Two-Level Meta-Reasoning in Coq *

Amy P. Felty

School of Information Technology and Engineering
University of Ottawa, Ottawa, Ontario KIN 6N5, Canada
afelty@site.uottawa.ca

Abstract. The use of higher-order abstract syntaz is central to the di-
rect, concise, and modular specification of languages and deductive sys-
tems in a logical framework. Developing a framework in which it is also
possible to reason about such deductive systems is particularly challeng-
ing. One difficulty is that the use of higher-order abstract syntax com-
plicates reasoning by induction because it leads to definitions for which
there are no monotone inductive operators. In this paper, we present
a methodology which allows Coq to be used as a framework for such
meta-reasoning. This methodology is directly inspired by the two-level
approach to reasoning used in the FOXAN (pronounced fold-n) logic. In
our setting, the Calculus of Inductive Constructions (CIC) implemented
by Coq represents the highest level, or meta-logic, and a separate speci-
fication logic is encoded as an inductive definition in Coq. Then, in our
method as in FO)\AN, the deductive systems that we want to reason
about are the object logics which are encoded in the specification logic.
We first give an approach to reasoning in Coq which very closely mimics
reasoning in FOA*Y illustrating a close correspondence between the two
frameworks. We then generalize the approach to take advantage of other
constructs in Coq such as the use of direct structural induction provided
by inductive types.

1 Introduction

Higher-order abstract syntax encodings of object logics are usually given using a
typed meta-language. The terms of the untyped A-calculus can be encoded using
higher-order syntax, for instance, by introducing a type tm and two constructors:
abs of type (tm — tm) — tm and app of type tm — tm — tm. As this example
shows, it is often useful to use negative occurrences of the type introduced for
representing the terms of the object logic. (Here the single negative occurrence
is in boldface.) Predicates of the meta-logic are used to express judgments in the
object logic such as “term M has type t”. Embedded implication is often used
to represent hypothetical judgments, which can result in negative occurrences
of such predicates. For example the following rule which defines typing for A-

* In Proceedings of the 15th International Conference on Theorem Proving in Higher
Order Logics, August 2002, © Springer- Verlag.

abstraction in the object logic

(x:71)
M:T2
e .M i1 —

can be expressed using the typeof predicate in the following formula.

VM :tm — tm.NT, ™ : tm.
(Vz : tm.(typeof x 71) D (typeof (M x) T2))
D (typeof (abs M) (11 — T2))

The Coq system [21] implements the Calculus of Inductive Constructions (CIC)
and is one of many systems in which such negative occurrences cause difficulty.
In particular, the inductive types of the language cannot be used directly for
this kind of encoding of syntax or inference rules.

FOMN ig a logical framework capable of specifying a wide variety of deduc-
tive systems [13]. It is one of the first to overcome various challenges and allow
both specification of deductive systems and reasoning about them within a sin-
gle framework. It is a higher-order intuitionistic logic with support for natural
number induction and definitions. A rule of definitional reflection is included and
is central to reasoning in the logic [8]. This rule in particular represents a signif-
icant departure from the kinds of primitive inference rules found in Coq and a
variety of other systems that implement similar logics. Our methodology illus-
trates that, for a large class of theorems, reasoning via this rule can be replaced
by reasoning with inductive types together with a small number of assumptions
about the constants that are introduced to encode a particular deductive system.

We define both the specification logic and the object logic as inductive defi-
nitions in Coq. Although there are no inductive definitions in FOAY, our Coq
definitions of specification and object logics closely resemble the corresponding
FOMAN definitions of the same logics. The use of a two-level logic in both FOAAN
and Coq solves the problem of inductive reasoning in the presence of negative
occurrences in hypothetical judgments. Hypothetical judgments are expressed at
the level of the object logic, while inductive reasoning about these object logics
takes place at the level of the specification logic and meta-logic. More specif-
ically, in FOA2Y, a combination of natural number induction and definitional
reflection provides induction on the height of proofs in the specification logic. For
the class of theorems we consider, we can mimic the natural number induction
of FOXAN fairly directly in Coq. In addition, the Coq environment provides the
extra flexibility of allowing reasoning via direct induction using the theorems
generated by the inductive definitions. For example, we can use direct structural
induction on proof trees at both the specification level and the object-level.

One of our main goals in this work is to provide a system that allows pro-
gramming and reasoning about programs and programming languages within a
single framework. The Centaur System [3] is an early example of such a system.
We are interested in a proof and program development environment that sup-
ports higher-order syntax. In particular, we are interested in the application of

such a system to building proof-carrying code (PCC) systems. PCC [17] is an
approach to software safety where a producer of code delivers both a program
and a formal proof that verifies that the code meets desired safety policies. We
have built prototype PCC systems [1, 2] in both AProlog [16] and Twelf [19] and
have found higher-order syntax to be useful in both programming and express-
ing safety properties. Definitional reflection as in FOA2Y is difficult to program
directly in AProlog and Twelf. On the other hand, support for inductive types
similar to that of Coq is straightforward to implement. We hope to carry over the
methodology we describe here to provide more flexibility in constructing proofs
in the PCC setting.

In this paper, after presenting the Calculus of Inductive Constructions in
Sect. 2, we begin with the example proof of subject reduction for the untyped
A-calculus from McDowell and Miller [13] (also used in Despeyroux et al. [5]).
For this example, we use a sequent calculus for a second-order minimal logic
as our specification logic. We present a version of the proof that uses natural
number induction in Sect. 3. By using natural number induction, we are able
to mimic the corresponding FOA?N proof, and in Sect. 4 we discuss how the
FOMY proof illustrates the correspondence in reasoning in the two systems.
In Sect. 5, we present an alternate proof which illustrates reasoning by direct
structural induction in Coq. In Sect. 6, we conclude as well as discuss related
and future work.

2 The Calculus of Inductive Constructions

We assume some familiarity with the Calculus of Inductive Constructions. We
note here the notation used in this paper, much of which is taken from the Coq
system. Let x represent variables and M, N represent terms of CIC. The syntax
of terms is as follows.

Prop | Set | Type | « | MN | Ax:M.N |
Vo:MN | M>N | MAN | MVN |
Jx:M.N | =M | M=N | True | Indxz: M {Ny|---|Np} |
Rec M N | Casex: M of My = Ny,...,M, = N,

Here V is the dependent type constructor and the arrow (—) is the usual abbre-
viation when the bound variable does not occur in the body. Of the remaining
constants, Prop, Set, Type, \, Ind, Rec, and Case are primitive, while the oth-
ers are defined. Prop is the type of logical propositions, whereas Set is the type
of data types. T'ype is the type of both Prop and Set. Ind is used to build in-
ductive definitions where M is the type of the class of terms being defined and
Ni,...,N, where n > 0 are the types of the constructors. Rec and Case are
the operators for defining recursive and inductive functions, respectively, over
inductive types. Equality on Set (=) is Leibnitz equality.

A constant is introduced using the Parameter keyword and ordinary defini-
tions which introduce a new constant and the term it represents are defined us-
ing the Definition keyword. Inductive definitions are introduced with an Inductive

declaration where each constructor is given with its type separated by vertical
bars. When an inductive definition is made, Coq automatically generates opera-
tors for reasoning by structural induction and for defining recursive functions on
objects of the new type. We use the section mechanism of the system which pro-
vides support for developing theories modularly. The Variable keyword provides a
way to introduce constants that will be discharged at the end of a section. Axiom
is used to introduce formulas that are assumed to hold and Theorem introduces
formulas which are immediately followed by a proof or a series of commands
(tactics) that indicate how to construct the proof.

3 An Example: Subject Reduction for the Untyped
A-Calculus

A variety of specification logics can be defined. In this paper, we use a simple
minimal logic taken from McDowell and Miller [13]. In Coq, we introduce the
type prp to encode formulas of the specification logic, and the type atm (left as
a parameter at this stage) to encode the atomic formulas of the object logic.

Variable atm : Set.
Variable tau : Set.
Inductive prp : Set :=
() :atm — prp | tt:prp| & : prp — prp — prp |
=:atm — prp = prp | A\ : (tau — prp) = prp | \/ : (tau — prp) — prp.

The operator () is used to coerce objects of type atm to prp. The other con-
structors of the inductive definition of prp define the logical connectives of the
specification logic. We use a higher-order syntax encoding of the quantifiers /A
(forall) and \/ (exists), i.e., each quantifier takes one argument which is a A-term
so that binding of quantifiers in the specification logic is encoded as A-binding at
the meta-level. Note that we parameterize the quantification type; this version
of the specification logic limits quantification to a single type tau. This is not
a serious restriction here since we encode all syntactic objects in our examples
using the single type tm; also, it can be extended to include other types if nec-
essary. Here, we freely use infix and prefix/postfix operators, without discussing
the details of using them in Coq.

For illustration purposes, we show the induction principle generated by Coq
resulting from the above definition of prp.

VP : prp — Prop.
[(VA : atm.P(A)) —
P(it) —
(VB : prp.PB = ¥C : prp.PC — P(B&C)) —
(VA : atm.VB : prp.PB — P(A = B)) —
(VB : tau — prp.(Yx : tau.P(Bz)) = P(\ B)) —
(VB : tau — prp.(Yx : tau.P(Bz)) — P(\/ B))] = VB : prp.PB

After closing the section containing the above definitions, prp will have type
Set — Set — Set because atm and tau are discharged.

The Coq inductive definition in Fig. 1 is a direct encoding of the specification
logic. The predicate prog is used to declare the object-level deductive system. It

Variable prog : atm — prp — Prop.
Inductive seq : nat — list atm — prp — Prop .=
sbc : Vi : nat.VA : atm.VL : list atm.Vb : prp.
(prog Ab) — (seq i L b) — (seq (S i) L (A))
| sinit : Vi : nat.VA, A’ : atm.VL : list atm.
(element A (A" :: L)) — (seq i (A" :: L) (A))
| strue : Vi : nat.VL : list atm.(seq i L tt)
| sand : Vi : nat.VB,C : prp.YL : list atm.
(seqi L B) — (seqi L C) — (seq (S i) L (B&C))
| simp : Vi : nat.VA : atm.NB : prp.VL : list atm.
(seqi (A= L) B) — (seq (Si) L (A= B))
| sall : Vi : nat.VB : tau — prp.VL : list atm.
(Vo : tau.(seq i L (B z))) — (seq (S i) L (\ B))
| ssome : Vi : nat.VB : tau — prp.VL : list atm.
Vz : tau.(seq i L (B z)) = (seq (S i) L (\/ B)).
Definition > : list atm — prp — Prop := Al : list atm.AB : prp.3i : nat.(seq i | B).
Definition >¢ : prp — Prop := AB : prp.3i : nat.(seq i nil B).

Fig. 1. Definition of the Specification Logic in Coq

is a parameter at this stage. A formula of the form (prog A b) as part of the
object logic means roughly that b implies A where A is an atom. We will see
shortly how prog is used to define an object logic. Most of the clauses of this
definition encode rules of a sequent calculus which introduce connectives on the
right of a sequent. For example, the sand clause specifies the following A-R rule.

L—B L—C
L—BAC

A-R

In the Coq definition, the natural number ¢ indicates that the proofs of the
premises have height at most ¢ and the proof of the conclusion has height at
most ¢ + 1. (S is the successor function from the Coq libraries.) The sinit clause
specifies when a sequent is initial (i.e., the formula on the right appears in
the list of hypotheses on the left). We omit the definition of element, which is
straightforward. The sbe clause represents backchaining. A backward reading of
this rule states that A is provable from hypotheses L in at most ¢ + 1 steps if
b is provable from hypotheses L in at most i steps, where “A implies B” is a
statement in the object logic. The definitions of > and >¢ at the end of the figure
are made for convenience in expressing properties later. The former is written
using infix notation.

Theorems which inwvert this definition can be directly proved using the in-
duction and recursion operators for the type seq. For example, it is clear that if
a proof ends in a sequent with an atomic formula on the right, then the sequent
was either derived using the rule for prog (sbc) or the atom is an element of the

list of formulas on the left (sinit). This theorem is expressed as follows.

Theorem seq_atom_inv : ¥i : nat.YA : atm .Vl : list atm.(seq i | (A)) —
[Fj : nat.3b: prp.(i = (S j) A (prog A b) A (seq j1 b))V
A" :atm 3l : list atm.(I = (A’ 2 1") A (element A 1))].

Induction principles generated by Coq are also useful for reasoning by case
analysis. For example, case analysis on seq can be used to prove the seq_cut
property below, which is an essential part of our proof development.

Theorem seq_cut : Ya : atm.¥b : prp.Vi : list atm.(a :: 1) > b — 1> (a) = I > b.

This theorem can also be proven by case analysis on prp using the induction
principle shown earlier. In fact, for this particular theorem, case analysis on prp
leads to a somewhat simpler proof than case analysis on seq.

Our object logic consists of untyped A-terms, types, and rules for assigning
types to terms. Terms and types are encoded using the parameter declarations
below.

Parameter tm : Set.
Parameter gnd : tm. Parameter abs : (tm — tm) — tm.
Parameter arr : tm — tm — tm. Parameter app : tm — tm — tm.
Axiom gnd_arr : Vt,u : trn.—(gnd = (arr t u)).
Axiom abs_app : VR : tm — tm.NM,N : tm.~((abs R) = (app M N)).
Axiom arr_inj : Vt,t' u,u' : tm.(arr t u) = (arr t' v') >t =t' ANu=1u'.
Axiom abs_inj : YR, R’ : tm — tm.(abs R) = (abs R') - R=R/.
Axiom app_ing : VM, M',N,N' : tm.

(app M N) = (app M' N') - M =M'AN = N".

The five axioms following them express properties about distinctness and injec-
tivity of constructors. For example, a term beginning with abs is always distinct
from one beginning with app. Also, if two terms (abs R) and (abs R’) are equal
then so are R and R'. For objects defined inductively in Coq, such properties
are derivable. Here, we cannot define tm inductively because of the negative
occurrence in the type of the abs constant, so we must include them explicitly.
They are the only axioms we require for proving properties about this object
logic. The type tm is the type which instantiates tau in the definitions of prp
and seq above.

Note that by introducing constants and axioms, we are restricting the con-
text in which reasoning in Coq is valid and actually corresponds to reasoning
about the deduction systems we encode. For example, we cannot discharge these
constants and instantiate them with arbitrary objects such as inductively de-
fined elements of Set. We do not want to be able to prove any properties about
these constants other than the ones we assume and properties that follow from
them.

The definitions for atomic formulas and for the prog predicate, which encode
typing and evaluation of our object logic are given in Fig. 2. An example of
an inversion theorem that follows from this definition is the following. Its proof

Inductive atm : Set := typeof : tm — tm — atm | {: tm — tm — atm.
Inductive prog : atm — prp — Prop :=
tabs : Vt,u : tm.YR : tm — tm.
(prog (typeof (abs R) (arr t u))
(A An:tm.((typeof n t) = (typeof (R n) u))))
| tapp : VM, N, t : tm.
(prog (typeof (app M N) t)
(V Au:tm.((typeof M (arr u t))&({typeof N u))))
| eabs : VR : tm — tm.(prog ((abs R) | (abs R)) tt)
| eapp : VM,N,V : tm.NR : tm — tm.
(prog ((app M N) 4 V) (M § (abs R)&((R N) 4 V))

Fig. 2. Definition of the Object Logic in Coq
requires seq_atom_inv above.

Theorem eval_nil_inv : Vj : nat. VM,V : tm.(seq j nil (M | V)) —
[(AR : tm — tm.M = (abs R) AV = (abs R))V
(Fk : nat.3R :tm — tm AP, N : tm.j = (S (S k)) AM = (app P N) A
(seq k nil (P | (abs R))) A (seq k nil (R N){V)))]

We are now ready to express and prove the subject reduction property.
Theorem sr : Vp,v : tm. > (p § v) = Vt : tm. o (typeof p t) — >o(typeof v t).

Our proof of this theorem corresponds directly to the one given by Miller and
McDowell [13]. We show a few steps to illustrate. After one definition expansion
of ¢, several introduction rules for universal quantification and implication, and
an elimination of the existential quantifier on one of the assumptions, we obtain
the sequent

(seq i nil (p I v)), >o(typeof p t) — >o(typeof v t). (1)

(We display meta-level sequents differently than the Coq system. We omit type
declarations and names of hypotheses, and we separate the hypotheses from
the conclusion with a sequent arrow.) We now apply complete induction, which
comes from the basic Coq libraries and is stated:

Theorem lt_wf_ind : Vk : nat.YP : nat — Prop.
(Vn : nat.(¥Ym : nat.m < n - Pm) — Pn) — Pk.

After solving the trivial subgoals, we are left to prove Vk.(k < j D (IP k)) D
(IP j), where IP denotes the formula

i nat.¥p,v : tm.(seq i nil (p § v)) = Vt : tm. >¢ (typeof p t) — >o(typeof v t).

After clearing the old assumptions and applying a few more intro/elim rules we
get the following sequent.

Vk.k <j— (IP k), (seq j nil (p | v)),>o(typeof p t) — >o(typeof v t). (2)

Note that a proof of (seq j nil (p | v)) must end with the first clause for seq
(containing prog). Here, we apply the eval_nil_inv inversion theorem to obtain

Vkk<j— (IP k),
[(3R : tm — tm.p = (abs R) Av = (abs R))V
(3K :nat.3R :tm — tm 3IP,N :tm.j = (S (S k")) Ap=(app P N) A
(seq k' nil (P | (abs R))) A (seq k' nil (R N) { v)))],
>o(typeof p t) — Do(typeof v t).

Then after eliminating the disjunction, existential quantifiers, and conjunction,
as well as performing the substitutions using the equalities we obtain the follow-
ing two sequents.

Vk.k < j— (IP k),>o(typeof (abs R) t) — >o(typeof (abs R) t) (3)
Vk.k < (S (SK)) = (IP k), (seq k' nil (P | (abs R))),
(seq k' nil {(R N) { v)),>o(typeof (app P N) t) — >o(typeof v t) (4)

Note that the first is directly provable.

We carry out one more step of the Coq proof of (4) to illustrate the use of
a distinctness axiom. In particular, we show the two sequents that result from
applying an inversion theorem to the formula just before the sequent arrow in (4)
and then applying all possible introductions, eliminations, and substitutions. (We
abbreviate (S (S (S £"))) as (S® k") and similarly for other such expressions.)

Vk.k < (S° k") — (IP k), (seq (S® k") nil (P | (abs R))),
(seq (S? k") nil (R N) {v)),(app P N) = (abs R),t = (arr T' U),
(seq k" ((typeof M T") :: nil) {(typeof (R M) U)))) — >o{typeof v t)
Vk.k < (S® k") — (IP k), (seq (S® k") nil (P | (abs R))),
(seq (S? k") nil (R N) | v)), (seq k" nil (typeof P (arr ut)))
(seq k" nil (typeof N u))) — >o(typeof v t)

Note the occurrence of (app P N) = (abs R) in the first sequent. This sequent
must be ruled out using the abs_app axiom.

The remainder of the Coq proof continues using the same operations of ap-
plying inversion theorems, and using introduction and elimination rules. It also
includes applications of lemmas such as seq_cut mentioned above.

4 A Comparison to FOAAY

The basic logic of FOAAY is an intuitionistic version of a subset of Church’s
Simple Theory of Types with logical connectives L, T, A, V, D, V., and 3,.
Quantification is over any type 7 not containing o, which is the type of meta-level
formulas. The inference rules of the logic include the usual left and right sequent
rules for the connectives and rules that support natural number induction. Note
that these sequent rules are at the meta-level, and thus we have sequent calculi
both at the meta-level and specification level in our example proof. FOA2N also

has the following rules to support definitions.

% defR, where A = A'O for some clause VZ[A' =5 B]
{BO,I'® — CO|O € CSU(A, A") for some clause VZ[A' = B]}

AT C defL
A definition is denoted by VZ[A' =4 B] where the symbol =4 is used to sepa-
rate the object being defined from the body of the definition. Here, A’ has the
form (p t) where p is a predicate constant, every free variable in B is also free
in (p t), and all variables free in ¢ are contained in the list z. The first rule
provides “backchaining” on a clause of a definition. The second rule is the rule
of definitional reflection and uses complete sets of unifiers (CSU). When this set
is infinite, there will be an infinite number of premises. In practice, such as in
the proofs in McDowell and Miller’s work [12, 13], this rule is used only in finite
cases.

Fig. 3 illustrates how seq and prog are specified as FOAAY definitions. Each

seq (SI) L (A) =a 3b.[prog AbAseqI L]
seq I (A" : L) (AY =4 element A (A" : L)
seq I Ltt=aT
q (SI) L (B&C)=aseqI L BAseqI LC
seq (SI) L (A= B)=aseqI (A::L)B
seq (SI) L (A, B) =a Vrz.[seq I L (Bx)]
seq (SI) L (\/. B) =a 3rz.[seq I L (Bx)]

prog (typeof (abs R) (arr T U)) \,, AN.((typeof N T') = (typeof (R N) U))
prog (typeof (ap M N) T) V. AU.((typeof M (arr U T))&(typeof N U))
prog ((abs R) | (abs R)) tt

prog ((app M N) 4 V) (M | (abs R))&((R N) 4 V)

Fig. 3. Definitions of Specification and Object Logics in FOXAN

of the clauses for prog ends in =4 T which is omitted.

To a large extent, the inversion and case analysis theorems we proved in Coq
were introduced to provide the possibility to reason in Coq in a manner which
corresponds closely to reasoning directly in FOAAN. In particular, they allow us
to mimic steps that are directly provided by definitional reflection in FOXAN,
For types that cannot be defined inductively in Coq such as tm, the axioms
expressing distinctness and injectivity of constructors are needed for this kind
of reasoning.

To illustrate the correspondence between proofs in FOA?N and Coq, we dis-
cuss how several of the steps in the proof outlined in Sect. 3 correspond to
steps in a FOA?YN proof of the same theorem. For instance, application of se-
quent rules in FOX?N correspond directly to introduction and elimination rules
in Coq. Thus, we can begin the FOA2Y proof of the sr theorem similarly to the
Coq proof, in this case with applications of V-R, D -R, 3-L at the meta-level,
from which we obtain sequent (1) in Sect. 3.

Complete induction is derivable in FOA?YN, so using this theorem as well as
additional sequent rules allows us to obtain sequent (2) in the FOAN proof
similarly to how it was obtained in the Coq proof.

It is at this point that the first use of definitional reflection occurs in the
FOMY proof. Applying defZ to the middle assumption on the left of the sequent
arrow in (2), we see that this formula only unifies with the left hand side of the
first clause of the definition of sequents in Fig. 3. We obtain

Vk.k < (S j) — (IP k),3d.[(prog (p J v) d) A (seq j' nil d)], >o{typeof p t)
— D>o(typeof v t).

Then applying left sequent rules, followed by defL on (prog (p § v) d), we get
two sequents.

Vk.k < (S j) — (IP k), (seq j' nil tt),
Do (typeof (abs R) t) — >o(typeof (abs R) t)

Vk.k < (S j) = (IP k), (seq j' nil ({(P | (abs R))&({(R N) | v))),
> (typeof (app P N) t) — >o(typeof v t)

Like sequent (3) in Sect. 3, the first is directly provable. The def(rule is applied
again, this time on the middle assumption of the second sequent. Only the fourth
clause of the definition of sequents in Fig. 3 can be used in unification. Following
this application by conjunction elimination yields a sequent very similar to (4).
The eval_nil_inv theorem used in the Coq proof and applied to (2) at this stage
encompasses all three def(applications. Its proof, in fact, uses three inversion
theorems. Note that because of the unification operation, there is no need for
existential quantifiers and equations as in the Coq version.

The use of inductive types in Coq together with distinctness and injectivity
axioms are sufficient to handle most of the examples in McDowell and Miller’s
paper [13]. One specification logic given there relies on extensionality of equality
which holds in FOA?YN. In Coq, however, equality is not extensional, which causes
some difficulty in reasoning using this specification logic. Assuming extensional
equality at certain types in Coq will be necessary. Other axioms may be needed as
well. In the application of the definitional reflection rule, higher-order unification
is a central operation. Examples which we cannot handle also include those
in McDowell’s thesis [12] which require complex uses of such unification. For
instance, we cannot handle applications for which there are multiple solutions
to a single unification problem.

We have claimed that Coq provides extra flexibility by allowing reasoning
via direct induction using the induction principles generated by the system. A
simple example of this extra flexibility is in the proof of the seq_cut theorem
mentioned in Sect. 3. The FOAAN proof is similar to the Coq proof that does
case analysis using the induction principle for seq. In Coq, we were also able
to do a simpler proof via case analysis provided by structural induction on prp,
which is not possible in FOAAN. The next section illustrates other examples of
this extra flexibility.

10

5 Structural Induction on Sequents

In this section, we discuss an alternate proof of theorem sr that uses Coq’s
induction principle for seq. Since we do not do induction on the height of the
proof for this example, the natural number argument is not needed, so we omit
it and use the definition given in Fig. 4 instead.

Inductive seq : list atm — prp — Prop :=
sbc: VA : atm.VL : list atm.VYb : prp.
(prog A b) — (seq L b) — (seq L (A))
| sinit : VA, A" : atm.VL : list atm.
(element A (A" :: L)) — (seq (A’ = L) (A))
| strue : VL : list atm.(seq L tt)
| sand : VB, C : prp.VL : list atm.
(seq L B) — (seq L C) — (seq L (B&C))
| simp : VA : atm.NB : prp.VL : list atm.
(seq (A:: L) B) — (seq L (A= B))
| sall : VB : tau — prp.VL : list atm.
(Vz : tau.(seq L (B z))) = (seq L (\ B))
| ssome : VB : tau — prp.VL : list atm.
Vz : tau.(seq L (B z)) — (seq L (\/ B)).

Fig. 4. Definition of the Specification Logic without Natural Numbers

Note that in the statement of the sr theorem, all of the sequents have empty
assumption lists and atomic formulas on the right. Using the induction principle
for seq to prove such properties often requires generalizing the induction hy-
pothesis to handle sequents with a non-empty assumption list and a non-atomic
formula on the right. We provide an inductive definition to facilitate proofs that
require these extensions and we parameterize this definition with two properties,
one which represents the desired property restricted to atomic formulas (denoted
here as P), and one which represents the property that must hold of formulas
in the assumption list (denoted here as Phyp). We require that the property on
atomic formulas follows from the property on assumptions, so that for the base
case when the sinit rule is applied to a sequent of the form (seq L A), it will
follow from the fact that A is in L that the desired property holds. (In many
proofs, the two properties are the same, which means that this requirement is
trivially satisfied.) The following are the two properties that we use in the proof
of sr.

Definition P := A : list atm.\A : atm.Cases A of
(typeof m t) = True
| (p Y v) = Vt:tm.(seql (typeof pt)) = (seql (typeof v t)) end.
Definition Phyp := Al : list atm.AA : atm.3p,t : tm.A = (typeof p t) A
(seq nil (A)) A (Yo : tm.(seq | (p |} v)) = (seq | (typeof v t))).

The proof of sr (in this and in the previous section) uses induction on the
height of the proof of the evaluation judgment >¢(p | v). Thus in defining P,

11

we ignore typeof judgments. The clause for || simply states a version of the
subject reduction property but with assumption list [. The property that we
require of assumption lists is that they only contain atomic formulas of the form
(typeof p t) and that each such assumption can be proven from an empty set of
assumptions and itself satisfies the subject reduction property.

The inductive definition which handles generalized induction hypotheses (pa-
rameterized by P and Phyp) is given in Fig. 5. The definition of mapP mimics

Variable P : list atm — atm — Prop.
Variable Phyp : list atm — atm — Prop.
Inductive mapP : list atm — prp — Prop :=
mbc : VA : atm VL : list atm.(P L A) — (mapP L (A))
| minit : VA : atm.VL : list atm.(element A L) — (mapP L (A))
| mérue : VL : list atm.(mapP L tt)
| mand : VB, C : prp.VL : list atm.
(mapP L B) — (mapP L C) — (mapP L (B&C(C))
| mimp : VA : atm.NB : prp.VL : list atm.
((Phyp L A) = (mapP (A :: L) B)) = (mapP L (A= B))
| mall : VB : tau — prp.VL : list atm.
(Vz : tau.(mapP L (B x))) — (mapP L (\ B))
| msome : VB : tau — prp.VL : list atm.
Vz : tau.(mapP L (B z)) — (mapP L (\/ B)).

Fig. 5. A Definition for Extending Properties on Atoms to Properties on Propositions

the definition of seq except where atomic properties appear. For example, the
clause mand can be read as: if the generalized property holds for sequents with
arbitrary propositions B and C under assumptions L, then it holds for their con-
junction under the same set of assumptions. In mbe, the general property holds
of an atomic proposition under the condition that the property P holds of the
atom. In minit, the general property holds simply because the atom is in the list
of assumptions. The only other clause involving an atom is mimp. The general
property holds of an implication (A = B) as long as whenever Phyp holds of A,
the general property holds of B under the list of assumptions extended with A.

Using the definition of mapP, we can structure proofs of many properties so
that they involve a direct induction on the definition of the specification logic,
and a subinduction on prog for the atomic formula case. The theorem below
takes care of the first induction.

Definition PhypL := AL : list atm.(Va : atm.(element a L) — (Phyp L a)).
Theorem seq_mapP :
(VL : list atm VYA : atm.(PhypL L) —
(Phyp L A) - VA" : atm.(element A' (A:: L)) » (Phyp (A:: L) A")) =
(VL : list atm.YA : atm.Nb : prp.(PhypL L) —
(prog A b) — (seq L b) — (mapP Lb) —» (P L A)) —
Vi : list atm.NB : prp.(PhypL 1) — (seq | B) — (mapP | B).

The first two lines of the seq_mapP statement roughly state that Phyp must be
preserved as new atomic formulas are added to the list of assumptions. Here,

12

PhypL states that Phyp holds of all elements of a list. More specifically, these
lines state that whenever (Phyp L A") holds for all A" already in L, and it is
also the case that (Phyp L A) holds for some new A, then (Phyp (A :: L) A')
also holds for every A’ in the list L extended with A. The next two lines of the
theorem state the base case, which is likely to be proved by a subinduction on
prog. Under these two conditions, we can conclude that the generalized property
holds of [and B whenever Phyp holds of all assumptions in {.

For the new proof of sr, the definitions of prp and prog remain exactly
as in Sect. 3, as do the definitions of the parameters that represent syntax
along with their distinctness and injectivity axioms. Inversion theorems such
as seq_atom_inv and eval_nil_inv are stated and proved similarly as in the pre-
vious section, but without the additional natural number arguments.

Now we can state the generalized version of the sr property which is just:

Theorem sr_mapP : VL : list atm.VB : prp.
(seq L B) — (PhypL L) — (mapP L B).

To prove this theorem, we directly apply seqomapP. The proof that Phyp is
preserved under the addition of new assumptions is straightforward. The base
case for atomic formulas is proved by induction on prog. This induction gives us
four cases. The two cases which instantiate atom A from seq_mapP to formulas
of the form (typeof m t) cause (P L A) to be reduced to True. The details of
the two cases for (prog (p | v) b) are similar to the corresponding cases in the
proof in Sect. 3.

Finally, we can show that the desired sr theorem is a fairly direct consequence
of sr_mapP.

Theorem s : Vp, v : tm.(seq nil (p v)) =
Vit : tm.(seq nil (typeof p t)) — (seq nil (typeof v t)).

The proof begins with an application of the sr_mapP theorem to conclude that
(mapP nil (p | v)) holds. Now note that the only way such a formula can
hold is by the first clause of the definition of mapP since the assumption list is
empty and the formula is atomic. This fact is captured by the following inversion
theorem.

Theorem mapP _nil_atom_inv : YA : atm.(mapP nil (A)) — (P nil A).
Applying this theorem and expanding P, we can conclude that
Vt : tm.(seq nil (typeof p t)) — (seq nil (typeof p v))

which is exactly what is needed to complete the proof.

We have also used the mapP definition to prove the following theorem for a
functional language which includes app and abs as well as many other primitives
such as booleans, natural numbers, a conditional statement, and a recursion
operator:

Theorem type_unicity : VM, t : tm(seq nil (typeof M t)) —
Yt : tm(seq nil (typeof M t')) — (equiv t t').

13

where the equiv predicate is defined simply as
Inductive equiv : tm — tm — Prop := refl : Vt : tm(equiv t t).

To do this proof, we of course had to first define P and Phyp specialized to this
theorem. We do not discuss the details here.

6 Conclusion, Related Work, and Future Work

We have described a methodology for proving properties of objects expressed
using higher-order syntax in Coq. Because of the similarity of reasoning in Coq
and reasoning in the object logic we use in our PCC system, we hope to be able
to carry over this methodology to the PCC setting. In particular, in both our
AProlog and Twelf prototypes, we use an object logic that is currently specified
directly, but could be specified as prog clauses, allowing the kind of reasoning
described here.

In addition to our practical goal of building proofs in the PCC domain as
well as other domains which use meta-theoretical reasoning about logics and
programming languages, another goal of this paper was to provide insight into
how a class of proofs in the relatively new logic FOA?N correspond to proofs
in a class of logics that have been around somewhat longer, namely logics that
contain dependent types and inductive definitions.

Certainly, many more examples are needed to illustrate that our approach
scales to prove all properties that we are interested in. In addition to carrying
out more examples, our future work includes providing more flexible support
for reasoning in this setting. The mapP predicate in Sect. 5 was introduced to
provide one kind of support for induction on sequents. Other kinds of support are
worth exploring. For example, we have started to investigate the possibility of
generating induction principles for various object-level predicates such as typeof.
One goal is to find induction principles whose proofs would likely use mapP and
seq, but when they are used in proofs, all traces of the middle layer specification
logic would be absent.

As in any formal encoding of one system in another, we need to express
and prove adequacy theorems for both the specification and object-level logics.
Proofs of adequacy of these encodings should follow similarly to the one for
the m-calculus in Honsell et al. [11]. Such a proof would require that we do not
discharge the type tm in Coq, thus preventing it from being instantiated with
an inductively defined type, which could violate adequacy.

In related work, there are several other syntactic approaches to using higher-
order syntax and induction in proofs, which either do not scale well, or more
work is needed to show that they can. For example, Coq was used by Despey-
roux et al. [5] to do a proof of the subject reduction property for the untyped
A-calculus. There, the problem of negative occurrences in definitions used for
syntax encodings was handled by replacing such occurrences by a new type. As
a result, some additional operations were needed to encode and reason about
these types, which at times was inconvenient. Miculan uses a similar approach

14

to handling negative occurrences in formalizing meta-theory of both modal u-
calculus [15] and the lazy call-by-name A-calculus [14] in Coq. These proofs re-
quire fairly extensive use of axioms, more complex than those used here, whose
soundness are justified intuitively.

Honsell et al. [11] and Despeyroux [4] define a higher-order encoding of the
syntax of the m-calculus in Coq and use it formalize various aspects of the
metatheory. Although they use higher-order syntax to encode processes, there is
no negative occurrence of the type being defined, and so they are able to define
processes inductively.

Despeyroux and Hirschowitz [6] studied another approach using Coq. Again,
a different type replacing negative occurrences is used, but instead of directly
representing the syntax of (closed) terms of the encoded language by terms of
types such as tm, closed and open terms of the object language are implemented
together as functions from lists of arguments (of type tm) to terms of type tm.
Examples are described, but it is not clear how well the approach scales.

Hofmann [10] shows that a particular induction principle for ¢m, which is
derived from a straightforward extension of the inductive types in Coq to in-
clude negative occurrences, can be justified semantically under certain condi-
tions (though not within Coq). Although he cannot prove the subject reduction
property shown here, he shows that it is possible to express a straightfoward
elegant proof of a different property: that every typed A-term reduces to a term
in weak-head normal form.

In Pfenning and Rohwedder [18], the technique of schema checking is added to
the Elf system, a precursor to the Twelf system mentioned earlier. Both systems
implement the Logical Framework (LF) [9]. Induction cannot be expressed in
LF, so proofs like those shown here cannot be fully formalized inside the system.
However, each of the cases of a proof by induction can be represented. The
schema checking technique works outside the system and checks that all cases
are handled.

Despeyroux et al. [7] present a A-calculus with a modal operator which allows
primitive recursive functionals over encodings with negative occurrences. This
work is a first step toward a new type theory that is powerful enough to express
and reason about deductive systems, but is not yet powerful enough to handle
the kinds of theorems presented here.

Schiirmann [20] has developed a logic which extends LF with support for
meta-reasoning about object logics expressed in LF. It has been used to prove
the Church-Rosser theorem for the simply-typed A-calculus and many other
examples. The design of the component for reasoning by induction does not
include induction principles for higher-order encodings. Instead, it is based on a
realizability interpretation of proof terms. This logic has been implemented in
Twelf, and includes powerful automated support for inductive proofs.

References

[1] A. W. Appel and A. P. Felty. Lightweight lemmas in AProlog. In International
Conference on Logic Programming, Nov. 1999.

15

2]

[3]

[4]

[7]

[8]

[9]
[10]

[20]

[21]

A. W. Appel and A. P. Felty. A semantic model of types and machine instructions
for proof-carrying code. In The 27th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, 2000.

P. Borras, D. Clément, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and V. Pas-
cual. Centaur: the system. In Proceedings of SIGSOFT’88: Third Annual Sym-
posium on Software Development Environments (SDES), Boston, 1988.

J. Despeyroux. A higher-order specification of the m-calculus. In First IFIP In-
ternational Conference on Theoretical Computer Science. Springer-Verlag Lecture
Notes in Computer Science, 2000.

J. Despeyroux, A. Felty, and A. Hirschowitz. Higher-order abstract syntax in Coq.
In Second International Conference on Typed Lambda Calculi and Applications.
Springer-Verlag Lecture Notes in Computer Science, Apr. 1995.

J. Despeyroux and A. Hirschowitz. Higher-order syntax and induction in coq. In
Fifth International Conference on Logic Programming and Automated Reasoning.
Springer-Verlag Lecture Notes in Computer Science, 1994.

J. Despeyroux, F. Pfenning, and C. Schiirmann. Primitive recursion for higher-
order abstract syntax. In Third International Conference on Typed Lambda Calculi
and Applications. Springer-Verlag Lecture Notes in Computer Science, 1997.
L.-H. Eriksson. A finitary version of the calculus of partial inductive definitions. In
L.-H. Eriksson, L. Hallnas, and P. Schroeder-Heister, editors, Proceedings of the
January 1991 Workshop on Ezxtensions to Logic Programming. Springer-Verlag
Lecture Notes in Artificial Intelligence, 1992.

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal
of the ACM, 40(1), Jan. 1993.

M. Hofmann. Semantical analysis of higher-order abstract syntax. In Fourteenth
Annual Symposium on Logic in Computer Science, 1999.

F. Honsell, M. Miculan, and I. Scagnetto. w-calculus in (co)inductive type theories.
Theoretical Computer Science, 253(2), 2001.

R. McDowell. Reasoning in a Logic with Definitions and Induction. PhD thesis,
University of Pennsylvania, December 1997.

R. McDowell and D. Miller. Reasoning with higher-order abstract syntax in a
logical framework. ACM Transactions on Computational Logic, 3(1), Jan. 2002.
M. Miculan. Developing (meta)theory of A-calculus in the theory of contexts.
Electronic Notes on Theoretical Computer Science, 58, 2001.

M. Miculan. On the formalization of the modal p-calculus in the calculus of
inductive constructions. Information and Computation, 164(1), 2001.

G. Nadathur and D. Miller. An overview of AProlog. In K. Bowen and R. Kowalski,
editors, Fifth International Conference and Symposium on Logic Programming.
MIT Press, 1988.

G. Necula. Proof-carrying code. In 24th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. ACM Press, Jan. 1997.

F. Pfenning and E. Rohwedder. Implementing the meta-theory of deductive sys-
tems. In Eleventh International Conference on Automated Deduction, volume 607.
Lecture Notes in Computer Science, 1992.

F. Pfenning and C. Schirmann. System description: Twelf — a meta-logical
framework for deductive systems. In Sizteenth International Conference on Auto-
mated Deduction, volume 1632 of Lecture Notes in Artificial Intelligence. Springer-
Verlag, 1999.

C. Schiirmann. Automating the Meta Theory of Deductive Systems. PhD thesis,
Carnegie Mellon University, 2000.

The Coq Development Team. The Coq Proof Assistant reference manual: Version
7.2. Technical report, INRIA, 2002.

16

