a series of segments divided intotwo parts: an E-path followed by an I-path such that the last segment in theE-path called the minimum segment is also the �rst segment in the I-path. InFig. 3 (c), the formula occurrence s is the minimum segment separating theE-paths and the I-paths of the two paths beginning with p � (r � s) andq � (r � s). The minor premises and conclusion of applications of _-E and 9-Emay appear in the E-path or I-path (or both) of all paths through them. InFig. 3 (c), the middle premise and conclusion of _-E, for example, occur in theE-path of the indicated path. Note that an E-deduction is normal if and onlyif all deductions rooted at a minor premise of an application of �-E or :-E arenormal.The division of paths in normal deductions into E-paths and I-paths will bereected in our speci�cation. We will use two relations in specifying the de�niteclauses for the inference rules. The �rst one is the #e predicate used to relate aformula and a normal E-deduction. For the second, we continue to use #, butthis time to relate a formula with a normal deduction. Both predicates havetype nprf -> form -> o. Thus, in a provable formula of the form (P #e A),P represents a normal E-deduction of A, while in a provable formula of the form(P # A), P is a normal deduction of A. Operationally, the clauses for the #erelation will apply E-rules, and the clauses for the # relation will apply I-rulesand join I-paths and E-paths at the minimum segment.Using these two predicates, the introduction rules and ?I can be speci�edexactly as in the direct speci�cation, except that discharged assumptions areadded as facts about the #e relation since they are one-node E-deductions.They may occur at the leaves in larger deductions and will always occur inthe E-paths that pass through them. Thus, the �-I rule, for instance, is nowspeci�ed as follows.(imp_i P) # (A imp B) :- pi W\ ((W #e A) => ((P W) # B)).The elimination rules ^-E, �-E, :-E, and 8-E are speci�ed using the #epredicate since, in a normal deduction, both the major premise and conclusionof all applications of these rules are roots of normal E-deductions. For example,the clauses for the ^-E rules now have the following form.(and_e1 B P) #e A :- P #e (A and B).(and_e2 A P) #e B :- P #e (A and B).The �-E rule, on the other hand, is represented by the following clause wherethe subgoal for the minor premise uses the # predicate.(imp_e A P1 P2) #e B :- P1 # A, P2 #e (A imp B).This reects the fact that the subproof at the minor premise can be an arbitrarynormal deduction. By the de�nition of path, the root of this subproof will alwaysbe the last formula occurrence in the paths through it. The :-E rule is similar.13

_-E and 9-E are each speci�ed by two de�nite clauses, the �rst correspondingto when the minor premises and conclusion occur in I-paths of paths throughthem, and the second when they occur in E-paths. The following two clausesare those for the _-E rule.(or_e A B P P1 P2) # C :- P #e (A or B),pi W\ ((W #e A) => ((P1 W) # C)),pi W\ ((W #e B) => ((P2 W) # C)).(or_e A B P P1 P2) #e C :- P #e (A or B),pi W\ ((W #e A) => ((P1 W) #e C)),pi W\ ((W #e B) => ((P2 W) #e C)).Note that when the minor premises of this rule are the roots of arbitrary normaldeductions, the conclusion is also at the root of an arbitrary normal deduction,as indicated by the use of the # relation to relate formula C to its various proofs inthe head and body of the �rst of the two clauses above. On the other hand, whenthe minor premises of this rule are at the roots of normal E-deductions, as inthe latter clause above, the conclusion is also the root of a normal E-deduction.Finally, we must also add the clause P # A :- P #e A. This clause servesto join I-paths and E-paths at the minimum segment. Its declarative reading isthat any normal E-deduction is a normal deduction.4.3 Alternative Speci�cations for Constructing Normal ProofsWe now discuss several modi�cations that can be made to this speci�cation.This presentation both illustrates alternative ways of specifying the rules ofNI so that only normal proofs get constructed and also brings us closer to aspeci�cation that corresponds to cut-free LI .In the speci�cation discussed in the previous subsection, the :-E rule wouldhave the following formulation, since it is similar to �-E.(neg_e A P1 P2) #e false :- P1 # A, P2 #e (neg A).In a normal NI deduction, any occurrence of ? is always in the minimum seg-ment of paths through it, since it cannot be the major premise of an E-rule orthe conclusion of an I-rule. As a result, we have the option of modifying theabove formula so that # instead of #e appears in the head of the clause. Withthis modi�cation, it is still the case that P in a provable formula of the form(P #e A) represents an E-deduction of A, but now it is one that does not endin :-E. Operationally, the clauses for the # relation now build I-paths in a goaldirected fashion, and possibly also add the last segment in the E-paths of pathsthrough false. Clauses for #e will then add the remaining E-paths.We can simplify the speci�cation of the previous subsection if we considerthe following re�nement of normal deductions. We de�ne an E-segment in anormal deduction to be a segment whose last occurrence is the conclusion ofan application of _-E or 9-E and the major premise of an E-rule. Note thatmaximal segments are a special case of E-segments. As pointed out to Prawitz14

by Martin-L�of [14], the de�nition of normal can be sharpened to require thatnormal deductions contain no E-segments or maximal formulas. We call suchdeductions S-normal deductions. In an S-normal deduction, every minor premiseor conclusion of an application of _-E and 9-E will appear either in the minimumsegment (in which case it is both in the I-path and E-path) or only in the I-pathof paths through it. The deduction below is a modi�cation of the deduction inFig. 3 (c) that meets the extra restriction on segments to make it S-normal.p _ q r p p � (r � s) �-Er � s �-Es �-Ir � s r q q � (r � s) �-Er � s �-Es �-Ir � s _-Er � sThe speci�cation for NI that we will eventually merge with the speci�cationfor LI is one that builds deductions in this sharpened normal form. In order todiscuss this speci�cation we re�ne some de�nitions given earlier. By an E-path,we will still mean a subsequence of a path such that each segment except the lastis a major premise of an E-rule, but now we add the additional restriction thateach segment must be of length 1. The de�nition of I-path remains the same.In an E-deduction, all paths containing the root must now meet the additionalrestriction on E-paths. With respect to this modi�ed de�nition, each path in anS-normal deduction will still contain an E-path followed by an I-path, but nowthere may not be any overlap in these two parts. The minimum segment willalways be in the I-path, but will not be in the E-path if it has length greaterthan 1.Note that under these new de�nitions, the latter of the two clauses givenfor _-E in the previous subsection is no longer correct. Even when all threepremises are E-deductions, the conclusion will not be, since the root will be in asegment of length greater than 1, and thus paths through it will not be E-paths.Hence, we must eliminate this clause and the similar one for 9-E. The simpleelimination of these two clauses is all that is required to obtain a speci�cationthat constructs only S-normal deductions. In the remainder of this paper, we usethe term \normal" to mean \S-normal" since we now only consider deductionsin S-normal form.With the above modi�cations, the remaining clauses with #e in the head arethose for ^-E, �-E, and 8-E. These rules can also be modi�ed. We illustrateusing the ^-E rules. The clauses in subsection 4.2 specifying the ^-E rules canbe replaced by the following clause with # in the head.PC # C :- P #e (A and B),(((and_e1 B P) #e A) => (((and_e2 A P) #e B) => (PC # C))).The declarative reading of this clause is as follows: PC is a proof of formulaC if there is a normal E-deduction of conjunct (A and B) (whose proof is P),and from the assumptions that A and B are provable separately (with proofs(and e1 B P) and (and e2 A P) respectively) it can be shown that PC is a15

proof of C. Operationally, in attempting to �nd a normal deduction for anyformula C, this clause will look for an E-deduction of a conjunction (A and B),apply both versions of the ^-E rule to it to obtain two new E-deductions, addthe new subproofs as atomic program clauses, and attempt to �nd a normaldeduction for C in the environment extended with these new assumptions.As stated and proved in [15], normal deductions have the subformula prop-erty, that is, every formula occurring in a normal deduction of A from � is asubformula of A or of some formula in �. In fact, every formula occurring in anE-path is a subformula of a formula in �, every formula occurring in an I-pathis a subformula of A, and every formula occurring in a minimum segment is asubformula of both A and some formula in �. This property is reected in thefollowing operational description of our new speci�cation. The clauses for theI-rules apply the rules in a backward direction so that the formulas in the sub-goals (which correspond to the premises) are always subformulas of the formulain the head of the clause (the conclusion). In contrast, the clauses for ^-E, �-E,and 8-E apply the rules in a forward direction from the assumptions so that theconclusion is always a subformula of the major premise. In applying E-rules,new E-deductions get built from existing E-deductions and are then added tothe program as new facts about the #e relation.Note that this program can no longer serve as a proof checker with respectto the deterministic interpreter. It is no longer the case that the top-levelconstant of a proof term completely determines the de�nite clause to be used inbackchaining. In fact, clauses like the speci�cation of ^-E above can always beused in attempting to prove an atomic goal for the # predicate since any formulaand proof term will be instances of the formula and proof in the head of theclause.4.4 Explicit vs. Implicit Representation of Assumptions in NaturalDeductionIn specifying NI we showed that it was quite natural to specify the dischargeof assumptions \implicitly" using universal quanti�cation and implication atthe meta-level. It is also possible to explicitly keep track of assumptions bystoring them in a list, and make use of a membership predicate to extractindividual elements in much the same way that antecedents were handled in thespeci�cation of LI . For NI , such assumption lists will contain pairs of formulasassociated with their E-deductions. We will call such lists of pairs contexts. Wecan obtain an \explicit context" speci�cation ofNI via a systematicmodi�cationof the de�nite clauses of any of the \implicit context" speci�cations discussedso far. We illustrate using the formulation in the previous subsection.We continue to use #e and # for the basic relations between a formula andits deductions, but no longer as predicates; they will now have the type nprf-> form -> judg where judg is a new primitive type introduced to representthese basic judgments. Contexts will be lists of elements of type judg l wherejudg l is, of course, the primitive type introduced for lists of elements of type16

judg. We must modify each de�nite clause so that it has an extra argument fora context, which corresponds to the set of assumptions that exist at the timethe rule is applied. We use the sequent arrow --> as our predicate, now usedto form \judgment sequents." This predicate has type judg l -> judg -> oand expresses the relation between a context and a single formula paired witha normal deduction or normal E-deduction.For those clauses that do not involve the use of implication to add assump-tions to the program, the modi�cation simply requires adding a list and sequentarrow to form a judgment sequent in the head and subgoals of each clause. Forexample, the clause for ^-I is rewritten as follows.Gamma --> ((and_i P1 P2) # (A and B)) :- Gamma --> (P1 # A),Gamma --> (P2 # B).The discharge of assumptions as in the �-I rule is speci�ed as below wherethe new assumption gets added to the context rather than the program.Gamma --> ((imp_i P) # (A imp B)) :-pi W\ (((W #e A)::Gamma) --> ((P W) # B)).All other formulas can be modi�ed similarly. For example, the clause for ^-Eadds two assumptions to the context.Gamma --> (PC # C) :- Gamma --> (P #e (A and B)),(((and_e1 B P) #e A)::((and_e2 B P) #e B)::Gamma) --> (PC # C).The formula expressing the fact that a normal E-deduction is a normal de-duction is replaced by the following clause.Gamma --> (P # A) :- Gamma --> (P #e A).As before, this clause operationally joins E-paths and I-paths at the minimumsegment. Finally, we need the following clause for completing E-deductions.Gamma --> (P #e A) :- memb (P #e A) Gamma.Of course, the memb predicate here is at type judg. In previous implicit con-text speci�cations, we did not need an explicit clause for closing E-deductions.There, an E-deduction was closed by unifying an atomic goal formula of theform (P #e A) with an atomic clause of the program.This completes the description of the systematic modi�cation from implicitto explicit context speci�cations. We now discuss two �nal modi�cations thatcan be made to this particular speci�cation of NI .Recall that in the speci�cation in the previous subsection, all clauses have #as the predicate occurring in the head. Thus in the modi�ed speci�cation here,all clauses except for the one immediately above have # as the relation on theright of the sequent arrow in the head of the clause. Hence, whenever an atomicformula of the form (Gamma --> (P #e A)) succeeds, it must be the case that(P #e A) is in the context Gamma. We could in fact remove the clause abovefor closing E-deductions, and replace each subformula of the form (Gamma -->(P #e A)) with (memb (P #e A) Gamma) directly in the formulas specifyingthe inference rules. The formula for ^-E would then be written as follows.17

Gamma --> (PC # C) :- memb (P #e (A and B)) Gamma,(((and_e1 B P) #e A)::((and_e2 A P) #e B)::Gamma) --> (PC # C).After making such a modi�cation, the resulting set of formulas is such that onlythe # relation appears on the right, while only the #e relation appears on theleft of the sequent arrow. Thus, we can distinguish normal E-deductions fromarbitrary normal deductions simply by where they occur in judgment sequents.As a result, we no longer need two distinct relations. They can be merged intoone. We do so here by simply eliminating the #e relation and adopting # as thesingle relation between a formula and a deduction. Using this formulation, theabove clause for ^-E becomes the following formula.Gamma --> (PC # C) :- memb (P # (A and B)) Gamma,(((and_e1 B P) # A)::((and_e2 A P) # B)::Gamma) --> (PC # C).The speci�cation obtained by making similar modi�cations to all of the clausesis the one we will now directly merge with the LI speci�cation.5 Transforming LI Proofs to NI ProofsThe �rst step in merging the speci�cations of LI and NI is to combine the datastructures for sequents and judgments. We do so using the same constants asbefore, but now give them the following types.type # nprf -> form -> judg.type --> judg_l -> judg -> seq.type >- lprf -> seq -> o.As before # is used for the relation between a formula and NI deduction. Wealso again use the sequent arrow for judgment sequents. Here the type seqreplaces o since it will no longer serve as the top-level predicate. As in thespeci�cation of LI , >- is the top-level predicate with the same type as before.Note, though, that the second argument is a judgment sequent in this case. Anatomic formula now has the form (Q >- (Gamma --> (P # A))) where Gammais a list of judgment pairs. If such a formula is provable, it will be the casethat Q represents a cut-free LI proof of the sequent whose antecedent containsthe formulas in Gamma and whose succedent is A, and P represents a normal NIdeduction of A from the formulas in Gamma.In the clauses in this speci�cation, the LI rules for introducing a connectiveon the right of the sequent will be simultaneously speci�ed with the correspond-ingNI introduction rule. Similarly, the rules for introducing a connective on theleft in LI will be speci�ed with the corresponding elimination rule. Finally, the?-R rule in LI and the ?I rule in NI will be speci�ed together. For example,the �rst formula below simultaneously speci�es the ^-R and ^-I rules from LIand NI , respectively, while the second formula speci�es both ^-L and ^-E.(and_r Q1 Q2) >- (Gamma --> ((and_i P1 P2) # (A and B))) :-Q1 >- (Gamma --> (P1 # A)), Q2 >- (Gamma --> (P2 # B)).18

(and_l (A and B) Q) >- (Gamma --> (PC # C)) :-memb (P # (A and B)) Gamma,Q >- ((((and_e1 B P) # A)::((and_e2 A P) # B)::Gamma) --> (PC # C)).They are obtained by a straightforward merging of the corresponding formulasof the separate speci�cations. They illustrate how NI proof terms are associatedwith formulas within a sequent on the right and left, respectively, while the LIproof terms are associated with the entire sequent using the top-level relation.The following clause simultaneously speci�es 8-R and 8-I.(forall_r Q) >- (Gamma --> ((forall_i P) # (forall A))) :-pi Y\ ((Q Y) >- (Gamma --> ((P Y) # (A Y)))).This clause illustrates how universal quanti�cation at the meta-level is used tohandle simultaneously the provisos on both 8-R and 8-I. Note that both Q andP are abstractions over the variable Y.As a �nal example, consider the formula below for �-R and �-I.(imp_r Q) >- (Gamma --> ((imp_i P) # (A imp B))) :-pi W\ (Q >- (((W # A)::Gamma) --> ((P W) # B))).Universal quanti�cation is used to introduce a constant to replace the variableW and serve as a proof for hypothesis A. As before, the term P is an abstractionover this constant. It represents a function from proofs of A to proofs of B. Note,on the other hand that, as in the LI speci�cation, Q is not an abstraction.The complete speci�cation for LI and NI is given in Fig. 4. Operationally,this program can take on several roles. In a query of the form:(Q >- (nil --> (P # A)))where both Q and P are logic variables, the program behaves as a theoremprover, and simultaneously constructs proofs in both inference systems. If P isalso speci�ed, then the program acts as a proof transformer, transforming anNI proof P to an LI proof Q. Conversely, an LI proof Q can be used to guidethe construction of an NI proof P. The program is complete with respect to thedeterministic depth-�rst interpreter for this latter transformation, for the samereason that the LI speci�cation is complete as a proof checker. The constantat the head of the proof term Q uniquely determines which de�nite clause mustbe used at each step. The converse, however, is not true since as discussed insubsection 4.3, this formulation of the NI rules cannot serve as a proof checkerwith respect to the deterministic interpreter because of the clauses for the ^-E,�-E, and 8-E rules. If however, the depth-�rst search strategy of the interpreterwere replaced by breadth-�rst search, the transformation in this direction wouldbe achieved by this program.Alternatively, we could modify the speci�cation in Fig. 4 so that the trans-formation fromNI to LI proofs works with respect to the depth-�rst interpreter.One simple approach involves taking into account the form of E-deductions in19

(initial A) >- (Gamma --> (P # A)) :- memb (P # A) Gamma.(and_r Q1 Q2) >- (Gamma --> ((and_i P1 P2) # (A and B))) :-Q1 >- (Gamma --> (P1 # A)), Q2 >- (Gamma --> (P2 # B)).(or_r1 Q) >- (Gamma --> ((or_i1 P) # (A or B))) :-Q >- (Gamma --> (P # A)).(or_r2 Q) >- (Gamma --> ((or_i2 P) # (A or B))) :-Q >- (Gamma --> (P # B)).(imp_r Q) >- (Gamma --> ((imp_i P) # (A imp B))) :-pi W\ (Q >- (((W # A)::Gamma) --> ((P W) # B))).(neg_r Q) >- (Gamma --> ((neg_i P) # (neg A))) :-pi W\ (Q >- (((W # A)::Gamma) --> ((P W) # false))).(forall_r Q) >- (Gamma --> ((forall_i P) # (forall A))) :-pi Y\ ((Q Y) >- (Gamma --> ((P Y) # (A Y)))).(exists_r T Q) >- (Gamma --> ((exists_i T P) # (exists A))) :-Q >- (Gamma --> (P # (A T))).(false_r Q) >- (Gamma --> ((false_i P) # A)) :-Q >- (Gamma --> (P # false)).(and_l (A and B) Q) >- (Gamma --> (PC # C)) :-memb (P # (A and B)) Gamma,Q >- ((((and_e1 B P) # A)::((and_e2 A P) # B)::Gamma) --> (PC # C)).(imp_l (A imp B) Q1 Q2) >- (Gamma --> (PC # C)) :-memb (P2 # (A imp B)) Gamma, Q1 >- (Gamma --> (P1 # A)),Q2 >- ((((imp_e A P1 P2) # B)::Gamma) --> (PC # C)).(forall_l (forall A) T Q) >- (Gamma --> (PC # C)) :-memb (P # (forall A)) Gamma,Q >- ((((forall_e A T P) # (A T))::Gamma) --> (PC # C)).(neg_l (neg A) Q) >- (Gamma --> ((neg_e A P1 P2) # false)) :-memb (P2 # (neg A)) Gamma, Q >- (Gamma --> (P1 # A)).(or_l (A or B) Q1 Q2) >- (Gamma --> ((or_e A B P P1 P2) # C)) :-memb (P # (A or B)) Gamma,pi W\ (Q1 >- (((W # A)::Gamma) --> ((P1 W) # C))),pi W\ (Q2 >- (((W # B)::Gamma) --> ((P2 W) # C))).(exists_l (exists A) Q) >- (Gamma --> ((exists_e A P1 P2) # B)) :-memb (P1 # (exists A)) Gamma,pi Y\ (pi W\ ((Q Y) >- (((W # (A Y))::Gamma) --> ((P2 Y W) # B)))).Fig. 4. De�nite clauses for simultaneous speci�cation of LI and NI20

S-normal proofs. In such deductions, there is one path to the root that begins atan assumption and contains a sequence of applications of ^-E, �-E, 8-E, possi-bly ending in an application of :-E. One or more of the sequent proofs to whichsuch an E-deduction is related will contain a sequence of ^-L, �-L, and 8-L rulesoccurring in reverse order to the corresponding I-rules in the natural deductionproof. It is straightforward to write a program to convert an E-deduction to sucha corresponding \inverted" sequent proof. Then, a program to convert generalNI normal deductions to LI proofs can be obtained by removing the clausesfor the ^-E, �-E, and 8-E rules from the clauses in Fig. 4 and modifying theremaining program to make use of such an inversion procedure for E-deductions.6 ConclusionThe program we have presented provides both a declarative and an operationaldescription of the correspondence between the sequent calculus and natural de-duction for intuitionistic logic. An interesting next step would be to extend thisapproach to provide illustrations of other well-known proof-theoretical results.One obvious candidate is the correspondence between cut-elimination in sequentsystems and proof normalization in natural deduction. Such a speci�cation mayprovide a program that simultaneously performs both operations.In Sect. 4.4, we illustrated how to convert the speci�cation of Sect. 4.3, whichuses meta-level implication for the discharge of assumptions, into a speci�cationusing explicit assumption lists. It is easy to see that this operation can beperformed on any of the \implicit context" speci�cations of natural deductionpresented here. In fact, this operation is not limited to an intuitionistic object-logic. Speci�cations of natural deduction for classical logic or higher-order logic,for example, could be similarly transformed. Any such explicit context speci�-cation can be viewed as a speci�cation of a sequent style inference system forthe same logic. In the case of NI , the fact that the inference rules could bespeci�ed in such a way that the corresponding sequent system was exactly LIwithout the cut rule is a result of the close correspondence between the two.The well-known sequent and natural deduction inference systems for classicallogic, for example, cannot be so easily related in this way.AcknowledgementsI am grateful to Dale Miller and Peter Schroeder-Heister for valuable discussionsand comments related to this paper. This research was supported in part bygrants ARO-DAA29-84-9-0027, ONR N00014-88-K-0633, NSF CCR-87-05596,DARPA N00014-85-K-0018, and ESPRIT Basic Research Action 3245.References1. Alonzo Church. A formulation of the simple theory of types. Journal of SymbolicLogic, 5:56{68, 1940. 21

2. Michael Dummett. Elements of Intuitionism. Clarendon Press, Oxford, 1977.3. Conal Elliott and Frank Pfenning. eLP, a Common Lisp Implementation of�Prolog. May 1989.4. Amy Felty. Specifying and Implementing Theorem Provers in a Higher-Order LogicProgramming Language. PhD thesis, University of Pennsylvania, August 1989.5. Amy Felty and Dale Miller. Specifying theorem provers in a higher-order logic pro-gramming language. In Ninth International Conference on Automated Deduction,Argonne Ill., May 1988.6. Gerhard Gentzen. Investigations into logical deductions, 1935. In M. E. Szabo,editor, The Collected Papers of Gerhard Gentzen, pages 68{131, North-HollandPublishing Co., Amsterdam, 1969.7. J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinatory Logic andLambda Calculus. Cambridge University Press, 1986.8. G�erard Huet. A uni�cation algorithm for typed �-calculus. Theoretical ComputerScience, 1:27{57, 1975.9. Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniformproofs as a foundation for logic programming. To appear in the Annals of Pureand Applied Logic.10. Gopalan Nadathur and Dale Miller. Higher-order horn clauses. April 1988. Toappear in the Journal of the ACM.11. Gopalan Nadathur and Dale Miller. An overview of �Prolog. In K. Bowen and R.Kowalski, editors, Fifth International Conference and Symposium on Logic Pro-gramming, MIT Press, 1988.12. Lawrence C. Paulson. The foundation of a generic theorem prover. Journal ofAutomated Reasoning, 5(3):363{397, September 1989.13. Garrel Pottinger. Normalization as a homomorphic image of cut-elimination. An-nals of Mathematical Logic, 12(3):223{357, 1977.14. Dag Prawitz. Ideas and results in proof theory. In J.E. Fenstad, editor, Proceed-ings of the Second Scandinavian Logic Symposium, pages 235{307, North-Holland,Amsterdam, 1971.15. Dag Prawitz. Natural Deduction. Almqvist & Wiksell, Uppsala, 1965.16. J. I. Zucker. Cut-elimination and normalization. Annals of Mathematical Logic,1(1):1{112, 1974.
22

