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aAbstra
t. The use of higher-order abstra
t syntax is 
entral to the di-re
t, 
on
ise, and modular spe
i�
ation of languages and dedu
tive sys-tems in a logi
al framework. Developing a framework in whi
h it is alsopossible to reason about su
h dedu
tive systems is parti
ularly 
halleng-ing. One diÆ
ulty is that the use of higher-order abstra
t syntax 
om-pli
ates reasoning by indu
tion be
ause it leads to de�nitions for whi
hthere are no monotone indu
tive operators. In this paper, we presenta methodology whi
h allows Coq to be used as a framework for su
hmeta-reasoning. This methodology is dire
tly inspired by the two-levelapproa
h to reasoning used in the FO��N (pronoun
ed fold-n) logi
. Inour setting, the Cal
ulus of Indu
tive Constru
tions (CIC) implementedby Coq represents the highest level, or meta-logi
, and a separate spe
i-�
ation logi
 is en
oded as an indu
tive de�nition in Coq. Then, in ourmethod as in FO��N, the dedu
tive systems that we want to reasonabout are the obje
t logi
s whi
h are en
oded in the spe
i�
ation logi
.We �rst give an approa
h to reasoning in Coq whi
h very 
losely mimi
sreasoning in FO��N illustrating a 
lose 
orresponden
e between the twoframeworks. We then generalize the approa
h to take advantage of other
onstru
ts in Coq su
h as the use of dire
t stru
tural indu
tion providedby indu
tive types.1 Introdu
tionHigher-order abstra
t syntax en
odings of obje
t logi
s are usually given using atyped meta-language. The terms of the untyped �-
al
ulus 
an be en
oded usinghigher-order syntax, for instan
e, by introdu
ing a type tm and two 
onstru
tors:abs of type (tm! tm)! tm and app of type tm! tm! tm. As this exampleshows, it is often useful to use negative o

urren
es of the type introdu
ed forrepresenting the terms of the obje
t logi
. (Here the single negative o

urren
eis in boldfa
e.) Predi
ates of the meta-logi
 are used to express judgments in theobje
t logi
 su
h as \term M has type t". Embedded impli
ation is often usedto represent hypotheti
al judgments, whi
h 
an result in negative o

urren
esof su
h predi
ates. For example the following rule whi
h de�nes typing for �-? In Pro
eedings of the 15th International Conferen
e on Theorem Proving in HigherOrder Logi
s, August 2002, 

Springer-Verlag.



abstra
tion in the obje
t logi
 (x : �1)M : �2�x:M : �1 ! �2
an be expressed using the typeof predi
ate in the following formula.8M : tm! tm:8�1; �2 : tm:(8x : tm:(typeof x �1) � (typeof (M x) �2))� (typeof (abs M) (�1 ! �2))The Coq system [21℄ implements the Cal
ulus of Indu
tive Constru
tions (CIC)and is one of many systems in whi
h su
h negative o

urren
es 
ause diÆ
ulty.In parti
ular, the indu
tive types of the language 
annot be used dire
tly forthis kind of en
oding of syntax or inferen
e rules.FO��N is a logi
al framework 
apable of spe
ifying a wide variety of dedu
-tive systems [13℄. It is one of the �rst to over
ome various 
hallenges and allowboth spe
i�
ation of dedu
tive systems and reasoning about them within a sin-gle framework. It is a higher-order intuitionisti
 logi
 with support for naturalnumber indu
tion and de�nitions. A rule of de�nitional re
e
tion is in
luded andis 
entral to reasoning in the logi
 [8℄. This rule in parti
ular represents a signif-i
ant departure from the kinds of primitive inferen
e rules found in Coq and avariety of other systems that implement similar logi
s. Our methodology illus-trates that, for a large 
lass of theorems, reasoning via this rule 
an be repla
edby reasoning with indu
tive types together with a small number of assumptionsabout the 
onstants that are introdu
ed to en
ode a parti
ular dedu
tive system.We de�ne both the spe
i�
ation logi
 and the obje
t logi
 as indu
tive de�-nitions in Coq. Although there are no indu
tive de�nitions in FO��N, our Coqde�nitions of spe
i�
ation and obje
t logi
s 
losely resemble the 
orrespondingFO��N de�nitions of the same logi
s. The use of a two-level logi
 in both FO��Nand Coq solves the problem of indu
tive reasoning in the presen
e of negativeo

urren
es in hypotheti
al judgments. Hypotheti
al judgments are expressed atthe level of the obje
t logi
, while indu
tive reasoning about these obje
t logi
stakes pla
e at the level of the spe
i�
ation logi
 and meta-logi
. More spe
if-i
ally, in FO��N, a 
ombination of natural number indu
tion and de�nitionalre
e
tion provides indu
tion on the height of proofs in the spe
i�
ation logi
. Forthe 
lass of theorems we 
onsider, we 
an mimi
 the natural number indu
tionof FO��N fairly dire
tly in Coq. In addition, the Coq environment provides theextra 
exibility of allowing reasoning via dire
t indu
tion using the theoremsgenerated by the indu
tive de�nitions. For example, we 
an use dire
t stru
turalindu
tion on proof trees at both the spe
i�
ation level and the obje
t-level.One of our main goals in this work is to provide a system that allows pro-gramming and reasoning about programs and programming languages within asingle framework. The Centaur System [3℄ is an early example of su
h a system.We are interested in a proof and program development environment that sup-ports higher-order syntax. In parti
ular, we are interested in the appli
ation of2



su
h a system to building proof-
arrying 
ode (PCC) systems. PCC [17℄ is anapproa
h to software safety where a produ
er of 
ode delivers both a programand a formal proof that veri�es that the 
ode meets desired safety poli
ies. Wehave built prototype PCC systems [1, 2℄ in both �Prolog [16℄ and Twelf [19℄ andhave found higher-order syntax to be useful in both programming and express-ing safety properties. De�nitional re
e
tion as in FO��N is diÆ
ult to programdire
tly in �Prolog and Twelf. On the other hand, support for indu
tive typessimilar to that of Coq is straightforward to implement. We hope to 
arry over themethodology we des
ribe here to provide more 
exibility in 
onstru
ting proofsin the PCC setting.In this paper, after presenting the Cal
ulus of Indu
tive Constru
tions inSe
t. 2, we begin with the example proof of subje
t redu
tion for the untyped�-
al
ulus from M
Dowell and Miller [13℄ (also used in Despeyroux et al. [5℄).For this example, we use a sequent 
al
ulus for a se
ond-order minimal logi
as our spe
i�
ation logi
. We present a version of the proof that uses naturalnumber indu
tion in Se
t. 3. By using natural number indu
tion, we are ableto mimi
 the 
orresponding FO��N proof, and in Se
t. 4 we dis
uss how theFO��N proof illustrates the 
orresponden
e in reasoning in the two systems.In Se
t. 5, we present an alternate proof whi
h illustrates reasoning by dire
tstru
tural indu
tion in Coq. In Se
t. 6, we 
on
lude as well as dis
uss relatedand future work.2 The Cal
ulus of Indu
tive Constru
tionsWe assume some familiarity with the Cal
ulus of Indu
tive Constru
tions. Wenote here the notation used in this paper, mu
h of whi
h is taken from the Coqsystem. Let x represent variables and M , N represent terms of CIC. The syntaxof terms is as follows.Prop j Set j Type j x j MN j �x : M:N j8x : M:N j M ! N j M ^N j M _N j9x : M:N j :M j M = N j True j Ind x : M fN1j � � � jNng jRe
 M N j Case x : M of M1 ) N1; : : : ;Mn ) NnHere 8 is the dependent type 
onstru
tor and the arrow (!) is the usual abbre-viation when the bound variable does not o

ur in the body. Of the remaining
onstants, Prop, Set, Type, �, Ind, Re
, and Case are primitive, while the oth-ers are de�ned. Prop is the type of logi
al propositions, whereas Set is the typeof data types. Type is the type of both Prop and Set. Ind is used to build in-du
tive de�nitions where M is the type of the 
lass of terms being de�ned andN1; : : : ; Nn where n � 0 are the types of the 
onstru
tors. Re
 and Case arethe operators for de�ning re
ursive and indu
tive fun
tions, respe
tively, overindu
tive types. Equality on Set (=) is Leibnitz equality.A 
onstant is introdu
ed using the Parameter keyword and ordinary de�ni-tions whi
h introdu
e a new 
onstant and the term it represents are de�ned us-ing the De�nition keyword. Indu
tive de�nitions are introdu
ed with an Indu
tive3



de
laration where ea
h 
onstru
tor is given with its type separated by verti
albars. When an indu
tive de�nition is made, Coq automati
ally generates opera-tors for reasoning by stru
tural indu
tion and for de�ning re
ursive fun
tions onobje
ts of the new type. We use the se
tion me
hanism of the system whi
h pro-vides support for developing theories modularly. The Variable keyword provides away to introdu
e 
onstants that will be dis
harged at the end of a se
tion. Axiomis used to introdu
e formulas that are assumed to hold and Theorem introdu
esformulas whi
h are immediately followed by a proof or a series of 
ommands(ta
ti
s) that indi
ate how to 
onstru
t the proof.3 An Example: Subje
t Redu
tion for the Untyped�-Cal
ulusA variety of spe
i�
ation logi
s 
an be de�ned. In this paper, we use a simpleminimal logi
 taken from M
Dowell and Miller [13℄. In Coq, we introdu
e thetype prp to en
ode formulas of the spe
i�
ation logi
, and the type atm (left asa parameter at this stage) to en
ode the atomi
 formulas of the obje
t logi
.Variable atm : Set:Variable tau : Set:Indu
tive prp : Set :=hi : atm! prp j tt : prp j & : prp! prp! prp j): atm! prp! prp j V : (tau! prp)! prp j W : (tau! prp)! prp:The operator hi is used to 
oer
e obje
ts of type atm to prp. The other 
on-stru
tors of the indu
tive de�nition of prp de�ne the logi
al 
onne
tives of thespe
i�
ation logi
. We use a higher-order syntax en
oding of the quanti�ers V(forall) and W (exists), i.e., ea
h quanti�er takes one argument whi
h is a �-termso that binding of quanti�ers in the spe
i�
ation logi
 is en
oded as �-binding atthe meta-level. Note that we parameterize the quanti�
ation type; this versionof the spe
i�
ation logi
 limits quanti�
ation to a single type tau. This is nota serious restri
tion here sin
e we en
ode all synta
ti
 obje
ts in our examplesusing the single type tm; also, it 
an be extended to in
lude other types if ne
-essary. Here, we freely use in�x and pre�x/post�x operators, without dis
ussingthe details of using them in Coq.For illustration purposes, we show the indu
tion prin
iple generated by Coqresulting from the above de�nition of prp.8P : prp! Prop:[(8A : atm:P hAi)!P (tt)!(8B : prp:PB ! 8C : prp:PC ! P (B&C))!(8A : atm:8B : prp:PB ! P (A) B))!(8B : tau! prp:(8x : tau:P (Bx))! P (VB))!(8B : tau! prp:(8x : tau:P (Bx))! P (WB))℄! 8B : prp:PBAfter 
losing the se
tion 
ontaining the above de�nitions, prp will have typeSet! Set! Set be
ause atm and tau are dis
harged.4



The Coq indu
tive de�nition in Fig. 1 is a dire
t en
oding of the spe
i�
ationlogi
. The predi
ate prog is used to de
lare the obje
t-level dedu
tive system. ItVariable prog : atm! prp! Prop:Indu
tive seq : nat! list atm! prp! Prop :=sb
 : 8i : nat:8A : atm:8L : list atm:8b : prp:(prog A b)! (seq i L b)! (seq (S i) L hAi)j sinit : 8i : nat:8A;A0 : atm:8L : list atm:(element A (A0 :: L))! (seq i (A0 :: L) hAi)j strue : 8i : nat:8L : list atm:(seq i L tt)j sand : 8i : nat:8B;C : prp:8L : list atm:(seq i L B)! (seq i L C)! (seq (S i) L (B&C))j simp : 8i : nat:8A : atm:8B : prp:8L : list atm:(seq i (A :: L) B)! (seq (S i) L (A) B))j sall : 8i : nat:8B : tau! prp:8L : list atm:(8x : tau:(seq i L (B x)))! (seq (S i) L (VB))j ssome : 8i : nat:8B : tau! prp:8L : list atm:8x : tau:(seq i L (B x))! (seq (S i) L (W B)):De�nition � : list atm! prp! Prop := �l : list atm:�B : prp:9i : nat:(seq i l B):De�nition �0 : prp! Prop := �B : prp:9i : nat:(seq i nil B):Fig. 1. De�nition of the Spe
i�
ation Logi
 in Coqis a parameter at this stage. A formula of the form (prog A b) as part of theobje
t logi
 means roughly that b implies A where A is an atom. We will seeshortly how prog is used to de�ne an obje
t logi
. Most of the 
lauses of thisde�nition en
ode rules of a sequent 
al
ulus whi
h introdu
e 
onne
tives on theright of a sequent. For example, the sand 
lause spe
i�es the following ^-R rule.L �! B L �! C ^-RL �! B ^ CIn the Coq de�nition, the natural number i indi
ates that the proofs of thepremises have height at most i and the proof of the 
on
lusion has height atmost i+1. (S is the su

essor fun
tion from the Coq libraries.) The sinit 
lausespe
i�es when a sequent is initial (i.e., the formula on the right appears inthe list of hypotheses on the left). We omit the de�nition of element, whi
h isstraightforward. The sb
 
lause represents ba
k
haining. A ba
kward reading ofthis rule states that A is provable from hypotheses L in at most i + 1 steps ifb is provable from hypotheses L in at most i steps, where \A implies B" is astatement in the obje
t logi
. The de�nitions of � and �0 at the end of the �gureare made for 
onvenien
e in expressing properties later. The former is writtenusing in�x notation.Theorems whi
h invert this de�nition 
an be dire
tly proved using the in-du
tion and re
ursion operators for the type seq. For example, it is 
lear that ifa proof ends in a sequent with an atomi
 formula on the right, then the sequentwas either derived using the rule for prog (sb
) or the atom is an element of the5



list of formulas on the left (sinit). This theorem is expressed as follows.Theorem seq atom inv : 8i : nat:8A : atm:8l : list atm:(seq i l hAi)![9j : nat:9b : prp:(i = (S j) ^ (prog A b) ^ (seq j l b)) _9A0 : atm:9l0 : list atm:(l = (A0 :: l0) ^ (element A l))℄:Indu
tion prin
iples generated by Coq are also useful for reasoning by 
aseanalysis. For example, 
ase analysis on seq 
an be used to prove the seq 
utproperty below, whi
h is an essential part of our proof development.Theorem seq 
ut : 8a : atm:8b : prp:8l : list atm:(a :: l)� b! l� hai ! l � b:This theorem 
an also be proven by 
ase analysis on prp using the indu
tionprin
iple shown earlier. In fa
t, for this parti
ular theorem, 
ase analysis on prpleads to a somewhat simpler proof than 
ase analysis on seq.Our obje
t logi
 
onsists of untyped �-terms, types, and rules for assigningtypes to terms. Terms and types are en
oded using the parameter de
larationsbelow.Parameter tm : Set:Parameter gnd : tm: Parameter abs : (tm! tm)! tm:Parameter arr : tm! tm! tm: Parameter app : tm! tm! tm:Axiom gnd arr : 8t; u : tm::(gnd = (arr t u)):Axiom abs app : 8R : tm! tm:8M;N : tm::((abs R) = (app M N)):Axiom arr inj : 8t; t0; u; u0 : tm:(arr t u) = (arr t0 u0)! t = t0 ^ u = u0:Axiom abs inj : 8R;R0 : tm! tm:(abs R) = (abs R0)! R = R0:Axiom app inj : 8M;M 0; N;N 0 : tm:(app M N) = (app M 0 N 0)!M = M 0 ^N = N 0:The �ve axioms following them express properties about distin
tness and inje
-tivity of 
onstru
tors. For example, a term beginning with abs is always distin
tfrom one beginning with app. Also, if two terms (abs R) and (abs R0) are equalthen so are R and R0. For obje
ts de�ned indu
tively in Coq, su
h propertiesare derivable. Here, we 
annot de�ne tm indu
tively be
ause of the negativeo

urren
e in the type of the abs 
onstant, so we must in
lude them expli
itly.They are the only axioms we require for proving properties about this obje
tlogi
. The type tm is the type whi
h instantiates tau in the de�nitions of prpand seq above.Note that by introdu
ing 
onstants and axioms, we are restri
ting the 
on-text in whi
h reasoning in Coq is valid and a
tually 
orresponds to reasoningabout the dedu
tion systems we en
ode. For example, we 
annot dis
harge these
onstants and instantiate them with arbitrary obje
ts su
h as indu
tively de-�ned elements of Set. We do not want to be able to prove any properties aboutthese 
onstants other than the ones we assume and properties that follow fromthem.The de�nitions for atomi
 formulas and for the prog predi
ate, whi
h en
odetyping and evaluation of our obje
t logi
 are given in Fig. 2. An example ofan inversion theorem that follows from this de�nition is the following. Its proof6



Indu
tive atm : Set := typeof : tm! tm! atm j +: tm! tm! atm:Indu
tive prog : atm! prp! Prop :=tabs : 8t; u : tm:8R : tm! tm:(prog (typeof (abs R) (arr t u))(V �n : tm:((typeof n t)) htypeof (R n) ui)))j tapp : 8M;N; t : tm:(prog (typeof (app M N) t)(W �u : tm:(htypeof M (arr u t)i&htypeof N ui)))j eabs : 8R : tm! tm:(prog ((abs R) + (abs R)) tt)j eapp : 8M;N; V : tm:8R : tm! tm:(prog ((app M N) + V ) (hM + (abs R)i&h(R N) + V i))Fig. 2. De�nition of the Obje
t Logi
 in Coqrequires seq atom inv above.Theorem eval nil inv : 8j : nat:8M;V : tm:(seq j nil hM + V i)![(9R : tm! tm:M = (abs R) ^ V = (abs R))_(9k : nat:9R : tm! tm:9P;N : tm:j = (S (S k)) ^M = (app P N) ^(seq k nil hP + (abs R)i) ^ (seq k nil h(R N) + V i))℄:We are now ready to express and prove the subje
t redu
tion property.Theorem sr : 8p; v : tm:�0 hp + vi ! 8t : tm:�0 htypeof p ti ! �0htypeof v ti:Our proof of this theorem 
orresponds dire
tly to the one given by Miller andM
Dowell [13℄. We show a few steps to illustrate. After one de�nition expansionof �0, several introdu
tion rules for universal quanti�
ation and impli
ation, andan elimination of the existential quanti�er on one of the assumptions, we obtainthe sequent (seq i nil hp + vi);�0htypeof p ti �! �0htypeof v ti: (1)(We display meta-level sequents di�erently than the Coq system. We omit typede
larations and names of hypotheses, and we separate the hypotheses fromthe 
on
lusion with a sequent arrow.) We now apply 
omplete indu
tion, whi
h
omes from the basi
 Coq libraries and is stated:Theorem lt wf ind : 8k : nat:8P : nat! Prop:(8n : nat:(8m : nat:m < n! Pm)! Pn)! Pk:After solving the trivial subgoals, we are left to prove 8k:(k < j � (IP k)) �(IP j), where IP denotes the formula�i : nat:8p; v : tm:(seq i nil hp + vi)! 8t : tm:�0 htypeof p ti ! �0htypeof v ti:After 
learing the old assumptions and applying a few more intro/elim rules weget the following sequent.8k:k < j ! (IP k); (seq j nil hp + vi);�0htypeof p ti �! �0htypeof v ti: (2)7



Note that a proof of (seq j nil hp + vi) must end with the �rst 
lause for seq(
ontaining prog). Here, we apply the eval nil inv inversion theorem to obtain8k:k < j ! (IP k);[(9R : tm! tm:p = (abs R) ^ v = (abs R))_(9k0 : nat:9R : tm! tm:9P;N : tm:j = (S (S k0)) ^ p = (app P N) ^(seq k0 nil hP + (abs R)i) ^ (seq k0 nil h(R N) + vi))℄;�0htypeof p ti �! �0htypeof v ti:Then after eliminating the disjun
tion, existential quanti�ers, and 
onjun
tion,as well as performing the substitutions using the equalities we obtain the follow-ing two sequents.8k:k < j ! (IP k);�0htypeof (abs R) ti �! �0htypeof (abs R) ti (3)8k:k < (S (S k0))! (IP k); (seq k0 nil hP + (abs R)i);(seq k0 nil h(R N) + vi);�0htypeof (app P N) ti �! �0htypeof v ti (4)Note that the �rst is dire
tly provable.We 
arry out one more step of the Coq proof of (4) to illustrate the use ofa distin
tness axiom. In parti
ular, we show the two sequents that result fromapplying an inversion theorem to the formula just before the sequent arrow in (4)and then applying all possible introdu
tions, eliminations, and substitutions. (Weabbreviate (S (S (S k00))) as (S3 k00) and similarly for other su
h expressions.)8k:k < (S5 k00)! (IP k); (seq (S3 k00) nil hP + (abs R)i);(seq (S3 k00) nil h(R N) + vi); (app P N) = (abs R); t = (arr T 0 U);(seq k00 ((typeof M T 0) :: nil) h(typeof (R M) U)i)) �! �0htypeof v ti8k:k < (S5 k00)! (IP k); (seq (S3 k00) nil hP + (abs R)i);(seq (S3 k00) nil h(R N) + vi); (seq k00 nil htypeof P (arr u t)i)(seq k00 nil htypeof N ui)) �! �0htypeof v tiNote the o

urren
e of (app P N) = (abs R) in the �rst sequent. This sequentmust be ruled out using the abs app axiom.The remainder of the Coq proof 
ontinues using the same operations of ap-plying inversion theorems, and using introdu
tion and elimination rules. It alsoin
ludes appli
ations of lemmas su
h as seq 
ut mentioned above.4 A Comparison to FO��NThe basi
 logi
 of FO��N is an intuitionisti
 version of a subset of Chur
h'sSimple Theory of Types with logi
al 
onne
tives ?, >, ^, _, �, 8� , and 9� .Quanti�
ation is over any type � not 
ontaining o, whi
h is the type of meta-levelformulas. The inferen
e rules of the logi
 in
lude the usual left and right sequentrules for the 
onne
tives and rules that support natural number indu
tion. Notethat these sequent rules are at the meta-level, and thus we have sequent 
al
uliboth at the meta-level and spe
i�
ation level in our example proof. FO��N also8



has the following rules to support de�nitions.� �! B� defR;� �! A where A = A0� for some 
lause 8�x[A0 =� B℄fB�;�� �! C�j� 2 CSU(A;A0) for some 
lause 8�x[A0 =� B℄g defLA;� �! CA de�nition is denoted by 8�x[A0 =� B℄ where the symbol =� is used to sepa-rate the obje
t being de�ned from the body of the de�nition. Here, A0 has theform (p �t) where p is a predi
ate 
onstant, every free variable in B is also freein (p �t), and all variables free in �t are 
ontained in the list �x. The �rst ruleprovides \ba
k
haining" on a 
lause of a de�nition. The se
ond rule is the ruleof de�nitional re
e
tion and uses 
omplete sets of uni�ers (CSU). When this setis in�nite, there will be an in�nite number of premises. In pra
ti
e, su
h as inthe proofs in M
Dowell and Miller's work [12, 13℄, this rule is used only in �nite
ases.Fig. 3 illustrates how seq and prog are spe
i�ed as FO��N de�nitions. Ea
hseq (SI) L hAi =� 9b:[prog A b ^ seq I L b℄seq I (A0 :: L) hAi =� element A (A0 :: L)seq I L tt =� >seq (SI) L (B&C) =� seq I L B ^ seq I L Cseq (SI) L (A) B) =� seq I (A :: L) Bseq (SI) L (V� B) =� 8�x:[seq I L (Bx)℄seq (SI) L (W� B) =� 9�x:[seq I L (Bx)℄prog (typeof (abs R) (arr T U)) Vtm �N:((typeof N T )) htypeof (R N) Ui)prog (typeof (ap M N) T ) Wtm �U:(htypeof M (arr U T )i&htypeof N Ui)prog ((abs R) + (abs R)) ttprog ((app M N) + V ) hM + (abs R)i&h(R N) + V iFig. 3. De�nitions of Spe
i�
ation and Obje
t Logi
s in FO��Nof the 
lauses for prog ends in =� > whi
h is omitted.To a large extent, the inversion and 
ase analysis theorems we proved in Coqwere introdu
ed to provide the possibility to reason in Coq in a manner whi
h
orresponds 
losely to reasoning dire
tly in FO��N. In parti
ular, they allow usto mimi
 steps that are dire
tly provided by de�nitional re
e
tion in FO��N.For types that 
annot be de�ned indu
tively in Coq su
h as tm, the axiomsexpressing distin
tness and inje
tivity of 
onstru
tors are needed for this kindof reasoning.To illustrate the 
orresponden
e between proofs in FO��N and Coq, we dis-
uss how several of the steps in the proof outlined in Se
t. 3 
orrespond tosteps in a FO��N proof of the same theorem. For instan
e, appli
ation of se-quent rules in FO��N 
orrespond dire
tly to introdu
tion and elimination rulesin Coq. Thus, we 
an begin the FO��N proof of the sr theorem similarly to theCoq proof, in this 
ase with appli
ations of 8-R, � -R, 9-L at the meta-level,from whi
h we obtain sequent (1) in Se
t. 3.9



Complete indu
tion is derivable in FO��N, so using this theorem as well asadditional sequent rules allows us to obtain sequent (2) in the FO��N proofsimilarly to how it was obtained in the Coq proof.It is at this point that the �rst use of de�nitional re
e
tion o

urs in theFO��N proof. Applying defL to the middle assumption on the left of the sequentarrow in (2), we see that this formula only uni�es with the left hand side of the�rst 
lause of the de�nition of sequents in Fig. 3. We obtain8k:k < (S j0)! (IP k); 9d:[(prog (p + v) d) ^ (seq j0 nil d)℄;�0htypeof p ti�! �0htypeof v ti:Then applying left sequent rules, followed by defL on (prog (p + v) d), we gettwo sequents.8k:k < (S j0)! (IP k); (seq j0 nil tt);�0 htypeof (abs R) ti �! �0htypeof (abs R) ti8k:k < (S j0)! (IP k); (seq j0 nil (hP + (abs R)i&h(R N) + vi));�0 htypeof (app P N) ti �! �0htypeof v tiLike sequent (3) in Se
t. 3, the �rst is dire
tly provable. The defL rule is appliedagain, this time on the middle assumption of the se
ond sequent. Only the fourth
lause of the de�nition of sequents in Fig. 3 
an be used in uni�
ation. Followingthis appli
ation by 
onjun
tion elimination yields a sequent very similar to (4).The eval nil inv theorem used in the Coq proof and applied to (2) at this stageen
ompasses all three defL appli
ations. Its proof, in fa
t, uses three inversiontheorems. Note that be
ause of the uni�
ation operation, there is no need forexistential quanti�ers and equations as in the Coq version.The use of indu
tive types in Coq together with distin
tness and inje
tivityaxioms are suÆ
ient to handle most of the examples in M
Dowell and Miller'spaper [13℄. One spe
i�
ation logi
 given there relies on extensionality of equalitywhi
h holds in FO��N. In Coq, however, equality is not extensional, whi
h 
ausessome diÆ
ulty in reasoning using this spe
i�
ation logi
. Assuming extensionalequality at 
ertain types in Coq will be ne
essary. Other axioms may be needed aswell. In the appli
ation of the de�nitional re
e
tion rule, higher-order uni�
ationis a 
entral operation. Examples whi
h we 
annot handle also in
lude thosein M
Dowell's thesis [12℄ whi
h require 
omplex uses of su
h uni�
ation. Forinstan
e, we 
annot handle appli
ations for whi
h there are multiple solutionsto a single uni�
ation problem.We have 
laimed that Coq provides extra 
exibility by allowing reasoningvia dire
t indu
tion using the indu
tion prin
iples generated by the system. Asimple example of this extra 
exibility is in the proof of the seq 
ut theoremmentioned in Se
t. 3. The FO��N proof is similar to the Coq proof that does
ase analysis using the indu
tion prin
iple for seq. In Coq, we were also ableto do a simpler proof via 
ase analysis provided by stru
tural indu
tion on prp,whi
h is not possible in FO��N. The next se
tion illustrates other examples ofthis extra 
exibility. 10



5 Stru
tural Indu
tion on SequentsIn this se
tion, we dis
uss an alternate proof of theorem sr that uses Coq'sindu
tion prin
iple for seq. Sin
e we do not do indu
tion on the height of theproof for this example, the natural number argument is not needed, so we omitit and use the de�nition given in Fig. 4 instead.Indu
tive seq : list atm! prp! Prop :=sb
 : 8A : atm:8L : list atm:8b : prp:(prog A b)! (seq L b)! (seq L hAi)j sinit : 8A;A0 : atm:8L : list atm:(element A (A0 :: L))! (seq (A0 :: L) hAi)j strue : 8L : list atm:(seq L tt)j sand : 8B;C : prp:8L : list atm:(seq L B)! (seq L C)! (seq L (B&C))j simp : 8A : atm:8B : prp:8L : list atm:(seq (A :: L) B)! (seq L (A) B))j sall : 8B : tau! prp:8L : list atm:(8x : tau:(seq L (B x)))! (seq L (VB))j ssome : 8B : tau! prp:8L : list atm:8x : tau:(seq L (B x))! (seq L (W B)):Fig. 4. De�nition of the Spe
i�
ation Logi
 without Natural NumbersNote that in the statement of the sr theorem, all of the sequents have emptyassumption lists and atomi
 formulas on the right. Using the indu
tion prin
iplefor seq to prove su
h properties often requires generalizing the indu
tion hy-pothesis to handle sequents with a non-empty assumption list and a non-atomi
formula on the right. We provide an indu
tive de�nition to fa
ilitate proofs thatrequire these extensions and we parameterize this de�nition with two properties,one whi
h represents the desired property restri
ted to atomi
 formulas (denotedhere as P ), and one whi
h represents the property that must hold of formulasin the assumption list (denoted here as Phyp). We require that the property onatomi
 formulas follows from the property on assumptions, so that for the base
ase when the sinit rule is applied to a sequent of the form (seq L A), it willfollow from the fa
t that A is in L that the desired property holds. (In manyproofs, the two properties are the same, whi
h means that this requirement istrivially satis�ed.) The following are the two properties that we use in the proofof sr.De�nition P := �l : list atm:�A : atm:Cases A of(typeof m t)) Truej (p + v)) 8t : tm:(seq l htypeof p ti)! (seq l htypeof v ti) end:De�nition Phyp := �l : list atm:�A : atm:9p; t : tm:A = (typeof p t) ^(seq nil hAi) ^ (8v : tm:(seq l hp + vi)! (seq l htypeof v ti)):The proof of sr (in this and in the previous se
tion) uses indu
tion on theheight of the proof of the evaluation judgment �0hp + vi. Thus in de�ning P ,11



we ignore typeof judgments. The 
lause for + simply states a version of thesubje
t redu
tion property but with assumption list l. The property that werequire of assumption lists is that they only 
ontain atomi
 formulas of the form(typeof p t) and that ea
h su
h assumption 
an be proven from an empty set ofassumptions and itself satis�es the subje
t redu
tion property.The indu
tive de�nition whi
h handles generalized indu
tion hypotheses (pa-rameterized by P and Phyp) is given in Fig. 5. The de�nition of mapP mimi
sVariable P : list atm! atm! Prop:Variable Phyp : list atm! atm! Prop:Indu
tive mapP : list atm! prp! Prop :=mb
 : 8A : atm:8L : list atm:(P L A)! (mapP L hAi)j minit : 8A : atm:8L : list atm:(element A L)! (mapP L hAi)j mtrue : 8L : list atm:(mapP L tt)j mand : 8B;C : prp:8L : list atm:(mapP L B)! (mapP L C)! (mapP L (B&C))j mimp : 8A : atm:8B : prp:8L : list atm:((Phyp L A)! (mapP (A :: L) B))! (mapP L (A) B))j mall : 8B : tau! prp:8L : list atm:(8x : tau:(mapP L (B x)))! (mapP L (VB))j msome : 8B : tau! prp:8L : list atm:8x : tau:(mapP L (B x))! (mapP L (W B)):Fig. 5. A De�nition for Extending Properties on Atoms to Properties on Propositionsthe de�nition of seq ex
ept where atomi
 properties appear. For example, the
lause mand 
an be read as: if the generalized property holds for sequents witharbitrary propositions B and C under assumptions L, then it holds for their 
on-jun
tion under the same set of assumptions. In mb
, the general property holdsof an atomi
 proposition under the 
ondition that the property P holds of theatom. In minit, the general property holds simply be
ause the atom is in the listof assumptions. The only other 
lause involving an atom is mimp. The generalproperty holds of an impli
ation (A) B) as long as whenever Phyp holds of A,the general property holds of B under the list of assumptions extended with A.Using the de�nition of mapP , we 
an stru
ture proofs of many properties sothat they involve a dire
t indu
tion on the de�nition of the spe
i�
ation logi
,and a subindu
tion on prog for the atomi
 formula 
ase. The theorem belowtakes 
are of the �rst indu
tion.De�nition PhypL := �L : list atm:(8a : atm:(element a L)! (Phyp L a)):Theorem seq mapP :(8L : list atm:8A : atm:(PhypL L)!(Phyp L A)! 8A0 : atm:(element A0 (A :: L))! (Phyp (A :: L) A0))!(8L : list atm:8A : atm:8b : prp:(PhypL L)!(prog A b)! (seq L b)! (mapP L b)! (P L A))!8l : list atm:8B : prp:(PhypL l)! (seq l B)! (mapP l B):The �rst two lines of the seq mapP statement roughly state that Phyp must bepreserved as new atomi
 formulas are added to the list of assumptions. Here,12



PhypL states that Phyp holds of all elements of a list. More spe
i�
ally, theselines state that whenever (Phyp L A0) holds for all A0 already in L, and it isalso the 
ase that (Phyp L A) holds for some new A, then (Phyp (A :: L) A0)also holds for every A0 in the list L extended with A. The next two lines of thetheorem state the base 
ase, whi
h is likely to be proved by a subindu
tion onprog. Under these two 
onditions, we 
an 
on
lude that the generalized propertyholds of l and B whenever Phyp holds of all assumptions in l.For the new proof of sr, the de�nitions of prp and prog remain exa
tlyas in Se
t. 3, as do the de�nitions of the parameters that represent syntaxalong with their distin
tness and inje
tivity axioms. Inversion theorems su
has seq atom inv and eval nil inv are stated and proved similarly as in the pre-vious se
tion, but without the additional natural number arguments.Now we 
an state the generalized version of the sr property whi
h is just:Theorem sr mapP : 8L : list atm:8B : prp:(seq L B)! (PhypL L)! (mapP L B):To prove this theorem, we dire
tly apply seq mapP . The proof that Phyp ispreserved under the addition of new assumptions is straightforward. The base
ase for atomi
 formulas is proved by indu
tion on prog. This indu
tion gives usfour 
ases. The two 
ases whi
h instantiate atom A from seq mapP to formulasof the form (typeof m t) 
ause (P L A) to be redu
ed to True. The details ofthe two 
ases for (prog (p + v) b) are similar to the 
orresponding 
ases in theproof in Se
t. 3.Finally, we 
an show that the desired sr theorem is a fairly dire
t 
onsequen
eof sr mapP .Theorem sr : 8p; v : tm:(seq nil hp + vi)!8t : tm:(seq nil htypeof p ti)! (seq nil htypeof v ti):The proof begins with an appli
ation of the sr mapP theorem to 
on
lude that(mapP nil hp + vi) holds. Now note that the only way su
h a formula 
anhold is by the �rst 
lause of the de�nition of mapP sin
e the assumption list isempty and the formula is atomi
. This fa
t is 
aptured by the following inversiontheorem.Theorem mapP nil atom inv : 8A : atm:(mapP nil hAi)! (P nil A):Applying this theorem and expanding P , we 
an 
on
lude that8t : tm:(seq nil htypeof p ti)! (seq nil htypeof p vi)whi
h is exa
tly what is needed to 
omplete the proof.We have also used the mapP de�nition to prove the following theorem for afun
tional language whi
h in
ludes app and abs as well as many other primitivessu
h as booleans, natural numbers, a 
onditional statement, and a re
ursionoperator: Theorem type uni
ity : 8M; t : tm(seq nil htypeof M ti)!8t0 : tm(seq nil htypeof M t0i)! (equiv t t0):13



where the equiv predi
ate is de�ned simply asIndu
tive equiv : tm! tm! Prop := refl : 8t : tm(equiv t t):To do this proof, we of 
ourse had to �rst de�ne P and Phyp spe
ialized to thistheorem. We do not dis
uss the details here.6 Con
lusion, Related Work, and Future WorkWe have des
ribed a methodology for proving properties of obje
ts expressedusing higher-order syntax in Coq. Be
ause of the similarity of reasoning in Coqand reasoning in the obje
t logi
 we use in our PCC system, we hope to be ableto 
arry over this methodology to the PCC setting. In parti
ular, in both our�Prolog and Twelf prototypes, we use an obje
t logi
 that is 
urrently spe
i�eddire
tly, but 
ould be spe
i�ed as prog 
lauses, allowing the kind of reasoningdes
ribed here.In addition to our pra
ti
al goal of building proofs in the PCC domain aswell as other domains whi
h use meta-theoreti
al reasoning about logi
s andprogramming languages, another goal of this paper was to provide insight intohow a 
lass of proofs in the relatively new logi
 FO��N 
orrespond to proofsin a 
lass of logi
s that have been around somewhat longer, namely logi
s that
ontain dependent types and indu
tive de�nitions.Certainly, many more examples are needed to illustrate that our approa
hs
ales to prove all properties that we are interested in. In addition to 
arryingout more examples, our future work in
ludes providing more 
exible supportfor reasoning in this setting. The mapP predi
ate in Se
t. 5 was introdu
ed toprovide one kind of support for indu
tion on sequents. Other kinds of support areworth exploring. For example, we have started to investigate the possibility ofgenerating indu
tion prin
iples for various obje
t-level predi
ates su
h as typeof .One goal is to �nd indu
tion prin
iples whose proofs would likely use mapP andseq, but when they are used in proofs, all tra
es of the middle layer spe
i�
ationlogi
 would be absent.As in any formal en
oding of one system in another, we need to expressand prove adequa
y theorems for both the spe
i�
ation and obje
t-level logi
s.Proofs of adequa
y of these en
odings should follow similarly to the one forthe �-
al
ulus in Honsell et al. [11℄. Su
h a proof would require that we do notdis
harge the type tm in Coq, thus preventing it from being instantiated withan indu
tively de�ned type, whi
h 
ould violate adequa
y.In related work, there are several other synta
ti
 approa
hes to using higher-order syntax and indu
tion in proofs, whi
h either do not s
ale well, or morework is needed to show that they 
an. For example, Coq was used by Despey-roux et al. [5℄ to do a proof of the subje
t redu
tion property for the untyped�-
al
ulus. There, the problem of negative o

urren
es in de�nitions used forsyntax en
odings was handled by repla
ing su
h o

urren
es by a new type. Asa result, some additional operations were needed to en
ode and reason aboutthese types, whi
h at times was in
onvenient. Mi
ulan uses a similar approa
h14



to handling negative o

urren
es in formalizing meta-theory of both modal �-
al
ulus [15℄ and the lazy 
all-by-name �-
al
ulus [14℄ in Coq. These proofs re-quire fairly extensive use of axioms, more 
omplex than those used here, whosesoundness are justi�ed intuitively.Honsell et al. [11℄ and Despeyroux [4℄ de�ne a higher-order en
oding of thesyntax of the �-
al
ulus in Coq and use it formalize various aspe
ts of themetatheory. Although they use higher-order syntax to en
ode pro
esses, there isno negative o

urren
e of the type being de�ned, and so they are able to de�nepro
esses indu
tively.Despeyroux and Hirs
howitz [6℄ studied another approa
h using Coq. Again,a di�erent type repla
ing negative o

urren
es is used, but instead of dire
tlyrepresenting the syntax of (
losed) terms of the en
oded language by terms oftypes su
h as tm, 
losed and open terms of the obje
t language are implementedtogether as fun
tions from lists of arguments (of type tm) to terms of type tm.Examples are des
ribed, but it is not 
lear how well the approa
h s
ales.Hofmann [10℄ shows that a parti
ular indu
tion prin
iple for tm, whi
h isderived from a straightforward extension of the indu
tive types in Coq to in-
lude negative o

urren
es, 
an be justi�ed semanti
ally under 
ertain 
ondi-tions (though not within Coq). Although he 
annot prove the subje
t redu
tionproperty shown here, he shows that it is possible to express a straightfowardelegant proof of a di�erent property: that every typed �-term redu
es to a termin weak-head normal form.In Pfenning and Rohwedder [18℄, the te
hnique of s
hema 
he
king is added tothe Elf system, a pre
ursor to the Twelf system mentioned earlier. Both systemsimplement the Logi
al Framework (LF) [9℄. Indu
tion 
annot be expressed inLF, so proofs like those shown here 
annot be fully formalized inside the system.However, ea
h of the 
ases of a proof by indu
tion 
an be represented. Thes
hema 
he
king te
hnique works outside the system and 
he
ks that all 
asesare handled.Despeyroux et al. [7℄ present a �-
al
ulus with a modal operator whi
h allowsprimitive re
ursive fun
tionals over en
odings with negative o

urren
es. Thiswork is a �rst step toward a new type theory that is powerful enough to expressand reason about dedu
tive systems, but is not yet powerful enough to handlethe kinds of theorems presented here.S
h�urmann [20℄ has developed a logi
 whi
h extends LF with support formeta-reasoning about obje
t logi
s expressed in LF. It has been used to provethe Chur
h-Rosser theorem for the simply-typed �-
al
ulus and many otherexamples. The design of the 
omponent for reasoning by indu
tion does notin
lude indu
tion prin
iples for higher-order en
odings. Instead, it is based on arealizability interpretation of proof terms. This logi
 has been implemented inTwelf, and in
ludes powerful automated support for indu
tive proofs.Referen
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