ISSN 0249-6399

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Higher-order abstract syntax in Coq

Joélle Despeyroux , Amy Felty et André Hirschowitz

N° 2556
Mai 1995

PROGRAMME 2

apport
derecherche

ZIINRIA

SOPHIA ANTIPOLIS

Higher-order abstract syntax in Coq

kokok

Joélle Despeyroux *, Amy Felty ** et André Hirschowitz

Programme 2 — Calcul symbolique, programmation et génie logiciel
Projet Croap

Rapport de recherche n° 2556 — Mai 1995 — 18 pages

Abstract: The terms of the simply-typed A-calculus can be used to express the higher-
order abstract syntax of objects such as logical formulas, proofs, and programs. Support
for the manipulation of such objects is provided in several programming languages (e.g.
AProlog, Elf). Such languages also provide embedded implication, a tool which is widely
used for expressing hypothetical judgments in natural deduction. In this paper, we show how
a restricted form of second-order syntax and embedded implication can be used together with
induction in the Coq Proof Development system. We specify typing rules and evaluation
for a simple functional language containing only function abhstraction and application, and
we fully formalize a proof of type soundness in the system. One difficulty we encountered is
that expressing the higher-order syntax of an object-language as an inductive type in Coq
generates a class of terms that contains more than just those that directly represent objects
in the language. We overcome this difficulty by defining a predicate in Coq that holds only
for those terms that correspond to programs. We use this predicate to express and prove
the adequacy for our syntax.

Key-words: Higher-order abstract syntax, Coq, theorem proving, logical framework, type
theory, A-calculus.

(Résumé : tsup)

This article appeared in M. Dezani and G. Plotkin, editors, Proceedings of the international conference
on Typed Lambda Calculi and Applications (TLCA), volume 902, pages 124-138. Springer-Verlag Lecture
Notes in Computer Science, 1995.

*INRIA, Sophia-Antipolis. Email: joelle.despeyroux@sophia.inria.fr
**AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974, USA. felty@research.att.com
***CNRS URA 168, University of Nice, 06108 Nice Cedex 2, France. andre.hirschowitz@sophia.inria.fr

Unité de recherche INRIA Sophia-Antipolis
2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex (France)
Téléphone: (33) 93 65 77 77 — Telécopie: (33) 9365 77 65

Syntaxe abstraite d’ordre supérieur en Coq

Résumé : Les termes du A-calcul simplement typé peuvent étre utilisés pour décrire en
syntaxe abstraite d’ordre supérieur des objets tels que des formules logiques, des preuves
ou des programmes. Des langages de programmation tels que AProlog et Elf permettent de
manipuler ces objets. Ces langages permettent aussi d’employer I'implication plongée (‘em-
bedded implication’), possibilité largement exploitée pour exprimer les jugements de la dé-
duction naturelle. Dans cet article, nous montrons comment utiliser une forme restreinte de
syntaxe abstraite d’ordre deux et d’'implication, conjointement avec I'induction, dans le sys-
téme de développement de preuves Coq. Nous spécifions les régles de typage et d’évaluation
d’un langage fonctionnel simple contenant seulement ’abstraction et 'application et nous
formalisons une preuve de préservation des types dans le systéme. Le probléme est que la
syntaxe d'un langage objet donnée a 'ordre supérieur par un type inductif génére trop de
termes. La solution présentée ici consiste & définir un prédicat Coq vrai sur les seuls termes
qui correspondent & des programmes. Nous utilisons ce prédicat pour exprimer et prouver
I’adéquation de notre syntaxe.

Mots-clé : Syntaxe abstraite d’ordre supérieur, Coq, théories typées, A-calcul.

Higher-order abstract syntax in Coq 3

1 Introduction

Abstraction in the A-calculus can be used to represent various binding operators such as
quantification in formulas or abstraction in functional programs. By making use of the
implementation of the A-calculus in programming languages that support it, the programmer
is freed from such concerns as implementing substitution algorithms and correctly handling
the scope and names of bound variables. Many examples exist and illustrate the usefulness
of higher-order syntax in programming and theorem proving. For example, the Logical
Framework (LF) [10] provides a uniform framework for specifying a large class of languages
and inference systems. A variety of logics and typed A-calculi have been specified using
it [2]. Theorem provers for several of these logics have been specified and implemented in
the logic programming language AProlog, which provides support for the manipulation of
objects expressed in higher-order syntax [5, 6]. The AProlog language has also been used to
specify program evaluators and transformers |7, 8. Elf, a logic programming implementation
of LF, has been used to specify and verify properties of inference systems [11, 14] and
compilers [9]. In many of these examples, embedded implication (i.e., an implication on the
left of an implication) is used, providing an elegant mechanism for handling scoping of sets
of assumptions during proof construction, or of contexts during program evaluation.

Higher-order syntax and hypothetical judgments can be expressed in many theorem
provers. However, there is little experience using them in proofs. In this paper, we illustrate
the use of a restricted form of second-order syntax and embedded implication in the Coq
Proof Development system [4] by defining typing rules and evaluation for a simple functional
language containing only function abstraction and application. We prove type soundness
for this language, i.e., that evaluating a term preserves its type. By using this syntax much
of the details of proofs, in particular those concerning substitution and names and scopes of
variables, are greatly simplified. In addition, this work represents a step towards the goal
of providing support for higher-order abstract syntax and allowing both programming and
program verification in a unified setting.

We have chosen the Coq Proof Development System because it implements the Calculus
of Inductive Constructions (CIC) [13], a type theory which provides a notion of inductive
definitions. Defining a type inductively provides a principle of structural induction and
an operator for defining functions recursively over the type. These operators can be used
directly and there are no requirements placed on the user to prove their correctness. However,
in order to use the built-in support for induction, we had to overcome two obstacles.

The first obstacle is that negative occurrences of the type being defined are not allowed
in inductive definitions. If L is the type of terms of the language being defined, the usual way
to express the higher-order syntax of an abstraction operator such as function abstraction
in our example is to introduce a constant such as Lam and assign it the type (L — L) — L.
That is, Lam takes one argument of functional type. Thus function abstraction in the
object-language is expressed using A-abstraction in the meta-language. As a result, bound
variables in the object-language are identified with bound variables in the meta-language.
In inductive types in Coq, negative occurrences such as the first occurrence of L in the
above type are disallowed. As in [3], we get around this problem by introducing a separate

RR n”2556

4 J. Despeyrouz, A. Felty €& A. Hirschowitz

type var for variables and giving Lam the type (var — L) — L. We must then add a
coustructor for injecting variables into terms of L. Thus, in our restricted form of higher-
order syntax, we still define function abstraction using A-abstraction in Coq and it is still
the case that a-convertible terms in our object-language map to a-convertible terms in Coq,
but we cannot directly define object-level substitution using Coq’s f-reduction. Instead we
define substitution as an inductive predicate. Its definition is simple and similar to the one
found in [12].

The second obstacle is that defining the type L as an inductive type with the usual
constructors for application and abstraction plus the special constructor for variables gives
a set of terms in Coq that is “too large”. That is, there are more terms in L than those
that correspond to objects in the object-language. To solve this problem for our functional
language, we succeeded in the task of defining an object-level predicate, which we call valid,
that is true only for those terms that correspond to programs. This predicate, however,
does allow some terms that do not directly represent programs, namely, those that are
extensionally equal to terms that do. We define extensional equality for the type L in Coq,
and consider that each term of the object-language is in fact represented by an equivalence
class of terms determined by this equality relation.

This work extends two related projects where higher-order syntax is used in formal proof.
In [9], Elf is used in compiler verification. In Elf, there is no quantification over predicates,
and thus induction principles cannot be expressed inside the language. As a result, much
of the detail of proofs must be done outside the system. Tools such as schema-checking [14]
have been developed to help with this task. In [3], a different approach to higher-order
syntax in Coq is adopted. There, like here, a separate type var for variables is introduced
and Lam is defined as above. However, instead of directly representing (closed) terms of
the object-language by terms of type L, closed and open terms of the object-language are
implemented together as functions from lists of arguments (of type L) to terms of type L.
Semantics are given on these functional terms. A predicate on these terms is introduced
which defines valid terms to be the expected ones. Induction over terms is carried out by
using the induction principle for this predicate. Here, we instead define typing and evaluation
directly on (closed) terms of type L. We succeed in reasoning about them by directly using
the induction principles generated by their definitions.

The rest of the paper is organized as follows. In Section 2, we define the higher-order
syntax of our functional language in Coq. In Sections 3, 4, 5. and 6, we show that our
syntax adequately represents our object-language. In Section 3, we give a definition of our
object-language in LF for which adequacy has already been proved, and in Section 4, we
express a translation between the LF and Coq syntaxes. In Section 5, we explain which kind
of terms should be ruled out and the need for extensionality. In Section 6, we implement the
predicate valid which selects terms that represent terms of the object-language and prove
the correctness of this implementation. In Section 7, we define and implement substitution in
Coq and prove its correctness. Although the definitions of valtd and substitution are simple,
finding them was one of the main challenges of this work. In defining them, and in the proofs
in this paper, we succeeded in avoiding any need to refer to variable names or occurrences of

INRIA

(@24

Higher-order abstract syntax in Coq

variables in terms, or a notion of fresh variables not occurring in terms. Section 8 presents
the Coq definitions for typing and evaluation in the object-language, which specify the usual
natural semantics style presentation of these judgments, and discusses the Coq proof of type
soundness. In Section 9, we conclude and discuss future work.

Notation. In proving the adequacy of our representation and correctness of substitution,
we will often use notation close to the syntax of Coq. To make the distinction, for those
definitions or statements not intended to be Coq or LF definitions, we will use (*) as a
superscript on Coq keywords.

2 Specifying Provisional Syntax

We assume the reader is familiar with the Calculus of Inductive Constructions. We simply
note the notation used in this paper, much of which is taken from the Coq system. Let M
and N represent terms of CIC. The syntax of terms is as follows.

Prop | Set | Type | MN | Xa: M.N | Ve: M.N | M —- N |
MAN | MVN | 32:MN | -M | M=N | Rec M N |
Inductive Definition M : N {M; | ... | My} |
Case x: M of My = Ny,..., M, = N,

Here V is the dependent type constructor and the arrow (—) is the usual abbreviation when
the bound variable does not occur in the body. Of the remaining constants, Prop, Set,
Type, A, Rec, and Case are primitive, while the others are defined. Rec and Case are the
operators for defining inductive (Case) and recursive (Rec) functions over inductive types.
Equality on Set (=) is Leibnitz equality.

A parameter is introduced using the Parameter keyword and inductive types are introdu-
ced with an Inductive Set or Inductive Definition declaration where each constructor is given
with its type, separated by vertical bars.

We specify a provisional syntax for our object-language, the A-calculus, by introducing
a type for variables and defining terms and types inductively.

Parameter var : Set.
Inductive Set L =

Var :var =L | App: L —-L—L | Lam: (var — L) — L.
Inductive Set tL = TVar:var -»tL | Arrow:tL — tL — tL.

For instance, (Lam (Az : var. (App (Var z) (Var x)))) encodes the function Az.(z z).
This syntax is provisional since, although it is clear how to encode each term of the object-
language as a term of type L, for most instantiations of the type var, the type L contains
exotic terms, that is, terms that do not encode any A-term. Describing these terms and
finding a way to rule them out is the subject of the next few sections.

The following induction principle for L is generated by the system and proven automa-
tically. It illustrates a general form of induction over higher-order syntax.

RR n”2556

6 J. Despeyrouz, A. Felty € A. Hirschowitz

VP :L — Prop.
(Vo : var. (P (Var v))) —
(Vm,n: L(P m)— (Pn)— (P (App m n))) —
(VE : var — L.(Vv :var.(P (E v))) — (P (Lam E))) —
Ve: L.(P e).

By asserting var as a parameter, the theorems we prove will hold for any instantiation
of this type. The important ones to consider will be those that satisfy any axioms we assert,
which make assumptions about this type. All those that we will need here should follow from
the var_nat assumption below which asserts a surjective mapping from var to the natural
numbers.

Inductive Set nat = 0:mnat | S:mnat — nat
Axiom var_nat : 3s : var — nat. Yo : nat. Jv : var. (s v) =n.

3 Specifying Syntax in LF

To prove that our syntax adequately represents our object-language, we begin with an LF
signature for the A-calculus, for which adequacy has already been proven [2]. In LF, the
syntax is introduced simply by declaring the type Iy for terms and two constructors for
application and abstraction.

lo : T'ype

appo : lo — lo — o

lamy : (ll) - lo) — ly.

The set of (afn-equivalence classes of) LF terms generated by this signature has three
important properties, which we state informally as follows:

1. All terms of the object-language can be represented (as trees) using only the two
constructors (induction principle).
2. Each term has a unique representation (injection principle).

3. Any two terms that are extensionally equal are also equal (extensionality principle).

The formulation of these principles, which we will not give here, involves LF terms of type
lo, lo — lo, lo — 1o — lp, etc. We will use this sequence of types in the translation of our
object-language from the LF representation to the Coq representation in the next section.
Thus we give a formal definition:

Definition”™ I, :=if n = 0 then ly else ly — l,,_1.

In the context of this sequence of types, instead of the original two constructors, the induction
and injection principles involve what we call the higher-order constructors, which are defined
as follows:

INRIA

Higher-order abstract syntax in Coq 7

Definition™ ref = An : nat.Ai € [0.n — 1).AZp—1,..., 20 : lo.7;
Definition” app = An : nat.

Aese’ tlp Avn_1, .. o Lo (appo (e X1 ... xg) (€' Tpoy ... Tg))
Definition™ lam = An : nat.Case n of

0= Xe:ly. (lamg e)

(Sm)= Ae:lygo. ALpny..., 2ot lo.(lamg (€ 2, ... Zo)).

These higher-order constructors will allow us to give a very simple translation from the
above LF syntax into Coq (see below). Note that they are not LF terms. However, for each
n > 0 and ¢ < n, the terms (ref n i), (app n), and (lam n), which we abbreviate as refn ;,
appn, and lam,,, are LF terms. These three families of higher-order A-terms have natural
interpretations in any Cartesian closed category with reflexive objects (cf [1] definition 9.3.1
page 219). The interpretation there is highly semantic in nature. Our purpose here is syntax,
and our motivation for the above definitions is not the use of object-level g-reduction.

In [3], our provisional syntax was used to yield and manipulate an implementation of
lyp, and in fact of the l,,’s. There, adequacy caused no problem, but the final syntax and
semantics were invaded by (object-level) lists. Here we will succeed in implementing syntax
and semantics without object-level lists.

4 Translation Between LF and Coq Syntaxes

In order to express our translation we define the Coq counterpart of the types l,, and the
corresponding higher-order constructors.

Definition™ L,, :=if n =0 then L else var — L,_;.
Definition” Ref = An : nat.Xi € [0.n — 1|.Azp_1,..., 30 : var.(Var ;)
Definition™ App = An : nat.de,e’ : Ly Az _1,...,xq @ var.
(App (e 1 ... wo) (€' Tp—1 ... o))
Definition® Lam = An : nat.Case n of
0= Ae: Ly. (Lam e)
(Sm)= Ae: Lyy2. A0,z s var.(Lam (e Ty, ... z0)).

As before, we use abbreviations Refy, ;, App,, and Lam,,.
To show the correspondence between Coq terms of type L and LF terms of type [y, we
begin by defining the following natural translation T'rans from the 1,,’s into the L,’s.

Inductive Definition™ Trans : Vn : nat. 1, — L, — Prop
= Transoref : Vn: nat¥i € [0.n — 1].(Trans n refy,; Refni)
| Trans_app : Vn : nat¥a,b: 1, Va',b' : L,. (Trans n a o'y —
(Trans n b d') — (Trans n (app., a b) (App,, o’ b))
| Translam :Vn :natNe: l,41.¥f: Lyt1. (Trans (n+1)e f) —
(Trans n (lamy, e) (Lamy, f)).

RR n"2556

8 J. Despeyrouz, A. Felty € A. Hirschowitz

Proposition™: The above definition Trans defines, for each n, an injective map from I, to

L.

The proof of this proposition relies heavily on the induction and injection principles men-
tioned earlier. For a similar statement and a fully mechanized proof of it, see [3]. Our next
task is to characterize the image of this translation, which in fact is the subset of terms in
L., that specify A-terms, and thus are the terms we are interested in. The natural definition
that selects this subset is the following one (see [3]):

Inductive Definition™ Valid : Vn : nat. L,, — Prop
= Validref : Vn,i: nat.(i <n) — (Valid n Refn;)
| Valid_app : Vn : natNe,e' : Ly.
(Validn e) — (Valid n e') —» (Valid n (App, e €'))
| Valid_lam : ¥n : natNe: Lyy1. (Valid (n+1) e) = (Valid n (Lam, e)).

Indeed, we have the following result, whose proof is straightforward.
Theorem™ : For each integer n, Trans yields a bijection between terms of type I, and
terms of type L,, satisfying (Valid n).

Note that Valid is not a Coq predicate. Furthermore, it is not clear how to define a Coq
predicate for each instance of » without using the definition for » + 1 (see the Validlam
case). This is precisely the task we will turn to now, at least for n = 0. We will succeed only
modulo extensionality (see Section 6). Note that the Valid_ref case becomes irrelevant
when n = 0 and thus only closed terms satisfy (Valid 0). Our solution will replace the
proposition (Valid (n+ 1) e) with an equivalent one that depends on n instead of n + 1,
thus allowing us to drop n altogether. One obvious candidate is Yo : var.(Valid n (e v)).
However, as we will see, this is not sufficient and does not rule out all the necessary terms.

5 Exotic Terms, Extensionality and Extended Validity

There are three kinds of exotic terms that the type L may contain. We illustrate by instan-

tiating var to nat. In this case, we have irreducible functional terms of type nat — L that

use a C'ase operator. Exotic terms of type L are generated through the Lam constructor.
The first kind of exotic term is illustrated by the following term:

exot; = (Lam Az : nat.Case z : nat of 0= (Var 0) (S n)= (Var (S n))).

The above term is extensionally equal to the term (Lam Az : nat.(Var z)), and thus we
could accept it as a well-formed term. Extensional equality is defined as the following Coq
definition.

INRIA

Higher-order abstract syntax in Coq 9

Inductive Definition eqr, : L — L — Prop
= eqrwvar : Vo : var(eqp (Var z) (Var z))
| eqp-app :¥Ymq,ma,ny,ng : L.
(eqr, 1 1) — (eqr ny ma) — (eqr (App mq m2) (App n1 na))
| eqrlam :VYM,N :var — L.
(Va2 var.(eqr (M z) (N z))) — (eqr (Lam M) (Lam N)).

It will be difficult to define predicates which are able to distinguish Valid-terms from terms
extensionally equal to them. For instance our predicate subst (see below) does not. We
circumvent this problem by considering that a A-term is in fact represented by an equivalence
class of terms for this eqy, relation.

The second kind of exotic terms are the open ones, namely those with “free variables”
such as exoty = (Var (S 0)). These open terms will play a role in our approach; we will
first introduce a meta-level predicate Valid_v, a slight modification of Valid allowing open
terms; we will then succeed in defining a Coq predicate valid which implements (Valid_v 0)
up to extensionality.

The third kind of exotic term is more problematic and we definitely want our valid
predicate to discard them. These are terms that contain functions that are not “uniform”
in their argument. For example, let exots :=

A,z nat.Case z: nat of 0= (Var z) (Sn)= (App Var f) (Var n)).

The term (Lam Af : nat.(Lam Az : nat.(exots f x))) does not represent a A-term.

In order to integrate the first kind of exotic term, we define the meta-level predicate
Valid_ext which selects terms extensionally equal to Valid ones. For this, we have to
extend eqr, to the sequence of types L,. Note that for each integer n, eqr, is a Coq term.

Definition™ eqr,, = eqr.
Definition™ eqr, ., = Ae, f 1 Lny1.Vv tvar.(eqr, (ev) (f v)).
Definition” Valid_ext = An : nat.Xe : L,.3¢' : L,.((eqr, e €') A (Valid n €')).

In order to integrate exotic terms of the second kind, we start by introducing a fourth
higher-order constructor V.

Definition® V = An : nat.\v : var.\zy : var.... Az, : var.(Var v).

Note that although V is not a Coq term, for each n, (V n) is a Coq term in L,41, which
we denote by V,. Similarly, V), , denotes (V n v). We are now in a position to mimic
our characterization of well-formed closed terms through Valid and Valid_ezt to obtain the
following predicates, Valid_v and Valid_v_ext, which characterize our open terms.

RR n”2556

10 J. Despeyrouz, A. Felty € A. Hirschowitz

Inductive Definition™ Validw : Vn : nat. L, — Prop
= Validvvar : Yn : nat.Nv : var.(Validv n (V, v))
| Validv_ref : Vn,i: nat.(i <n) — (Validov n Refr,i)
| Valid_v_app : Vn : nat.Ve,e' : L.
(Validov n e) — (Validv n ') — (Validv n (App, € €'))
| Valid_v_lam :Vn : nat.Ne: Lyi1.
(Validv (n+1) e) — (Validv n (Lam, €)).

Definition” Valid_v_ext =
An i nat. e : L,.3e’ : Ly,.((eqr, e ')A (Validv n e')).

In the next section, we will implement (Valid_v_ezt 0) and (Valid_ext 0).

6 Implementing Validity

As stated earlier, for any n, the challenge of defining a Coq predicate implementing (Valid n)
is to remove the dependence of the Lam case on (n + 1). We show here how we success-
fully overcome this difficulty for the case when n = 1 and define the Coq predicate validy
implementing (Valid 1) modulo extensionality. Since we only need (Valid 0), we can then
implement it directly (modulo extensionality) using valid,.

We denote by VL, the subset of Valid_v_ext-terms in L,, and by VL the union of the
VL,’s.

The basis of our implementation of (Valid 1) is the following fact which shows that we
are able to express quite simply (Valid 2) in terms of (Valid 1) (modulo extensionality).

Proposition™ Separate_val : Ve : var — var — L.
(Vv : var.(Validovext 1 (e v))) —
(Vv :var. (Valid_v_ext 1 Au: var.(e w v))) — (Validv_ezt 2).

Proof: Tt follows from the induction and injection principles that equivalence classes (modulo
eqr,,) of terms of VL, are in one-one correspondence with (second-order abstract syntax)
trees built from the higher-order constructors Re fp, i, Appm, Larmy, and Vi, ,. Here a tree
is a set of (abstract) paths together with a map from this set to our set of constructors.
Let e be a term satisfying the assumptions. We pick three values w,v and w in var. (Note
that by the var_nat axiom, we know there are infinitely many terms of type var. Here, we
require at least three). By the first assumption, both (e w v) and (e w w) are values of
the (Valid_v_ext 1) function (e), thus their associated trees differ at most in some leaves,
where they both have a V,,, with different arguments. By the second assumption, a similar
statement holds for the trees associated with (e w v) and (e w v). By transitivity, we infer
that for any four-tuple (w,v,w,) in var, the trees associated with (e w v) and (e w) differ
at most in some leaves, where they both have a V,,, with different arguments. We denote by
P the set of paths p where the constructor associated with (e w v) is V: the first argument
of this V is an integer depending on p, which we denote m,. while the second is of type var,

INRIA

Higher-order abstract syntax in Coq 11

depending on p, w, and v, and we denote it by (¢, u v)). We have to prove that for each p
in P, ¢, is either one of the two projections or a constant function. We know that for any
w, Av.(¢p w v) is either constant or the identity. Similarly, for any w, Av.(¢p v w) is either
constant or the identity. The following lemma will complete our proof and illustrate why at
least three distinct variables are needed.

Lemma™: Let var be a set with at least three elements. Let ¢ be a function from var x var
into var satisfying the property that for any w, Av.(¢ v v) and Av.(¢ v w) are either constant
functions or the identity. Then ¢ is either a constant function or one of the two projections.

Proof. First suppose that for some u, Az.(¢ w #) is a constant w different from w. Then for
any v different from w, Az.(¢ = v) has to be constant and equal to w. Now choose u/. For
z different from w, (¢ «’ z) is equal to w. Since there are at least two such 2’s, Az.(¢ v’ z)
has to be constant and equal to w.

The same argument applies when for some u, Az.(¢ =) is a constant w different from
«. In the remaining cases, (¢ w v) can only be w or v.

Now suppose that for some u, Az.(¢ « z) is the constant function Azx.u. Using the
previous assumption, we deduce that for any v different from w, Az.(¢ = v) is the identity.
Now for any u', Az.(¢ u' z) takes the value w' at least twice, and hence is the constant
function Az.u’, and we are done.

In the remaining case, Az.(¢ w x) is the identity for any «, thus ¢ is the second projection.

The above proposition is crucial since it has the corollary below, which concerns the set
of terms W Ly also defined below, and allows a direct implementation of (Valid_v_ext 1). We
denote by VV L the set of (Valid_v 1)-terms. Note that V'L is the set of terms extensionally
equal to terms in VV L;.

Definition™: We define W L; as the smallest among the subsets W of L; satisfying the
following conditions:

1. W contains Az.(Var x).
2. W contains Az.(Var «) for any « in var.
3. W contains Az.(App (¢ z) (b z)) for any pair (a,b) of terms in W.

4. W contains Az.(Lam (e x)) for any e of type var — war — L satisfying the two
conditions:

(a) for any w in var, (e u) is in W;

(b) for any w in var, Az.(e z «) is in W.

RR n"2556

12 J. Despeyrouz, A. Felty € A. Hirschowitz

Corollary®: If type var has at least three terms, then W L; contains V'V Ly and is contained
i VL.

Proof: We first check that VL is a subset of L; satisfying the above four conditions. It is
clear for the first three. For the fourth one, if e is such that for any « in var, (e w) and
Az.(e z u) are in V Ly, then by the Separate_val proposition, e satisfies (Valid_v_ext 2) and
thus is eqr, equivalent to some Valid_v-term ¢’. Thus Az.(Lam (e z)) is eqy, equivalent to
Az.(Lam (¢ z)) which satisfies (Valid_v 1) by Valid_v_lam. Tt follows that Az.(Lam (e x))
satisfies (Valid_v_ext 1). Since W Ly is the smallest set satisfying the above conditions, WL,
is contained in V Lq.

We now check that VV L; is contained in any such W. We choose such a W and we
prove by induction that any term ¢ satisfying (Valid_v 1) is in W. Induction is on the length
of the proof of (Valid_v 1 t). If t has a height of 1, then ¢ is of the form Az.(Var x) or
Az.(Var u), and hence it is in W. If ¢ has bigger height, then the head constructor is either
App or Lam. If t = Az.(App (@ x) (b x)), then by inversion of the definition of Validv, a
and b both satisfy (Valid_v 1). By the induction hypothesis, they are in W, and thus so is t.
If ¢t = Az.(Lam (e z)), then by inversion of the definition of Valid_v, e satisfies (Valid_v 2).
This implies that for any w in var, (e w) and Az.(e z w) are in VV Ly, and thus in W since
the height of these terms is smaller than the height of ¢.

We conjecture that W L, is in fact equal to VV L1 but have not yet proved it.
Now we state our Coq definitions. The definition of valid; is derived directly from the
definition of W L; above and selects exactly the terms of type var — L that we want.

Inductive Definition validy : (var — L) — Prop

= valid; var : Yv : var.(validy Az : var.(Var v))

| validy ref : (validy Az :var.(Var z))

| valid, _app : Ve, e’ : var — L.
(validy e) — (validy e') — (validy Az : var.(App (e z) (¢’ x)))

| walidy lam : Ve : var — var — L.
(Vu : var.(validy Av : var.(e w v)) A (validy Av : var.(e v u))) —
(validy Az :var.(Lam (e x))).

Inductive Definition validy : L — Prop
= validg_var : Yv : var.(validy (Var v))
| validg_app : Va,b: L.(validy o) — (validg b) — (validy (App a b))

| validy lam : Ve : var — L.(validy ¢) — (validy (Lam e)).
Definition valid = Ae : L.3¢’ : L.((eqr e ') A (validy €')).

Definition closed = At : L.((validy t)A
Ve : var — L.(validy €) — Yz : var.(t = (e z)) — Yy : var.(eqr (e y) t)).

INRIA

Higher-order abstract syntax in Coq 13

It follows easily from the above statements that the valid predicate implements (Valid_v_ext 0)
and that closed implements (Valid_ext 0).

Note that (validy exot;) does not hold, but (valid exot;) does if we take e’ in the

definition of valid to be (Lam Az : nat.(Var z)). Note also that in order for (Lam Af :
nat.(Lam Az : nat.(exots f))) to satisly validg, Af : nat.(Lam Az : nat.(exots f x)) must
satisfy validy. Although it is the case that Yu : var.(validy Av : var.(exots v w)) holds,
Yu : var.(validy Av : var.(exots w v)) does not. In fact, no term with a Case operator will
satisfy validy. However, we must include those that are extensionally equal to terms with
no C'ase operator in order to correctly implement substitution, which we define in the next
section.

7 Substitution

In order to specify evaluation for our language, we must specify g-reduction which for our
representation is the operation that, given a redex of the form (App (Lam Az : var.M) N),
replaces all occurrences of (Var 2) in M by N. To do so, we define a Coq predicate subst.
We proceed as we did to define wvalid, here starting with a definition of Subst of type
vn : nat.L,41 — Ly — L, — Prop. The proposition (Subst n £ p r) holds if £ has the
form Az : var.F and r is the term obtained by replacing all occurrences of (Var z) in F by
p. Although we define it relationally, Subst is functional on the first three arguments.

Inductive Definition™ Swubst : Vn : nat.L,,+1 — Ly — L, — Prop
= Subst_ref_rename : Vn : nat.Np: Ly(Subst n Refrnr1n P AT1.... . AZy,.D)
| Subst_ref_keep:Vn :nat.¥p: Ly.¥i € [0..n — 1].
(Subst n Refni1,i p Refn,i)
| Subst_var : Vn : nat.Yv : var.¥p: Ly.(Subst n (Vi1 v) p (Vn v))
| Subst_app : Vn : nat.Np: Ly.YA, A" : L,41VB, B’ : L.
(Substn Ap B) — (Substn A" p B') —
(Subst n (Appn+1 A A') p (Appn, B B'))
| Subst_lam :¥n:natNp: LoNA: Lo VB : Lyyy.
(Subst (n+ 1) Ap B) — (Subst n (Lam,y1 A) p (Lam,, B)).
As before this definition cannot be directly transformed into a Coq definition because it
requires an infinite series of definitions where for each n (Swubst n) requires that of (Subst (n+
1)). As before, we must implement (Subst 0). As for (Valid 0), we cannot do it directly,
but instead must work modulo extensionality. In particular, we implement:

Definition™ Subst_ext = An : nat. e : Lyy1. p : Lo Ar 2 Ly 3e’ @ Ly,o1.3p" ¢ Ly.
Jr! - L”'(ean+1 e e') — (ef]Lﬂ P p’) N (ean P 7,/) N (Subst ne' p/ 7_/)‘

Note that if (Subst n E pr) holds, then E, p and 7 are Valid_v-terms, and if (Subst_estn Epr)
holds, then FE. p and r are Valid_v_ext-terms. The property below is crucial and re-

RR n”2556

14 J. Despeyrouz, A. Felty € A. Hirschowitz

duces (Subst_ext (n + 1)) to (Subst_ext n). Here tQz denotes the term Azq,...,x, :
var.(t 1 ..., x), where the value of n can be determined from context.

Lemma™ : Vn:nat.VE : L,12.VNp: Lo.Vr: L, 1.
(Validww_est (n+2) E) — (Valid_v_ext 0 p) — (Validov_ext (n+ 1) r) —
(Vv :var(Subst_ext n EQu p rQu)) — (Subst_ext (n+ 1) E pr)

Proof: Let 7' be a term such that (Subst_ext (n+ 1) E p »'). Using the fact that replacing
all the arguments (except the variable being substituted) by a value before or after the
substitution leads to the same result, we have that Vv : var.(Substext n EQu p r'Qv)
holds. From the fact that Swubst is functional, we know that for all v of type var, r@v and
equivalent.

7'@Qu are eqr, equivalent. This directly implies that r and r" are eqy,, .,

Note that this lemma would not hold without extensionality.
This property leads to the following implementation of (Subst_ext 0).

Inductive Definition subst : (var — L) — L — L — Prop
= subst_ref : Vp: L.(subst Az : var.(Var z) p p)
| substvar : Vv : var¥p: L.(subst Az : var.(Var v) p (Var v))
| subst_app :Vp: LVYA,A": (var — L).VB,B": L.
(subst Ap B) — (subst A" p B') —
(subst Mv :var.(App (Av) (A" v)) p (App B B'))
| subst_lam :Vp: LYA:var — var — LVB :var — L.
(Vo : var.(subst (Az : var.(A z v)) p (B v))) —
(subst (Az : var.(Lam (A x))) p (Lam B)).

Definition subst_ext = Xe : var — L.Ap : L.Ar : L.3e’' : var — L.3p' : L.3r" : L.
(Vv :var.(eqr (e v) (' v))) — (eqr p ') — (eqr 7 ') — (subst ¢’ p' '),
The correctness of these definitions is expressed by the following statement whose proof
is straightforward. (The second part follows directly from the lemma above).

Proposition™ : VE : var — L.Np,r : L.(Subst_ext 0 Epr) — (substext E pr). Conversely,
VE : var — L¥p,r : L.(validy E) — (valid p) — (valid r) — (substext E p r) —
(Subst_ext 0 E pr).

In proving properties of our object-language, we may choose to use either subst or
subst_ext. In the next section, we choose the former.

8 An Example Proof: the Subject Reduction Theorem

In this section, we specify type assignment and evaluation for our object-language by intro-
ducing inductive types for each. We then outline the proof of type soundness (also called
subject reduction) which we have fully formalized in Coq.

INRIA

Higher-order abstract syntax in Coq 15

For typing, we first introduce a predicate for assigning variables to types along with two
assumptions about it stating that each variable has a unique type and that there is a variable
at every type

Parameter typvar : var — tL — Prop.
Axiom unigvar_type : Va : varVt, s : tL.(typvar z t) — (typvar © s) — (s = t).
Axiom exusts_new _var : Vt: tL. 3z : var.(typvar x t).

Like war, typvar is introduced as a parameter, and thus the theorems we prove will hold
for any instantiation. Here, the important ones to consider will be those for which we can
prove the above axioms. Note, for example, that these two axioms hold trivially if we take
var to be tL and typvar to be equality on ¢tL.

The usual natural deduction style inference rules for assigning simple types to untyped
terms is specified by the following inductive type.

Inductive Definition type : L — tL — Prop
= type Var : Yz : var.¥s : tL.(typvar © s) — (type (Var) s)
| type_App : Ve,e' : LNVt t: tL.
(type e (Arrow t' t)) — (type €' ¢') — (type (App e €') t)
| type_Lam : VE : var — L.¥t,t': tL.
(Vz : var.(typvar x t) — (type (E z) t')) — (type (Lam E) (Arrow t t')).

The third clause in this definition uses a hypothetical judgment with an embedded arrow
for typing A-abstractions. It asserts the fact that (Lam FE) has functional type (Arrow t t')
if under the assumption that for arbitrary variable x of type ¢, it can be shown that the
expression (E z) (the expression obtained by replacing all occurrences of the variable bound
by the A-abstraction at the head of E with) has type ¢'.

Similar definitions of type have been given in LF and AProlog where the predicate de-
fining typing appears on the left of the embedded arrow. Here this would mean replacing
(typvar x t) by (type (Var) t). Note that this change results in a negative occurrence of
type which is disallowed in Coq. For this reason, we need a separate typvar predicate, just
as we needed a separate type var in the definition of L.

The following induction principle for this definition illustrates the general form of induc-
tion over inductively defined predicates, in particular when they involve embedded universal
quantification and implication.

RR n”2556

16 J. Despeyrouz, A. Felty € A. Hirschowitz

VP.L — tL — Prop.

(Vo : varVs: tL.(typvar z s) — (P (Var z) s)) —

(VE : var — LNt : tL.
(Y : var.(typvar = t) — (type (E z) t')) —
(Vz : var.(typvar z t) — (P (E z) t')) — (P (Lam E) (Arrow t t'))) —

(Ve,e' : LNt t: tL.
(type e (Arrow t' t)) — (P e (Arrow t' t)) —
(type e’ t') > (P ' t')— (P (Appe) t)) —

Ve : LVt: tL.(type e t) — (P e t)

Call by value semantics for our simple functional language is defined by the following induc-
tive definition. Note the use of substitution in the S-redex case.

Inductive Definition eval : L — L — Prop
= eval_Lam : VE : var — L.(eval (Lam E) (Lam E))
| eval_App : VE : var — L.¥eq,e9,e3,v1,v2 : L.(eval e; (Lam E)) —
(eval e v2) — (subst E va e3) — (eval e3 v1) — (eval (App eq e3) v1).

The proof of type soundness is quite simple and follows naturally from the definitions
and axioms presented in this section, the definitions in Section 2, and the definition of subst.
The main lemma needed for this theorem is that the predicate subst preserves typing. For
this lemma, we need to define the notion of two terms having the same type. This definition,
lemma, and the main theorem are stated as follows.

Definition same_type = Am,n : L.3t : tL.(type m t) A (type n t).
Lemma subst_sr : VE : var — LNp,n: L.(subst E pn) —
Yz : var.(same_type (Var z) p) — Vit : tL.(type (E ©) t) — (type n t).
Theorem subj_reduction : Ve, v : L.(eval e v) — Vit : tL.(type e t) — (type v t).
The proof of the lemma proceeds by induction on (subst E p n), while the proof of
subject reduction proceeds by induction on (eval e v).

9 Conclusion and Future Work

We have shown by example how higher-order syntax can be used in formal proof. Our
method of specification of syntax is in fact quite general. Although we have not yet done
it, we plan to generalize it formally as is done in [3]. For any object-language that can be
expressed in second-order syntax, it is easy to see how to define the corresponding valid and
subst predicates. Proofs of adequacy follow similarly. In doing proofs, the user is then freed
from concerns of a-conversion, and substitution is greatly simplified. In fact, it is possible
to automate generation of these definitions and to automate certain aspects of proof search
that occur repeatedly in such proofs. Although our proof is already simple (500 lines of Coq
script), it would be further simplified by such automated tools.

INRIA

Higher-order abstract syntax in Coq 17

In the example presented here, we were able to state type soundness without any mention
of validity. For other statements, however, this is not possible, and care must be taken to
include assumptions about validity where necessary (typicaly on existencial variables). Note
that a systematic insertion of valid would solve this problem and could be automated. In
our case, this would lead to

Ve,v : L (valid e¢) — (valid v) — (eval e v) — Vit : tL.(type e t) — (type v t),

which is weaker than what we actually proved, but expresses the same object-level pro-
perty.

In addition to type soundness as presented here, several other examples are in progress
including a proof of correctness of a AProlog program that computes the negation normal
form of formulas in first-order logic and a proof of the Church-Rosser property for the
A-calculus.

Finally, we have not considered here the question of adequacy for our semantic definitions.
This, together with the correctness of the Coq theorems with respect to the corresponding
‘meta’ theorems will be the subject of future work. The latter will follow naturally (see.
Theorem 1. in Section 3.5 in [3]).

References

[1] A. Asperti and G. Longo. Categories, Types, and Structures. MIT Press, Foundations
of Computing Series, London, England, 1991.

[2] A. Avron, F. Honsell, I. A. Mason, and R. Pollack. Using typed lambda calculus to
implement formal systems on a machine. Journal of Automated Reasoning, 9(3):309
354, Dec. 1992.

[3

J. Despeyroux and A. Hirschowitz. Higher-order syntax and induction in coq. In Procee-
dings of the fifth Int. Conf. on Logic Programming and Automated Reasoning (LPAR
94), Kiev, Ukraine, July 16-21, 1994, 1994. Also available as an INRIA Research
Report RR-2292, Inria-Sophia-Antipolis, France, June 1994.

G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Murthy, C. Parent, C. Paulin-Mohring,
and B. Werner. The coq proof assistant user’s guide. Technical Report 154, INRIA,
1993.

[4

[5] A. Felty. A logic programming approach to implementing higher-order term rewriting.
In L.-H. Eriksson, L. Hallnids, and P. Schroeder-Heister, editors, Proceedings of the
Januvary 1991 Workshop on Extensions to Logic Programming, pages 135—161. Springer-
Verlag LNCS, 1992.

l6

A. Felty. Implementing tactics and tacticals in a higher-order logic programming lan-
guage. Journal of Automated Reasoning, 11(1):43-81, Aug. 1993.

[7] J. Hannan. Investigating a Proof-Theoretic Meta-Language for Functional Programs.
PhD thesis, University of Pennsylvania, Technical Report MS-CIS-91-09, Jan. 1991.

RR n”2556

18

J. Despeyrouz, A. Felty € A. Hirschowitz

18]

19]

[10]

[11]

[12]

[13]

[14]

J. Hannan and D. Miller. From operational semantics to abstract machines. Mathema-
tical Structures in Computer Science, 2:415—459, 1992,

J. Hannan and F. Pfenning. Compiler verification in LF. In Seventh Annual Symposium
on Logic in Computer Science, pages 407-418, 1992.

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of the
ACM, 40(1):143-184, Jan. 1993.

S. Michaylov and F. Pfenning. Natural semantics and some of its meta-theory in elf. In
L.-H. Erikssoun, L. Hallnis, and P. Schroeder-Heister, editors, Proceedings of the January
1991 Workshop on Extensions to Logic Programming, pages 299-344. Springer-Verlag
LNCS, 1992.

D. Miller. Unification of simply typed lambda-terms as logic programming. In Eighth
International Logic Programming Conference. MIT Press, 1991.

C. Paulin-Mohring. Inductive definitions in the system Coq; rules and properties. In
M. Bezem and J. F. Groote, editors, Proceedings of the International Conference on
Typed Lambda Calculi and Applications, volume 664, pages 328-345. Springer Verlag
Lecture Notes in Computer Science, 1993.

F. Pfenning and E. Rohwedder. Implementing the meta-theory of deductive systems. In
Eleventh International Conference on Automated Deduction, pages 537-551. Springer-
Verlag LNCS, 1992.

INRIA

/<

Unité de recherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unitée de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhone-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex 1
Unité derecherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des L ucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
ISSN 0249-6399

