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2 � A. Felty and K. Namjoshi1. INTRODUCTIONTeleommuniations servies are marketed to ustomers by grouping together fea-tures suh as all-waiting and all-forwarding. As the grouping is exible, an in-dividual feature is spei�ed without knowledge of whih other features it may begrouped with [Tel 1996℄. This failitates modular design and implementation; how-ever, problems arise when onurrently ative features in a group attempt to satisfyoniting requirements. Implementors may resolve suh onits as they are en-ountered in di�erent ways, leading to unpreditable behavior in the system as awhole. Moreover, it is ostly and time onsuming to detet and �x suh onitsduring or after implementation. It is therefore essential to detet and resolve suhfeature onits as early as possible, preferably at the spei�ation stage itself.With this motivation, we have developed a formal feature spei�ation language,and a method of automatially deteting feature onits at the spei�ation stage.We have implemented this method in a detetion tool alled FIX (for FeatureInteration eXtrator). Features are spei�ed by desribing their temporal behavior.For instane, a typial informal spei�ation for all forwarding is that \If entity xhas all forwarding enabled and alls to x are to be forwarded to z then, wheneverx is busy, any inoming all from y to x is eventually forwarded to z". Thisinformal desription an be expressed preisely in our spei�ation language, asdesribed in Setion 3. The language itself may be viewed as a sugared versionof temporal logi or !-automata. Speifying features as temporal formulas hasthe nie property that it abstrats from spei� state-mahine implementations,allowing any implementation that satis�es the spei�ations.The natural way to de�ne a feature onit is that the feature spei�ationsrepresent mutually inonsistent properties; that is, no program exists that an im-plement both features. This is a question about whether the onjuntion of twofeature spei�ations is realizable. As disussed in Setion 4.1, we also need to in-lude axioms about the underlying system. The system axioms desribe propertiesthat should be true of any reasonable system implementation. Typial axioms fortelephony inlude the following: (i) the system should not disonnet an establishedall, and (ii) if a all attempt is rejeted, no onnetion should be established untilthe next attempt. These axioms are spei�ed in the same spei�ation language asthe features. Speifying the system by axioms has the same nie property that itabstrats from partiular implementations, resulting in onit reports that havewider appliability.Realizability heking for linear-time temporal properties di�ers from satis�abil-ity heking, sine it distinguishes between program and environment ations. Itis also a hard problem, whih is 2EXPTIME-omplete [Pnueli and Rosner 1989℄.Its solution requires the transformation of a linear time property to a branhingtime formula, whih is then heked for satis�ability. This method is urrentlyinfeasible in pratie, due to the lak of tools that are apable of handling largeformulas eÆiently. We take the approah, therefore, of approximating realizabil-ity by a onstrained satis�ability problem. By onsidering systems with a �xednumber of entities (i.e., telephones), feature spei�ations beome propositionalformulas, and this onstrained satis�ability hek an be performed automatiallyand eÆiently with model heking tools. Our tool, FIX, reads in the spei�a-ACM Transations on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.



Feature Spei�ation and Automated Conit Detetion � 3tions, onverts them to !-automata, and uses the model heking tool COSPAN[Hardin et al. 1996℄ to perform the satis�ability test. This detetion proess is fullyautomated. FIX provides witness omputations for either outome. If no onitis deteted, the witness desribes a omputation where both feature spei�ationshold; examining this omputation often reveals gaps in the assumptions about thesystem that need to be �lled in by modifying, or adding to, the system axioms. Ifa onit is deteted, a senario is generated whih desribes a omputation wherethe features onit. By examining this senario, one an determine either theproper resolution of the onit, or whether this is a spurious onit reated byspei�ations that are too strong, and whih need to be modi�ed. Our spei�ationmethod makes it easy to speify dynami (i.e., state dependent) priorities betweenoniting features, whih are used to resolve onits.Our experiene so far has been that this detetion proess is reasonably eÆientand quite aurate. The proess of debugging the system axioms and the featurespei�ations, as desribed above, onverges rapidly. We have applied this methodto a large set of feature spei�ations from the Telordia (Bellore) standards, whihwere developed as part of a signi�ant model heking projet [Holzmann and Smith2000℄. For these features, we have been able to detet, in a matter of hours, mostof the interations given in the Telordia (Bellore) standards, as well as new ones.A teleommuniations system is, in a sense, an extreme example of designing withfeatures. Our method has proved to be quite suessful for these systems. It shouldbe noted, though, that neither the spei�ation language, nor the detetion method,are speialized to teleommuniations systems. Many other software systems arespei�ed at an early stage of design as a olletion of features. For instane, a userinterfae may be spei�ed as a set of requirements of the form: \for this sequeneof ations, the following response must our," whih �ts our general sheme. Webelieve, therefore, that our tehniques for the early detetion of onits an beapplied to a wide range of systems.The rest of the artile is strutured as follows. Setion 2 ontains a short bak-ground on temporal logi, !-automata and model heking. We motivate and de�neour spei�ation language in Setion 3. The preise formulation of feature onitand the detetion method is desribed in Setion 4. The FIX tool is desribed inSetion 5. The appliation of FIX to the Telordia feature spei�ations is disussedin Setion 6. The artile onludes with a disussion of related work in Setion 7.2. BACKGROUNDIn this setion, we provide a short bakground on linear temporal logi, !-automata,and model heking.2.1 Linear Temporal LogiLinear time temporal logi (usually abbreviated as LTL) was �rst suggested as aprotool spei�ation language in Pnueli [1977℄. Formulas in the logi de�ne sets ofin�nite sequenes; hene, the logi is partiularly well suited to desribe time de-pendent properties of onurrent, reative systems, suh as our urrent appliationdomain of telephony networks. Formally, LTL formulas are parameterized by a setof atomi propositions, AP , and are de�ned by the following syntax:ACM Transations on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.



4 � A. Felty and K. Namjoshi(1) Every proposition P in AP is a formula,(2) For formulas f and g, (f ^ g) (read as \f and g") and :(f) (read as \not f")are formulas,(3) For formulas f and g, X(f) (read as \next-time f") and (f U g) (read as \funtil g") are formulas.The temporal operators are X and U. Formulas are interpreted over in�nitesequenes of atomi proposition valuations. Suh a sequene is de�ned as a funtionfrom N to 2AP { for a sequene �, �(i) is the subset of propositions that are trueat position i. We write �; i j= f to mean that the sequene � satis�es the formulaf at position i. The language of f , denoted by L(f), is the set f� j �; 0 j= fg. Thesatisfation relation is de�ned by indution on the struture of f as follows.(1) For a proposition P , �; i j= P i� P 2 �(i),(2) �; i j= :(f) i� �; i j= f is false,(3) �; i j= (f ^ g) i� both �; i j= f and �; i j= g are true,(4) �; i j= X(f) i� �; i+ 1 j= f ,(5) �; i j= (f U g) i� there exists j, j � i, suh that �; j j= g and for every k,i � k < j, �; k j= f .Other operators an be de�ned in terms of these base operators: (f _ g) is:(:f ^ :g); (f ) g) is :f _ g; F(g) (\eventually g") is (true U g); G(f)(\always f") is :F(:f), and (f W g) (\f holds unless g") is (G(f) _ (f U g)).2.2 Automata on In�nite SequenesTemporal properties an also be spei�ed by �nite-state automata that reognizein�nite input sequenes. Suh automata are known as B�uhi automata [Buhi 1962℄or as !-automata. A B�uhi automaton A is spei�ed by a tuple (S;�;�; I; F ),where:� S is a �nite set of states,� � is a �nite set known as the alphabet,� �, a subset of � S � �� S, is the transition relation,� I , a nonempty subset of S, is the set of initial states,� F , a subset of S, is the set of aepting states.A run of A on an in�nite sequene � : N! � is an in�nite sequene r : N! Sof states suh that: (i) r(0) 2 I , and (ii) for eah i 2 N, (r(i); �(i); r(i + 1)) 2 �.A run r is aepting i� one of the states in F appears in�nitely often along r. Thelanguage of the automaton, L(A), is the set of in�nite sequenes on whih A hasan aepting run. B�uhi automata (with � = 2AP ) are stritly more powerful thanlinear temporal logi at de�ning sets of sequenes. There is a translation from LTLformulas to equivalent B�uhi automata that is exponential in the worst ase; seeThomas [1990℄ for a survey.2.3 Model ChekingA program generates a set of omputation sequenes. For reative programs wherenontermination is desirable, suh as operating systems and telephony protools,ACM Transations on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.



Feature Spei�ation and Automated Conit Detetion � 5the sequenes are in�nite, in general; hene, temporal logi or B�uhi automatamay be used to desribe program properties. For instane, mutual exlusion maybe written as G(:(Critial 0 ^ Critial 1)), and eventual aess as G(Waiting )(Waiting U Granted)).For programs with �nitely many states, a fully automated proedure known asModel Cheking [Clarke and Emerson 1981; Queille and Sifakis 1982℄ an be usedto determine whether a property holds of all omputations of the program. A �nitestate program an be represented by a B�uhi automaton with the trivial aeptaneondition F = S; hene, model heking beomes the language ontainment ques-tion L(Program) � L(Property) [Vardi and Wolper 1986℄. This question is typiallydeided by forming an automaton NProperty for the negation of the property, andalgorithmially heking whether the produt automaton Program�NProperty hasan empty language.Model Cheking tools based on language ontainment inlude COSPAN [Hardinet al. 1996℄ and VIS [Brayton et al. 1996℄. If the spei�ation fails to hold of theprogram, the tool generates a omputation that is a witness to this failure; thatis, a omputation in L(Program) that is not in L(Property). We make use of thisapability in our onit detetion method (Setion 4).3. FEATURE SPECIFICATIONIn this setion, we desribe and de�ne our feature spei�ation language and themethodology we have used to set up the feature onit hek. The details of thishek are presented in the following setion.In order to speify features, we have to begin with some informal understandingof the term \feature". In the rest of the paper, we restrit ourselves to telephonyfeatures; however, our spei�ation language and the onit detetion algorithman also be applied to spei�ations of features in other kinds of systems.In speifying features, we began with the informal desription, mostly in theform of English text found in the Telordia (Bellore) standards [Tel 1996℄. Ofourse, the proess of going from informal to formal spei�ations itself annot beformalized, so are must be taken to orretly express the ontents of the informaldesription. This setion desribes our formal spei�ation language. Setion 5inludes examples whih illustrate how this language is used by providing formalspei�ations along with the informal desriptions that they were derived from; italso desribes how the FIX tool an be used to help debug feature spei�ations toinrease their auray.A telephony feature, suh as all waiting or all forwarding, typially spei�esthe behavior over time of one or more entities in terms of their urrent stateand a set of input events. The informal spei�ation given earlier for all for-warding is an example: \If entity x has all forwarding enabled and alls to xare to be forwarded to z then, whenever x is busy, any inoming all from y tox is eventually forwarded to z". In this spei�ation, we an distinguish sev-eral prediates that desribe the state of entity x: all forwarding enabled (x),forward from to(x; z), forwarded all from to(y; x; z), busy(x), and the prediateinoming all from to(y; x) that desribes the ourrene of an event. The rest ofthe sentene uses Boolean and temporal operators (e.g., \and", \whenever", \even-ACM Transations on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.



6 � A. Felty and K. Namjoshitually"). This is a pattern that is repeated throughout the Telordia spei�ationset. Hene, we believe that a partiularly appropriate way of speifying a feature isby a olletion of temporal formulas (or automata), de�ned over a set of prediatesthat denote states or events of the system.Our spei�ation notation is a sugared version of LTL. Eah feature is spei�edseparately, as a olletion of temporal properties. The properties are de�ned interms of prediates that indiate relationships between entities in the system. Thefeature spei�ation also ontains de�nitions for basi and derived prediates thatare used in the properties. Conretely, eah feature is plaed in a separate �le; forinstane, all forwarding is spei�ed in the �le \all forwarding.spe". We use thesymbols +,&,~,=> to textually denote the Boolean operators _;^;:;) respetively.There are two prede�ned prediates: eq(x; y), whih denotes equality of the enti-ties x and y and, for eah feature F , a prediate disableF (x), whih indiates thatthe feature spei�ation is to be disabled at entity x. The latter prediates areused for seletively disabling features in order to resolve onits. The identi�ersx; y et. are variables whih an be instantiated by onstants representing entitiesin the system. We allow existential quanti�ation over entities. We use it, for ex-ample, to speify prediates suh as is on hold (x) = (exists y : has on hold (y; x)).A restrited form of existential quanti�ation represents quanti�ed variables by\ "; for instane, the above de�nition may also be written as is on hold (x) =has on hold ( ; x). The sope of an existential quanti�er in suh an abbreviatedform inludes only the prediate ontaining the \ " symbol. The general form of aproperty spei�ation is shown below.property <Name>{event: e0 persists: p0event: e1 persists: p1...event: eN-----------------------persists: p until: r disharge: d} The symbols e0, p0, e1, p1; : : : ; eN , p, r, d are Boolean expressions formed outof the basi prediates. The keyword until may be replaed with the keywordunless to de�ne a weaker spei�ation. Variables suh as x; y appearing in theprediates of the property spei�ation have sope that is loal to the property,and are impliitly universally quanti�ed; that is, the temporal property should betrue for every value of x; y in a partiular system. The event and persists onditionsabove the dashed line indiate the preondition of the property; the persists-until-disharge triple (or a persists-unless-disharge triple) indiates the postonditionof the property. Informally, the property states that \whenever the preonditionpattern holds, it is followed by the postondition pattern".The preondition has the following informal reading: \e0 holds, followed by aperiod where (p0 ^ :e1) is true, then e1 holds, followed by a period where (p1 ^:e2) is true, et., until eN holds." In extended regular expression notation, thisan be written suintly as e0; (p0 ^ :e1)�; e1; (p1 ^ :e2)�; : : : ; eN . We saythat a property is enabled at a point on a omputation i� its preondition is trueof a pre�x that ends at the point. An empty preondition part defaults to theACM Transations on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.



Feature Spei�ation and Automated Conit Detetion � 7preondition true.The postondition should hold at every point on a omputation where the prop-erty is enabled. The \persists: p until: r disharge: d" notation translates to theLTL formula (p U (r _ d)); with unless in plae of until, it orresponds to the LTLformula (p W (r _ d)). Although the disharge ondition may seem tehniallyunneessary, it makes a distintion that is important for the spei�er. The untilondition is thought of as speifying the desired outome, while the disharge on-dition is thought of as speifying the exeption onditions that ause the propertyto be trivially satis�ed. We make use of this distintion in our onit test. Anyof the three omponents of the postondition an be omitted; the hoie betweenuntil and unless defaults to unless, the persists ondition defaults to true, andthe unless and disharge onditions default to false.The easiest way to de�ne the omplete property in LTL assoiated with thegeneral form is to onsider its negation: the property is false of an in�nite sequenei� there is a point where the preondition pattern holds, but is not followed by thepostondition pattern. To illustrate the translation, onsider the property below.property Simple{event:e0 persists:p0 event:e1------------------------------persists:p until:r disharge:d} The LTL property :F(e0 ^ X((p0 ^ :e1) U (e1 ^ :(p U (r _ d))))) is equiv-alent to this spei�ation. The general ase an be handled in a similar manner,inreasing the depth of nesting for suessive event-persists pairs. This translationindiates why it is better to use a sugared notation than to use LTL diretly. Weonsider suh a formula with free variables x; y; : : : to represent the in�nite fam-ily of propositional LTL formulas de�ned by instantiating the free variables withonstants. We use suh instantiations in our onit test, but the presene of freevariables makes it simple to onsider alternative bindings of onstants to variables.Our spei�ation format was hosen, in part, beause it is easy to translate aproperty spei�ation to an automaton. We show �rst how to translate a propertyto an automaton that aepts its negation. The translated automaton has sizelinear in the size of the property, so that model heking (see Setion 2.3) an bedone eÆiently { in time linear in the program size, and linear in the property size.Thus, the same properties that are used for early onit detetion an be used toeÆiently model hek atual implementations.The negation of the simple property above is expressed by the nondeterministiB�uhi automaton shown in Figure 1. In the �gure, states are represented by irles,the transition relation is de�ned by the onditions on the arrows between irles,and aepting states are represented by onentri irles. The state labeled withS0 is the initial state. The automaton at state S0 hooses (nondeterministially)some point on a omputation, heks that the preondition holds from that point(states S1; S2), and that the postondition fails thereafter (i.e., the automaton getsstuk in states S2 or S3). The aepting states of the automaton are fS2; S3g {the automaton stays in S2 if neither the response r or the disharge d hold and theACM Transations on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.



8 � A. Felty and K. Namjoshi
S0 S1 S2 S3

e0 p0 ^ :e1true
e1 ^ :p ^ :(r _ d)

:(r _ d) ^ p truee1 ^ p ^ :(r _ d) :(r _ d) ^ :p
Fig. 1. Automaton for the negation of the simple property.

S1S0

p ^ :(r _ d)
r _ dx ^ p ^ :(r _ d):x _ r _ d

Fig. 2. Automaton for the positive version of the simple property.persistene ondition p holds, and moves to S3 and stays there if the persisteneondition fails before the response or disharge an hold. The automaton for thegeneral ase has the same linear form, with n+ 2 states for a preondition with nevents. If \until" is replaed with \unless" in the postondition, the aepting setbeomes just fS3g, sine the unless property is satis�ed if the automaton stays inS2 forever.For our purposes, we also need the automaton for the property itself. This ouldbe obtained by negating the automaton given above, but algorithms for negatingB�uhi automata are quite omplex (f. Thomas [1990℄), so we prefer a diretonstrution. First, we onstrut a deterministi automaton Apre that reognizesall the points on a omputation where the preondition holds. Then, we form theautomaton for G(Apre :aept ) (p U (r _ d))). This automaton is shown inFigure 2, where x stands for Apre :aept. This automaton is run in parallel withApre (by forming the produt automaton) to get the automaton for the property.To onstrut the automaton Apre , we take the nondeterministi automaton on�nite strings that is indued by states S0; S1 in Figure 1, with the aeptaneondition (state = S1) ^ e1. This nondeterministi automaton has an aeptingrun to every point on a omputation where the preondition holds. Now, we applythe subset onstrution to this automaton to determinize it and form Apre . Thedeterministi automaton Apre , by onstrution, has a single run on a omputationthat signals aeptane at every point where the preondition holds.ACM Transations on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.



Feature Spei�ation and Automated Conit Detetion � 9We have shown how features may be represented by formulas in LTL over aset of prediates. The prediates are, however, not independent { any underlyingtelephony system imposes some onstraints between the prediates. For instane,busy tone(x) and all waiting tone(x) are mutually exlusive. Constraints suhas these an be onsidered as an axiomatization of the swithing infrastrutureof a telephony system. In the spei�ation language, onstraints are spei�ed us-ing the same syntax as properties, exept that the form begins with the keywordonstraint instead of property.4. FEATURE CONFLICT DETECTIONGiven that a feature is spei�ed as a temporal logi formula, how an we de�ne\onit" (i.e., an \undesirable interation")? We motivate our urrent de�nitionthrough an analysis of suessively stronger formulations. We then desribe ourdetetion method and analyze its strengths and weaknesses. In the following, itshould be understood that we are referring to spei� instantiations of the features(i.e., binding the free variables with onstants). This is indiated by using theletters a; b; : : : instead of x; y; : : : in the formulas. We say that a feature is enabledif one of the properties of the feature is enabled. We identify the name of a feature,say A, with its spei�ation in terms of properties.4.1 Formulating \Conit" PreiselyConsider the following de�nition of feature onit: features A and B onit i�there does not exist a system where every omputation satis�es the spei�ationsfor both A and B.Thus, feature onit is essentially a realizability question: features A and Bonit if and only if a program realizing their joint spei�ation A ^ B does notexist. Notie that we are interested here in just the deision question: does suh aprogram exist? The problem of synthesizing suh a program is a lassial problemwhih has potential pratial appliations. Any program that satis�es A ^ B willbe an open reative program [Harel and Pnueli 1985℄ whih onstantly interatswith its environment. For instane, a program satisfying the all-forwarding spe-i�ation will have to respond to inoming all events and produe outgoing allevents. Unfortunately, the realizability question for open reative programs hasa very high omplexity (2EXPTIME-hard), and the known solutions are based onshowing satis�ability of a branhing time formula obtained from the linear time for-mulas desribing A and B [Pnueli and Rosner 1989℄. Instead of using these deisionalgorithms, for eÆieny reasons, we opt to approximate branhing time satis�a-bility by onstrained linear time satis�ability. Linear time satis�ability heking issupported by many model heking tools, suh as the tool we used, COSPAN. Inlater setions, we desribe in more detail how COSPAN is used to perform theseheks. The availability of suh tools for LTL, but not for other temporal logis,suh as branhing time logis like CTL [Clarke and Emerson 1981℄ and CTL� [Emer-son and Halpern 1986℄, or the Temporal Logi of Ations (TLA) [Lamport 1994℄,was a major fator in our hoie of LTL as the spei�ation language.t turns out that heking A ^ B for linear time satis�ability is too muh ofan approximation to the branhing time formulation of realizability. We need torule out several paths in the branhing tree that ause A ^ B to be satis�edACM Transations on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.



10 � A. Felty and K. Namjoshitrivially. Our �nal riterion is desribed below as the end result of re�ning a seriesof approximations, starting with linear time satis�ability. This riterion suÆes todetet a number of feature onit problems, as desribed later in Setion 5. Theinitial formulation is in terms of linear time satis�ability.De�nition 4.1. FeaturesA and B onit i� the formula (A ^ B) is unsatis�able;that is, in every omputation, some feature property does not hold.This de�nition, however, turns out to be inadequate. Consider the two featuresA and B de�ned below.A : G(alls(a; b) ) F(onneted(a; b) _ disonnet(a)))(\Whenever a alls b, a and b are onneted, unless a disonnets"),B : G(alls(a; b) ) F(forwards(a; b; ) _ disonnet(a)))(\Whenever a alls b, the all is forwarded to , unless a disonnets").Informally, these spei�ations are oniting, sine forwarding from b and on-neting to b should not both happen for the same all. Yet the onjuntion of theformulas is satis�able: onsider the omputation in whih alls(a; b) is always false!The problem here is that it is always possible to trivially satisfy a feature spei�a-tion if the feature is always disabled. Hene, we would like to onsider only thosesystems for whih there exist omputations where both features an be enabled to-gether. We hoose to onsider only omputations where both features are enabledtogether in�nitely often { a omputation where the features are enabled togetherone, but disabled forever from some point on is, in a sense, arti�ially restrited.De�nition 4.2. Features A and B onit i� the two features an be enabledtogether in�nitely often, but in every suh omputation, some feature propertydoes not hold.Even with the strengthened de�nition, the two features in our example are stillnononiting! Consider the omputation in whih whenever alls(a; b) is true,eventually onneted(a; b) holds, followed by forwards(a; b; ). The problem here isthat we have failed to aount for the onstraint that prevents the same all beingboth onneted and forwarded. This is not a feature property: it should be partof the system axioms. We would like to onstrain the possible implementationsfurther so that they satisfy these axioms along all omputations.De�nition 4.3. Features A and B onit i� the two features an be enabledtogether in�nitely often under the system axioms, but in every omputation wherethe features are enabled together in�nitely often and the system axioms also hold,some feature property does not hold.It is still true that the example features are nononiting! Consider the om-putation in whih after alls(a; b) holds, disonnet(a) is true before either of theprediates onneted(a; b) or forwards(a; b; ) holds. Both spei�ations are thussatis�ed trivially beause the disharge ondition is asserted before any useful a-tions are performed. It is for suh a situation that we make use of the distintionbetween until/unless and disharge onditions. We would like to rule out thoseomputations where disharge events our while the feature is pending, that is,enabled but not satis�ed. The following de�nition is the one that we use in ourdetetion method.ACM Transations on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.



Feature Spei�ation and Automated Conit Detetion � 11De�nition 4.4 (Feature Conit). Features A and B onit i� A and B an beenabled together in�nitely often under the system axioms, and for every omputa-tion where(1) The system axioms hold, and(2) A and B are enabled together in�nitely often, and(3) A disharge ondition does not our while the feature is pending,some feature property does not hold.Conditions 2 and 3 an be expressed with simple formulas of temporal logi. Forinstane, \p holds in�nitely often" is expressed by GXF(p) and \d does not ourbetween ourrenes of p and q" is expressed by G(p ) (:d W q)).4.2 Automati DetetionEah onit test is performed on a spei� instantiation of the features. Theparameterized form of the feature spei�ation makes it easy to instantiate di�erenton�gurations { for instane, one where entity a has all-forwarding and entityb has all-waiting. In general, two LTL properties f and g are inonsistent i�L(f) \ L(g) = ;, whih is true i� L(f) � L(g). This is exatly the model hekingquestion with f as the program and :g as the property. Hene, a model heker anbe used to detet feature onits. Let A and B be two features, let Ax denote thesystem axioms, and CAB the onstraints given by onditions 2 and 3 of De�nition4.4. The inonsisteny hek an be written as L(A) \ L(B) \ L(Ax) \ L(CAB) =;, whih is equivalent to L(Ax ) \ L(CAB) � L(A) [ L(B). This is the form usedin our implementation.The FIX tool that we have developed uses the model heker COSPAN [Hardinet al. 1996℄ for the onit hek. In COSPAN, both properties and onstraintsare represented by !-automata. FIX translates the onstraints Ax and the featurespei�ations A;B into COSPAN automata that aept the spei�ed languages, asexplained in Setion 3. Eah feature is translated to a parameterized automaton(parameterized by the variables appearing in the properties) whih is instantiatedas needed for eah partiular test. Sine the automata representing onditions 2and 3 of the de�nition are independent of the partiular features, they are obtainedfrom a library and instantiated on eah use with the enabling ondition of thepartiular features to obtain the automaton for CAB .The model heker delares failure if the set inlusion above is false; that is, ifthe properties do not onit. The nononit may be due to weak system axioms,or (rarely) beause the instantiation de�nes a system without enough entities toexhibit a onit. Sine the model heker delares failure, it produes a witnessomputation for whih the axioms and both features hold. Inspetion of this wit-ness omputation often reveals onstraints that need to be inluded in the systemaxioms. Even if this is not the ase, a \no onit" report should be, in general, on-sidered inonlusive, as the hek is performed for a partiular system on�guration(i.e., a �xed number of entities).On the other hand, a \onit" result is onlusive; but, as the model hekerdelares suess, no witness is produed for the onit. To produe a witness, weperform another hek: L(Ax) \ L(CAB) \ L(A) � L(B). As there is a onit,ACM Transations on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.



12 � A. Felty and K. Namjoshithis hek must fail,1 so the model heker produes a omputation that satis�esAx ;CAB and A but does not satisfy B. This omputation desribes a senario inwhih the system axioms hold, both features are enabled together in�nitely oftenand A holds, but B does not hold.5. FIX: A CONFLICT DETECTION TOOLThe FIX tool is used to both speify the desired properties of features (using thelanguage desribed in Setion 3) and to detet onits among them, as desribedin the previous setion. FIX is intended to be used at the design and spei�ationstage of the development of new features. Here, we desribe the tool in more detailand illustrate its use with the aid of examples from well-known features.The �rst step in using FIX is to provide a set of properties that spei�es thedesired behavior of the new feature. The spei�ation language desribed in Se-tion 3 was designed so that properties of features ould be spei�ed as naturallyand diretly as possible. The main omponents of the property templates | events,persisting onditions, required resolutions or onditions that must never our aftera set of preonditions are met, and exeption or disharge onditions | were hosenbeause all of the properties of the well-known features that we examined ontainedsome or all of them. In addition, they are onepts that are easily understood bya designer of a feature. There is no need to know the languages of linear temporallogi or B�uhi automaton into whih the properties will be translated. At the sametime, there is a lose enough orrespondene to these formal languages that theproperties are easily translated (as shown in Setion 3). When developing a newspei�ation, the user has the freedom to introdue new prediates as needed. Theintrodution of new prediates usually requires new system axioms to be added orexisting axioms to be updated, whih an also be done at this stage.The onit hek is the entral operation of FIX. As desribed in the previoussetion, there are two kinds of heks: the inonsisteny hek, and the hek whihprodues a \onit witness" one an inonsisteny has been deteted. For bothkinds of heks, FIX expets two properties, A and B, as input. The system axiomsAx are �xed and the auxiliary automaton CAB is reated automatially from A andB. The seond step in using FIX is to use the �rst kind of hek as a debugging aid.In partiular, eah property of the new feature an be heked for diret onitwith the system axioms. To perform a hek of a single property A against thesystem axioms, we simply instantiate B as the \always true" property, spei�ed as:property true_prop{-----------------------persists: true} A onit arising from suh a hek represents a bug in either the property orin the system axioms. The user must then either modify A or Ax and repeat thehek.1This hek will sueed only in the pathologial situation that A always fails under the onditionL(Ax) \ L(CAB). Then it is possible to produe a omputation satisfying both Ax ;CAB butnot A by heking L(Ax) \ L(CAB) � L(A).ACM Transations on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.



Feature Spei�ation and Automated Conit Detetion � 13Sine the onit heks are onlusive, one the initial spei�ation phase isomplete, the user an be sure that there are no onits between the featureproperties and the system axioms. On the other hand, beause a result of \noonit" is inonlusive, there is no guarantee that all potential onits betweenfeatures will be found. Of ourse it is important to make the spei�ations strongenough to detet as many onits as possible. FIX an provide support for thistask in a seond debugging phase. The user an hoose one or two previouslyspei�ed features, hek eah property of the new feature against eah propertyof the existing features, and examine the witness omputations that result whentwo properties do not onit. In our experiene, �nding nononiting pairs thatshould really be oniting an help the user �nd and strengthen spei�ationformulas that were not originally stated as strongly as they ould be. Also, thisphase often reveals system axioms that are not strong enough, partiularly thosethat were just added as a result of new prediates introdued by the new feature.One the user has gained enough assurane that the spei�ation and systemaxioms are orret, properties of the new feature an be heked against all otherfeatures fully automatially. At this stage, only the onits are important andthe onit witnesses are useful for understanding and determining how to orretthem.To illustrate, we take some examples from our ase study, whih is desribedmore fully in the next setion. Two of the features that we onsider are Call For-warding Busy Line (CFBL) and Anonymous Call Rejetion (ACR). For CFBL, thesubsriber gives a number to whih all alls will be forwarded when the subsriber'sline is busy. Calls to a subsriber of the ACR feature will not go through whenthe aller prevents her number from being displayed on the subsriber's aller IDdevie. For this example, we assume that CFBL was previously de�ned and ACRis a new feature to be spei�ed. The following is one of three properties of CFBL.property CFBL_Normal_Operation_1{event: CFBL(x) & ~idle(x) & ~forwarding(x,_,z) &same_swith(x,z) & le_five_forwards(y) & all_req(x,y)-----------------------persists: all_req(x,y)until: forwarding(x,y,z)disharge: onhook(y)} This property states that if x subsribes to CFBL, x is not idle, all previouslyforwarded alls from x to z have terminated, x and z are on the same swith, theinoming all from y has been forwarded at most �ve times and there is an inomingall from y, then the inoming all from y to x will be forwarded to z, unless ygoes bak on hook in the meantime. Note that all req ours both as an eventand a persisting ondition. In our model, events are not a primitive onept; theyare points in time at whih a formula beomes true. For example, all req(x; y)beomes true at some point after ompletion of dialing and ontinues to hold untilthere is some resolution of the all suh as a onnetion or forwarding.Two of the system axioms present in the system after CFBL is de�ned, but beforeACR is added are the following.ACM Transations on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.



14 � A. Felty and K. Namjoshionstraint all_req_not_resolution{---------------persists: all_req(x,y) => (~busy_tone(y) & ~forwarding(x,y,_))}onstraint distint_resolutions{---------------persists: ~(forwarding(_,y,_) & busy_tone(y))} The information expressed here is that (1) a all request is distint from a allresolution and (2) that two all resolutions annot our at the same time. For thisexample, reeiving a busy tone and having a all forwarded are the two resolutionsonsidered so far. The �rst property states that at any point in time when x hasan outstanding all request from y, y is neither reeiving a busy tone nor havingits all to x forwarded. The seond property states that a all from y is not beingforwarded at the same time that y is reeiving a busy tone. It is possible for aall to have several steps to its resolution. For example, a all from y to x may beforwarded to z followed by y reeiving a busy tone after it is determined that z isbusy, but the forwarding and reeiving of the busy tone do not happen at the sametime.property ACR_Normal_Operation_3{event: ACR(x) & all_req(x,y) & ~DN_allowed(y) &resoures_for_ACR_ann(x)-----------------------persists: all_req(x,y)until: ACR_ann(y,x)disharge: onhook(y)} The property above is one of six properties we add to speify ACR. Informally,it states that if x subsribes to ACR and if there is a all request to x from y, andif furthermore the presentation of y's number is restrited and resoures for theACR denial announement are available, this should ause y to reeive the ACRannounement, unless y gives up and goes bak on hook �rst.This property and the CFBL property stated above provide one example of thekind of onit that may arise. Consider the ase when x and y in the ACRproperty are instantiated with a and b, respetively and x, y, z of the CFBLproperty are instantiated with a, b, and , respetively. Furthermore, suppose thatthe preonditions of both properties hold simultaneously. Thus, a subsribes toboth ACR and CFBL and has an inoming all from b. The two features requirethat the inoming all be resolved in di�erent ways: ACR requires that b reeivethe ACR denial announement, while CFBL requires that the all be forwarded to. When we run the inonsisteny hek on these two properties using the sys-tem axioms that we have disussed so far, no onit is deteted. One possibleACM Transations on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.



Feature Spei�ation and Automated Conit Detetion � 15witness omputation that may arise is one in whih the all from y to x is for-warded and given the ACR denial announement at the same time. This is possi-ble beause the spei�ation of ACR has introdued three new prediates (ACR,resoures for ACR ann, ACR ann) that have not yet been inorporated intothe system axioms. In order for FIX to detet this partiular onit, it is enoughto integrate ACR ann as a new kind of all resolution. One way to do this is toupdate the �rst onstraint listed above, and replae the seond with three new onesas follows.onstraint all_req_not_resolution{---------------persists: all_req(x,y) => (~busy_tone(y) & ~forwarding(x,y,_) &~ACR_ann(y,x))}onstraint resolution_forwarding_only{---------------persists: forwarding(x,y,_) => (~busy_tone(y) & ~ACR_ann(y,x))}onstraint resolution_busy_tone_only{---------------persists: busy_tone(y) => (~forwarding(x,y,_) & ~ACR_ann(y,x))}onstraint resolution_ACR_ann_only{---------------persists: ACR_ann(y,x) => (~busy_tone(y) & ~forwarding(x,y,_))} The last three onstraints show a fairly general form for distinguishing all reso-lutions; eah time a new all resolution prediate is introdued, one new onstraintmust be introdued distinguishing it from all the rest, and the old onstraints mustbe updated to inlude the new resolution in the persists ondition.Note that although we have to debug and maintain an axiom system, as wasmentioned earlier, we do not have to maintain an implementation. We have de-sribed here how to \debug" the axioms, and in our experiene, although �ndingbugs in axioms is di�erent than debugging an implementation, it is no harder oreasier. Correting an error in an implementation requires onsidering the e�etof the orretion on the rest of the implementation and making sure it does notintrodue new errors, while orreting errors in axioms a�ets only one axiom ata time. Of ourse, any single orretion to an axiom has a global e�et, but webelieve it less error prone than hanging an implementation.We do not try to produe a \omplete" set of axioms in any sense: we introduejust enough axioms to detet meaningful onits. Our ase study desribed in thenext setion shows that we are able to do so. Sine both system axioms and featureACM Transations on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.



16 � A. Felty and K. Namjoshispei�ation formulas are expressed in the same formalism, debugging and main-taining these two kinds of formulas is the same ativity. The distintion betweenthe two is only informal; system axioms express properties that should hold nomatter what features are introdued, while spei�ation formulas formally expressrequirements of a partiular feature.This onit between ACR and CFBL is a known onit whose resolution isdesribed in the Telordia douments. When the presentation of the number is notallowed, ACR should take preedene over CFBL and the denial announementshould be given. In our setting, we an express this kind of preedene by addingthe ondition (ACR(x) ) DN allowed(y)) as an additional onjunt to the eventpart of the CFBL property. This onjunt will be false exatly when both ACR(x)and �DN allowed(y) hold, thus falsifying the entire preondition of the CFBLproperty in exatly the ases when the ACR property should take preedene.When solving interations between two features is simply a ase of establishing apriority between them, it is atually not neessary to modify the spei�ations. Asmentioned, FIX provides a mehanism for speifying priorities globally, whih weillustrate later.FIX has a variety of options. In the default ase, for any pair of properties, the xourring in both properties is instantiated by the same onstant, and similarly fory and z. The system axioms are, however, instantiated in all possible ways usingthree onstants.Also as part of the default, FIX will �rst hek that the two input propertiesan be enabled together. If not, there is no onit. Otherwise the onit hekis ompleted. Options provided in the tool inlude enhanements for greater eÆ-ieny and for more omplete overage in �nding onits. One option for moreomprehensive heks is the apability to provide alternative variable bindings. Forexample, x in a property of one feature an be instantiated with the same onstantas y in another.It is possible to inrease the e�etiveness of the onit heks by adding newprediates and new arguments to existing prediates so that properties an beexpressed more preisely. For example, we write busy tone(x) for x hearing a busysignal, but writing busy tone(x; y) to mean that x hears a busy signal in responseto an attempt to all y would be more preise. There is, however, a trade-o�:making the set of prediates more ompliated inreases the exeution time requiredfor model heking. We have attempted to keep the set of prediates simple andinrease the preision arefully as needed.6. CASE STUDYWe have applied our tool to a olletion of feature spei�ations derived from theTelordia standards [Tel 1996℄. We report on the results for ten of these features,eah heked against the nine others.Table I desribes the 10 features we onsider here. Their names, desriptions,and number of properties in eah of their spei�ations are given in the table.The features are onsidered in pairs, and eah property of one of the featuresin a pair is heked against every property of the other feature. The heks arearried out using a database of about 50 system axioms expressed as onstraintsACM Transations on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.



Feature Spei�ation and Automated Conit Detetion � 17Table I. Features, Number of Properties used in Spei�ation, and DesriptionsACR AnonymousCallRejetion 6 Allows subsriber to rejet alls from parties whohave a privay feature that prevents the deliv-ery of their alling number to the alled party.When ative, the all is routed to a denial an-nounement and terminated.CFBL Call ForwardingBusy Line 3 A telephone-ompany-ativated feature that for-wards inoming alls to a subsriber to anotherline when the subsriber is busy.CFDA Call ForwardingDon't Answer 4 Inoming alls to the subsriber are forwardedwhen the subsriber doesn't answer after a spe-i�ed time interval.CFMB Call ForwardingMake Busy 1 Allows subsriber to press a key to put phone intoa busy state so that all alls will be forwarded.CFV Call ForwardingVariable 7 Allows subsriber to speify a number to whihall alls will be forwarded.CW Call Waiting 16 Informs a busy subsriber that another all iswaiting by playing a tone. The subsriber mayash, plaing the original all on hold and answerthe new all, or may go on hook, in whih asethe subsriber is rung and onneted to the newall upon answer.DOS DeniedOriginatingServie 2 Provides the apability to deny a subsriber frommaking alls.DTS DeniedTerminatingServie 2 Provides the apability to deny terminating allsto a subsriber.PKUP Call Pikup 2 Allows one station to answer a all direted toanother station within a business group.RDA ResidentialDistintiveAlerting 2 Allows the subsriber to designate speial tele-phone numbers that may be identi�ed using dis-tintive alerting treatment.like those disussed in the previous setion. The onstraints in the previous setionare speial ases of a group of onstraints in the database that have a similar form,but involve all possible resolutions of a all. Handling the 10 features of our asestudy required 13 possible all resolutions: 2 kinds of announements, 5 kinds oftones heard by the aller, 4 kinds of rings, forwarding, and suessful onnetion.The system axioms inlude roughly three other groups of onstraints. The seondgroup was adapted from an English desription in the Telordia douments spei-fying what it means for a partiular entity to be busy or idle. The originator of aall is said to be busy from the time the phone goes o� hook until it goes bak onhook, whether or not the all is suessfully ompleted. The party who is alled issaid to be busy from the time that ringing starts until either the all is aborted bythe aller, or the all terminates normally. Approximately 15 onstraints desribethese onepts.A third group of onstraints, also taken diretly from the Telordia douments,spei�es properties for the prediates introdued spei�ally for all waiting, whihis one of the more ompliated features. For this feature, the notions of stable allsand alls that are on hold are important. For example, if no all is in proess for anACM Transations on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.



18 � A. Felty and K. NamjoshiTable II. Number of Coniting Property Pairs for eah Pair of Feature Spei�ationsCFBL CFDA CFMB CFV CW DOS DTS PKUP RDAACR 8 5 4 3 8 2 4 4 0CFBL | 0 2 2 4 1 0 2 0CFDA | | 2 4 0 0 2 0 0CFMB | | | 3 0 1 1 0 0CFV | | | | 2 1 2 1 0CW | | | | | 0 2 1 0DOS | | | | | | 0 3 0DTS | | | | | | | 1 0PKUP | | | | | | | | 0entity, then that entity is neither in a stable all state nor an unstable all state. Ananswered all is a stable all and a partially dialed all is an unstable all. Otherimportant onstraints in this group state that the time spent on hold is distintfrom the all request and all resolution phases of a all.The �nal group of onstraints deals with forwarded alls. When forwardingours, it is never the �nal resolution of the all and there are restritions on whatthe remaining steps an be. The following is an example from this group statingthat a forwarded all should never subsequently be denied by the ACR feature.onstraint forwarding_not_followed_by_ACR_ann{event: offhook(x) & forwarding(_,x,_)---------------------------persists: ~ACR_ann(x,_)unless: onhook(x)} The majority of the system axioms an be expressed using the simple form illus-trated in the last setion where only the persists ondition is important. The aboveonstraint is an example showing that a more ompliated sequene is sometimesneeded to express a onstraint.Table II shows the results of heking the ten features for onits. In the table,the numbers indiate the number of pairs of properties that resulted in a onitwhen heking the pair of features against eah other. Some entries are blankto avoid dupliation. The results reported on here were done using the defaultsettings of FIX. An average size hek, for example heking ACR against CFBLwhih inludes 18 pairwise heks, takes 20 minutes on a SGI Challenge mahine.We examine the pair of features ACR and CFBL in more detail to further il-lustrate the onits that FIX detets. CFBL is spei�ed by three properties. Inaddition to the property speifying normal operation given in the previous setion,the following two properties speify exeptions to normal operation.property CFBL_Exeption_1_to_Normal_Operation_1{event: CFBL(x) & ~idle(x) & forwarding(x,_,z) & same_swith(x,z) &all_req(x,y)---------------------------persists: all_req(x,y)ACM Transations on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.



Feature Spei�ation and Automated Conit Detetion � 19until: busy_tone(y) & ~forwarding(x,y,z)disharge: onhook(y)}property CFBL_Exeption_2_to_Normal_Operation_1{event: CFBL(x) & ~idle(x) & ~le_five_forwards(y) & all_req(x,y)-----------------------------persists: all_req(x,y)until: busy_tone(y) & ~forwarding(x,y,z)disharge: onhook(y)} Like the property already given, these properties also onsider the ase when, ini-tially, x is not idle and there is an inoming all from y. The �rst exeption handlesthe ase when another all to x is in the proess of being forwarded at the time wheny alls. The seond exeption handles the ase when the inoming all from y hasbeen forwarded more than �ve times. This ondition is often aused by a forwardingloop. In both of these ases, the all should not be forwarded. Instead, y should re-eive a busy tone. Both of these properties onit with ACR Normal Operation 3,and in both ases it is beause the ACR property requires the aller to reeive theACR denial announement, while CFBL requires the aller to reeive a busy tone.As before, ACR should have preedene over CFBL in these ases, and the on-its an be resolved by adding (ACR(x) ) DN allowed(y)) to the event partsof these properties.Next, onsider the following property of ACR, whih also spei�es normal oper-ation.property ACR_Normal_Operation_2{event: ACR(x) & all_req(x,y) & DN_allowed(y)-----------------------persists: all_req(x,y)until: audible_ringing(y) + busy_tone(y)disharge: answer(x,y) + onhook(y)} The main di�erene with the other ACR normal operation property is that thepresentation of y's number is allowed. In this ase, the all should proeed and yshould eventually reeive either a ringing tone or a busy tone. Note that there isno onit of this property with the exeption ases for CFBL. When x is not idleand y's number an be presented, the all must be resolved by y reeiving a busytone.Note, however, that the new ACR property does onit with the propertyCFBL Normal Operation 1 beause, one again, the two features require that theinoming all be resolved in di�erent ways: ACR requires the aller to reeive ei-ther ringing or a busy tone, while CFBL requires that the all be forwarded. TheTelordia douments speify that when the presentation of the number is allowed,the all should be proessed aording to the requirements of CFBL. We an resolvethis onit by adding �CFBL(x) to the event part of ACR Normal Operation 2.ACM Transations on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.



20 � A. Felty and K. NamjoshiThis ACR property an be ignored when the CFBL feature is ative.All the properties we have stated so far are liveness properties, speifying se-quenes of events that must our under ertain preonditions. Two of the sixproperties speifying ACR are safety properties indiating sequenes of events thatmust never our.property ACR_Normal_Operation_1{event: ACR(x) & all_req(x,y) & DN_allowed(y)-----------------------persists: ~ACR_ann(y,x)disharge: onhook(y) + disonnet(y,x)}property ACR_Normal_Operation_4{event: ACR(x) & all_req(x,y) & ~DN_allowed(y)-----------------------persists: all_req(x,y) & ~busy_tone(y) & ~audible_ringing(y)unless: ACR_ann(y,x)disharge: onhook(y)} The �rst states that when y's number an be presented, there is no ACR denialannounement given during the duration of the all. The all ends either by y goingbak on hook or being disonneted by the system. Reall that the default whenthere is no unless/until keyword is unless: false. This property is fairly spei�to ACR and there is no onit with CFBL.The seond property expresses the requirement that there be no busy or ringingtone given to y when the presentation of y's number is restrited. This propertyonits with the two CFBL properties whose resolution is that a busy tone mustbe given. These onits are already resolved by the solution given earlier whihadds the onjunt (ACR(x) ) DN allowed(y)) to all the CFBL properties.In these examples, seletive disabling of the features to resolve interations wasdone by adjusting the spei�ations. An alternative method is to use the prede�neddisableF (x) prediate, and insert the following onstraint into the set of system on-straints. The onstraint ensures that the appropriate feature is disabled dependingon the state of the system.onstraint resolve_ACR_CFBL_interations{event: ACR(x) & CFBL(x) & all_req(x,y)---------------------------persists: (DN_allowed(y) => disable_ACR(x)) &(~DN_allowed(y) => disable_CFBL(x))unless: ~all_req(x,y)} These examples have illustrated four of the six ACR properties and six of theeight onits between ACR and CFBL. The remaining two properties are similarto ACR Normal Operation 2 and when heked against CFBL Normal Operation 1,ACM Transations on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.



Feature Spei�ation and Automated Conit Detetion � 21produe onits similar to those already disussed7. RELATED WORK AND CONCLUSIONSSeveral approahes have been proposed for the onit detetion problem. Thereare two main ategories based on the spei�ation formalism: state mahine basedmethods and temporal logi based methods. Our approah falls into the temporallogi ategory. We desribe the two approahes below, arguing that the temporallogi method has several advantages over the state mahine approah.In several spei�ation methods [Blom et al. 1995; Combes and Pikin 1994;du Bousquet 1999; Fai and Logrippo 1994; Jonsson et al. 2000; Kamoun andLogrippo 1998; Khoumsi and Bevelo 2000; Lin and Lin 1994; Plath and Ryan 1998;Siddiqi and Atlee 2000℄, eah feature is spei�ed by a state mahine. Interations aredeteted by testing the omposition of the mahines, either for reahability of \bad"states, or for reahability of states where the features postulate oniting ationson a new input, or against temporal properties speifying the feature behavior. Fora more omplete survey of this and related approahes, see Kek and Kuehn [1998℄.In partiular, Plath and Ryan [2001℄ desribe a system based on extensions to themodel heker SMV [MMillan 1993℄. Features are built by layering hanges on abase feature. The base feature is spei�ed as a state mahine, desribed impliitlyin SMV syntax by a set of state variables and onditional assignments to thosevariables. The valuations of the state variables de�ne the states of the mahine,and the onditional assignments de�ne the transitions. Eah layer may introduenew state variables, with their own assignment statements, and additionally de�nea set of hanges to the updates of existing variables. Feature interations aredeteted by heking temporal properties of features against the omposition of thestate mahines desribing the features.This approah uses existing model heking tools in a diret way, but it has twomain disadvantages. In pratial terms, there is repetition of work in speifying afeature both in temporal logi and as a state mahine. It is neessary to hek theonsisteny of the two spei�ations by model heking. Seondly, a state mahinede�nes one partiular implementation of the feature. Thus, if the features arereported as oniting, it is unlear whether this onit is spei� to the partiularstate mahine, or it exists in all implementations. Our approah addresses both ofthese diÆulties. The �rst is eliminated by onsidering the temporal properties asbeing the only spei�ation of a feature. The seond one is avoided by the detetionmethod. A onit found by our method is appliable to all implementations thatsatisfy the system axioms and the individual feature spei�ations. Tehnially,this generalization means that, as disussed in Setion 4.1, we are solving|albeitapproximately|an instane of the more diÆult realizability question.The existing temporal logi approahes [Blom et al. 1995; Gammelgaard and Kris-tensen 1994℄ use only a subset of temporal logi, and their desriptions of featuresare essentially state mahines presented in logial notation, so it is impossible toexpress liveness properties, for instane. A di�erent approah (f. Aho et al. [1998℄and LaPorta et al. [1998℄) to deteting interations between features A;B spei�edas state mahines, is to form the omposed systems A==Swith and A==B==Swith,and hek if the behavior of A di�ers in the two systems: if this is so, the behaviorACM Transations on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.



22 � A. Felty and K. Namjoshiof A has been a�eted by the presene of B. While this is a promising method,it requires abstrat models of the swith and of the features. Suh models anbe more diÆult to reate and maintain than logial spei�ations. Although weuse automata in the onit hek, whih an be viewed as state mahines withfairness onstraints, the translation from LTL formulas to automata ours in amanner invisible to the end user. Furthermore, the behavior of a feature spei�edas a olletion of temporal properties an often be restrited by adding (in e�et,onjoining) another formula. It is muh harder to get the same e�et for a statemahine desription; the mahine may have to be modi�ed signi�antly in orderto restrit its behavior. On the other hand, if it is indeed possible to desribe thefeature easily using a state mahine, the mahine an be enoded quite simply withtemporal logi.In our work, we have desribed a method for deteting feature onits wherefeatures are spei�ed as a olletion of temporal logi formulas or !-automata, andinterations are disovered by �nding pairs of spei�ation formulas that are on-traditory with respet to axioms about system behavior. We showed how existingmodel hekers an be used to perform this test. The main advantages of thisapproah are that (i) the spei�ation language simpli�es the maintenane of spe-i�ations, (ii) the method avoids any ommitment to a partiular implementation,whih means that a deteted onit applies to all implementations, and (iii) it anbe implemented to perform fully automated onit detetion, using existing modelhekers in an e�etive manner. We have implemented this method and applied itto the analysis of formal spei�ations derived from the Telordia standards. Ourexperiene so far has been that this detetion proess is reasonably eÆient andquite aurate; for the set of features to whih we have applied this method, wehave been able to detet most of the interations given in the Telordia standards,as well as some new ones. For this set of features, our tool FIX is able to detetthese interations in a matter of a few hours of proessing time.An important omponent of future work is to handle more features, as well asto improve the performane of the tool. Adding feature spei�ations does notinrease the omplexity of eah onit hek, whih is still arried out pairwiseamong individual properties, but it does multiply the number of suh heks thatmust be arried out if we want to hek eah new feature against all existing features.On the other hand, sine the pairwise interation heks an be run independently,it is feasible to use mahines in a network in parallel to dramatially redue the timeneeded to detet interations. In order to address the problem of saling up, we willaddress the trade-o� of eÆieny vs. power in FIX. By power, we mean not onlyallowing a greater number of onit heks, but also ahieving more auray indeteting onits. Along these lines, we plan to investigate the extensions disussedin Setion 5: alternative variable bindings and building more preision into thefeature spei�ations themselves. We also plan to inorporate heks that inludemore than two features at a time. Another line of researh is suggested by theformulation of feature interation as a realizability question (Setion 4.1). It wouldbe interesting to implement the full branhing time solution and ompare the resultswith those we have obtained using a linear time approximation. If the synthesisproblem turns out to be eÆiently solvable in pratie, it would also be interestingACM Transations on Software Engineering and Methodology, Vol. 12, No. 1, January 2003.
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